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ABSTRACT: Uncertainty is important to appreciate in the outputs of complex and dynamic urban 
systems. This study demonstrates three methods for uncertainty propagation in transportation and land 
use models: Local Sensitivity Analysis with Interaction (LSAI), Monte Carlo (MC) methods, and 
Bayesian Melding (BM) method. Two case study settings are used to illustrate how these methods 
work, allowing for inter-method comparisons. LSAI can provide the sign of change implied by the 
changes in exogenous variables, the relative importance of the change in exogenous variables, and the 
decomposition of the change of output into the individual and interaction changes in exogenous 
variables. The computing time for multiple model runs is determined by the number of (groups of) 
exogenous variables. However, that approach obtains only point estimates, while MC and BM can 
deliver the entire distribution of each output. However, the MC and BM meethods require an 
understanding of the uncertainty of all model inputs and parameters. MC methods can be used to 
solve problems with probability structures, or non-probabilistic problems. It is straightforward to 
obtain a model’s output distributions via random sampling from the distributions of inputs and 
parameters. However, MC methods require a large number of samples (and thus full model runs), 
especially for more accurate results. Both LSAI and MC only solve the deterministic problems, while 
BM can solve both deterministic and stochastic problems, explicitly. BM can estimate the posterior 
distribution of outputs from prior probability distributions and likelihoods of inputs and parameters. 
However, BM can be extremely expensive in terms of computing time, since it requires several 
hundred runs of the model. Moreover, all outputs must be known at an intermediate point (in time, 
typically), to allow foror intermediate validation. 

Key words: Uncertainty Propagation, Transportation and Land Use Models, Local Sensitivity 
Analysis with Interaction (LSAI), Monte Carlo (MC) methods, Bayesian Melding (BM)  

INTRODUCTION 

Scientific computing involves large-scale simulations to represent real-world phenomena like 
evolution of cities and their traffic patterns. With improvements in computing capabilities and more 
efficient algorithms, simulation results can better represent real-world conditions. Models allow for 
accurate forecasts over longer prediction periods. Predictions are typically affected by uncertainties in 
input data and model parameters, and by incomplete knowledge of underlying behaviors (Cheng, 
2009). Models (and the systems they represent) are often explicitly stochastic (Sevcikova et al., 2014), 
with random components generated and used through the predictive process. It is very important for 
system design optimization and policy-making to capture and represent this uncertainty information 
appropriately in model results. Much work has been done, in areas as diverse as hydrology (e.g., 
Christensen, 2003; Neuman, 2003; Korving et al., 2003), climate change (e.g., Andrew and Francis, 
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2000; Casman et al., 1999), and land use forecasting (e.g., Pradhan and Kockelman, 2002; Waddell, 
2002; Waddell et al., 2003).  

Uncertainty quantification is the process of representing imperfectly known or understood inputs and 
parameters, propagating this variability through the model system and then characterizing the 
uncertainty in model results. The outcome usually comes with attached “error bars” to indicate 
uncertainty ranges. Probability density and mass functions (PDFs and PMFs) are useful to describe 
the statistics of the uncertainty. 

In order to carry out a probabilistic analysis of a system, one must first identify sources of uncertainty 
(e.g., Morgan and Henrion, 1990; Dubus et al., 2003). Pradhan and Kockelman (2002) reviewed the 
literature on the sources of uncertainty in land use-transportation models and examined the impact of 
uncertainty in the land use component of a partially integrated land use-transportation modeling 
system called UrbanSim. Sevcikova et al. (2007) reviewed the key sources of uncertainty for 
UrbanSim land use modeling outputs, such as measurement errors on inputs (like population and jobs 
by neighborhood), systematic errors from miscalibrated measurement tool or from sampling 
procedures that are not completely random, uncertainty about model structure, and uncertainty about 
model input parameters and model stochasticity or randomness. They focused on how to propagate 
this uncertainty through complex models if inputs and parameters uncertainties are known.  

Probabilistic analysis is one way to represent uncertainty (Papoulis, 1991). In this approach, 
uncertainties associated with model inputs are described by probability distributions, the objective 
being estimation of the outputs’ probability distributions (Pradhan and Kockelman, 2002). 
Probabilistic methods include analytical and sampling based methods (for example, the Monte Carlo 
and Latin Hypercube methods, Fourier Amplitude Sensitivity Test (FAST) methods, reliability based 
methods, and response surface methods) (Pradhan and Kockelman, 2002).  

The objective of this study is to demonstrate and compare methods for uncertainty propagation in 
complex transportation and land use models. Detailed reviews of three distinctive and reasonably 
exhaustive methods are given, including two small application examples, enabling comparisons of 
these methods. 

METHODS FOR ANTICIPATING UNCERTAINTY IN TRANSPORTATION AND LAND 
USE MODELS 

A variety of different methods for anticipating and understanding output uncertainties were 
investigated here. Top methods for forecasting uncertainty in land use and transportation model 
outputs are Local Sensitivity Analysis with Interaction (LSAI), the Monte Carlo (MC) method, and 
Bayesian Melding (BM). This paper uses two reasonably transparent transportation settings to 
illustrate and compare these methods. 

Local Sensitivity Analysis with Interaction (LSAI) 

While building and using numerical simulation models, sensitivity analysis is an invaluable tool. 
Sensitivity analysis is the study of how uncertainty in the output of a mathematical model or system 
(numerical or otherwise) can be apportioned to different sources of uncertainty in its inputs (Saltelli et 
al., 2008).  Modelers may conduct sensitivity analyses for a number of reasons including the need to 
determine (Hamby, 1994): (1) which parameters require additional research for strengthening the 
knowledge base, thereby reducing output uncertainty; (2) which parameters are insignificant and can 
be eliminated from the final model; (3) which inputs contribute most to output variability; (4) which 
parameters are most highly correlated with the output; and (5) once the model is in production use, 
what consequence results from changing a given input parameter. There are many different ways of 
conducting sensitivity analyses; however, in answering these questions the various analyses may not 
produce identical results (Iman and Helton, 1988). 

Conducting sensitivity analyses by presenting details on the types of sensitivity analyses utilized for 
various modeling situations, Hamby (1994) summarized many of the methods available. Hamby 
(1995) compared the assessment of several methods and intended to demonstrate calculation rigor and 
parameter sensitivity rankings resulting from various sensitivity analysis techniques.  



Sensitivity analyses are often referred to as either "local" or "global". A local analysis addresses 
sensitivity relative to point estimates of parameter values, while a global analysis examines sensitivity 
with regard to the entire parameter distribution. Local sensitivity analysis is the assessment of the 
local impact of input factors' variation on model response by concentrating on the sensitivity in the 
vicinity of a set of factor values. Such sensitivity is often evaluated through gradients or partial 
derivatives of the output functions at these factor values, so other inputs’ values are held constant 
when studying the local sensitivity of a specific input. Such approaches have been used in evaluating 
large environmental systems, including climate modeling, oceanography, and hydrology (Cacuci, 
2003, Castaings et al. 2007). 

Kockelman et al. (2008) ran a Gravity-based Land Use Model (G-LUM) over three alternative 
scenarios, with total employment counts (EMP), household counts (HH) and link impedances or travel 
times (TT) increased by 50%, utilizing each set one at a time. Borgonovo et al. (2014) used their 
G-LUM model to illustrate LSAI techniques and found that the endogenous variables respond almost 
additively to variations in the model inputs over the given scenarios. Changes in the base year 
employment assumptions strongly influence future job and land use pattern predictions  

To overcome the limitations of local methods (like linearity and normality assumptions, and emphasis 
on local variations), Saltelli et al. (2008) use a new class of statistical methods for understanding 
uncertainty. In contrast to local sensitivity analysis, their method is called “global sensitivity analysis” 
because it considers the entire range of inputs variations. Saltelli et al. (2008) first used a small test 
network to demonstrate how local sensitivity analysis works when interaction is nontrivial. They then 
used global sensitivity analysis to analyze the variance of model outputs, and more specifically, how 
input variations influence the variance of outputs. 

Sensitivity analysis can be essential for deriving insights from decision-support models in a wide 
range of applications. In linear programming settings (where outputs are a result of optimization), 
Wendell (2004) used simultaneous variations in objective function coefficients to develop a tolerance 
sensitivity approach. Besides linear programming, the works of Borgonovo and Apostolakis (2001) 
and Borgonovo (2008) addressed the joint sensitivity of generic model outputs for small changes in all 
inputs (including parameters). Saltelli and Tarantola (2002) defined group sensitivity indices in the 
context of a global sensitivity analysis. As far as finite changes are concerned, Borgonovo (2010) 
introduced sensitivity measures for individual exogenous variables. To find sensitivity measures for 
specific input factor sets (typically, sets of parameters), one then needs to extend Borgonovo’s (2010) 
results to group variations. Borgonovo and Peccati (2011) proved that a change in model output is 
decomposed as a function of factors with the same structure of the parameter decomposition (Rabitz 
and Alis, 1999). Based on this finding, they introduced factor finite change sensitivity indices (FCSI) 
for model parameters and investigated the relationship between the factor FCSI’s and parameter 
FCSI's. Knowledge of the FCSI's enables analysts to quantify the contributions of factors, the 
relevance of their interactions and identify the key-drivers of scenario results. Borgonovo and Peccati 
(2011) merged scenario analysis and high-dimension model representation (HDMR) theory. 
Perturbation techniques entail the requirements of smoothness (differentiability) in model outputs and 
of small changes in independent variables. In a variety of managerial applications, however, 
parameters undergo finite variations, inducing discrete/non-smooth changes in decision-support 
criteria. 

Monte Carlo Methods 

MC techniques have been widely used for uncertainty propagation due to the conceptual simplicity 
and ease of implementation. In MC techniques, one samples random variables, runs an ensemble of 
simulations, and simply presents the distribution of outputs, for all uncertainty statistics. A 
well-known drawback of MC is its slow convergence rate. A reasonable result usually requires a large 
number of ensemble runs, which is computationally expensive for large-scale systems. More efficient 
approaches need to be developed to represent and propagate uncertainties in large-scale simulations 
(Cheng, 2009). 

Zhao and Kockelman (2002) conducted a study of the propagation of uncertainty in 4-step travel 
demand models. They used Monte Carlo simulation and sensitivity analysis to quantify variability in 



model outputs. Their results suggested that uncertainty is compounded over the first three stages of a 
transport model, resulting in a magnification of errors at later stages. However, traffic assignment, the 
final step of the model, reduced these variations back to the initial input levels. The authors 
hypothesized that this was due to a centralizing tendency of compounded travel choices, and 
congestion feedbacks in the shortest-path search algorithm. 

Harvey and Deakin (1995) conducted a similar study, in which they considered uncertainty in 
population growth, fuel price and household income levels in the STEP models of the Los Angeles 
(LA) region. They found that plausible ranges of the input variables resulted in percentage changes in 
total VMT of 25% below to 15% above the original prediction. 

A study conducted by Thompson et al (1997) examined the impact of higher-than-projected 
population estimates on emission trends for metropolitan regions in California. They found that levels 
of CO, ROG and NOx were below projected attainment year levels, even for high growth scenarios, as 
a result of fuel and motor vehicle emissions control programs. Rodier and Johnston (2002) identified 
plausible error ranges of ± 2% for population and employment growth projections. Their results 
suggest that while plausible error ranges for household income and fuel prices may not be a 
significant source of uncertainty, plausible errors in population and employment projections are likely 
to cause significant errors in predictions. 

Method of Bayesian Melding 

Pradhan and Kockelman (2002) examined the propagation of uncertainty in the context of UrbanSim. 
However, this study analyzed only the sensitivity to a small sample of selected input values and 
explored the effect of these changes on outputs, in addition to simple stochastic simulation error from 
variation in random seeds. 

Another approach to extrapolate prediction accuracy for land-use models was taken by Pontius and 
Spencer (2005). Their method used models calibrated at different time points to stimulate the present 
land-cover change. They estimated how accurately the model will predict the future through a 
measure derived by a validation with empirical data. This method was specific to simulation models 
that have categorical outcomes and stochasticity was not taken into account. Furthermore, none of the 
above studies generated any statistical inferences, nor any new methodology to calibrate a stochastic 
model system with respect to uncertainty. However, Sevcikova et al. (2007) helped develop and then 
apply the method of Bayesian melding by extending an earlier method (developed for macro-level 
deterministic simulation models) to agent-based stochastic models. This method encodes all available 
information about model inputs and outputs in terms of prior probability distributions and likelihoods, 
and used Bayes’ theorem to obtain a posterior distribution for any quantity that is a function of model 
inputs and/or outputs. They compared it with a simpler method that uses repeated runs of the model 
with fixed estimated inputs and concluded that the simple (repeated runs) method gave distributions 
of quantities of interest that were too narrow, while BM gave well-calibrated uncertainty statements. 
They also pointed out a practical problem with their approach for larger cities/regions, UrbanSim can 
take a long time to run, so the BM method can be very computationally intensive, since it requires 
several hundred runs of the model. 

Thus they provided various ways in which it may be possible to reduce the time required (see 
(Sevcikova et al., 2007) for more details). However, simply repeating a simulation multiple times does 
not result in an accurate assessment of uncertainty (Sevcikova et al., 2007). Based on work by 
Sevcikova et al. (2007, 2011), Sevcikova et al. (2014) described the first incorporation of uncertainty 
assessment into the development of an official land use forecast published by a metropolitan planning 
organization (MPO). They demonstrated how the BM methodology for assessing uncertainty could be 
used to support application of an academically founded land use model, which had been adopted into 
practical use by a public planning agency and then used in an official land use forecast. The 
methodology itself is not specific to land use models, of course; it can be applied to any simulation 
models that fit into its forward-in-time framework. 

Introduction to Local Sensitivity Analysis with Interaction 

A mathematical model is used to denote the input-output mapping as 



ݕ ൌ ݂ሺܠሻ, ݂: Ωܠ ⟶ Թ                                        (1) 

where	ݕ is the endogenous variable of interest, Ω܆ ⊆ Թ and ܠ ൌ ሺݔଵ, ⋯,ଶݔ , ܠ ,ሻݔ ∈ Ωଡ଼ is the 
vector of the exogenous variables. K is the number of factors whose variation is of interest. Here, the 
input components x୧	ሺ݅ ൌ 1,2,⋯ ,  .ሻ are supposed to be independentܭ

Therefore, the base-case output of the simulation y ൌ ݂ሺܠሻ can be obtained by the simulation with 

exogenous variables to a base-case scenario, ܠ. Similarly, different outputs depending on alternative 

values of the endogenous variable, y௦ ൌ ݂ሺܠ௦ሻ, where ݏ ൌ 1,2,⋯ , ܵ. The analyst knows the 

response of the endogenous variable in each scenario, although he/she has no information about the 

sources of change (Borgonovo et al, 2014). The change from scenario 0 to scenario 1 of the exogenous 

variables induces the change ∆y ൌ yଵ െ y in the endogenous variable. And the change can be 

decomposed by using by a multivariate Taylor expansion of ∆y when supposing that ݂ሺܠሻ is ݎ 

times differentiable at ܠ (Saltelli and Tarantola, 2002; Saltelli et al., 2004; Borgonovo et al, 2014): 

∆y ൌ yଵ െ y ൌ
∑ f௦

ᇱ ሺܠሻ∆࢞௦ 

ୱୀଵ ∑ f௦,௧

ᇱᇱ ሺܠሻ∆࢞௦∆࢞௧  ⋯
௦,௧ୀଵ

∑ ∑ ⋯∑ f௦భ,௦మ,⋯,௦ೝ
 ሺܠሻ∆࢞௦భ∆࢞௦మ ௦ೝ࢞∆⋯  ሺ||݄||ሻ

௦ೝୀଵ

௦మୀଵ


௦భୀଵ                            (2) 

Then, one obtains  

∆y ൌ ݂ሺܠଵሻ െ ݂ሺܠሻ ൌ ∑ ∆݂

ୀଵ  ∑ ∆,௧݂


ழ௧  ⋯ ∆ଵ,ଶ,⋯,݂                   (3) 

where  

		ቊ
∆݂ ൌ ݂൫ݔ

ଵ, ~ܠ
 ൯ െ ݂ሺܠሻ

∆,௧݂ ൌ ݂൫ݔ
ଵ, ௧ݔ

ଵ, ሺ,௧ሻ~ܠ
 ൯ െ ∆݂ െ ∆௧݂ െ ݂ሺܠሻ

                     (4) 

and where ൫ݔ
ଵ, ~ܠ

 ൯	denotes that the kth element of the x vector, ݔ
ଵ is set at the value it assumes in 

Scenario 1, while all other variables are at their Scenario 0 values. Based on such a decomposition, 
finite-change sensitivity indices can be computed as follows: 

     ߮భ,మ,⋯,ೝ
 ൌ ∆భ,మ,⋯,ೝ݂                             (5) 

where ݇ଵ,݇ଶ, ⋯, ݇denotes a group of r indices (r  K) and ߮భ,మ,⋯,ೝ
  is the portion of ∆y  due to 

the interaction of exogenous variables corresponding to the selected indices. 

Particularly, the first-order finite-change sensitivity indices are	߮
ଵ ൌ ∆݂ and the total-order indices 

are	߮
் ൌ ∆݂  ∑ ∆,௧݂


ழ௧  ⋯ ∆ଵ,ଶ,⋯,݂, where ߮

் is the total contribution of ݔ to	∆ݕ, and is 
the sum of the individual contribution of	ݔ, plus all the contributions due to the interaction of ݔ  
with the remaining exogenous variables. Thus, the index ߮

ூ ൌ ߮
் െ ߮

ଵ	represents the effect of 
interactions associated with ݔ (Borgonovo et al, 2014). 

According to the definition of	߮
், it can be computed by 

																߮
் ൌ ݂ሺܠଵሻ െ ݂൫ݔ

, ~ܠ
ଵ ൯                               (6) 

where ݂ሺܠଵሻ is the value of the endogenous variable in scenario 1 and
 
݂൫ݔ

, ~ܠ
ଵ ൯

 
is the point 

obtained with all exogenous variables at scenario 1 but ݔ that remains at the base case scenario. 

As discussed in the literature (e.g., Saltelli and Tarantola, 2002; Saltelli et al., 2004), the sign of the 
first order indices ሺ߮

ଵ	ሻ is the sign change in y due to the individual change in ݔ. The sign of 
߮భ,మ,⋯,ೝ


 
is the sign of the interaction between the exogenous variables ݔభ, ݔమ and  ݔೝ . The 

total-order indices 	ሺ߮
்ሻ are the appropriate sensitivity measures, since they deliver not only the 

individual importance of the factors, but also account for interactions. The magnitudes of 
߮భ,మ,⋯,ೝ
 	provide the natural sensitivity measures.  



All finite-change sensitivity indices can be computed by use of 2K simulations if there are K (or group 
of) exogenous variables whose variations are of interest. The triplet ሺ߮

ଵ, ߮
ூ , ߮

்ሻ can be computed at 
the cost of 2K simulations, instead of 2K. This computational burden reduction result makes the 
sensitivity measures applicable also to complex simulation codes. 

Introduction to Bayesian Melding 

Figure 1 shows the basic concept of BM developed for deterministic models (Sevcikova et al., 2014). 
There is a prior distribution of model inputs ݍሺ߆ሻfrom which one draws input values ߆ for 
݅ ൌ 1,… , ߆ The model runs I times from the base year to the present year and for each input .ܫ . It 
produces as output the quantity of interest, ߔ. The model can be viewed as a mapping, M, from the 
space of inputs to the space of outputs, which is denote by ߔ ൌ  ሻ. The ”present” time is defined߆ఃሺܯ
as a time point with observed data available. The observed data is denoted by y and used to compute a 
weight ߱ for each input ߆: ߱ ൌ  ሻ is the likelihood of the model outputs given߆ሺܮ ,ሻ. Here߆ሺܮ
the observed data, ܮሺ߆ሻ ൌ Prob(y|ߔ). For each of the I runs, the model is run forward until a future 
time when making a prediction. The results by running the ith model are denoted by	ߖ . The posterior 
distribution of ߖ is approximated by a discrete distribution with values ߖ having probabilities 
proportional to ω୧.  

The primary BM stages or steps are as follows (Sevcikova et al., 2007): 

 As before, draw a sample {߆ଵ, ,ଶ߆ … ,  .ሻ߆ሺݍ ூ} of values of the inputs from the prior distribution߆

 For each ߆ , run the model to obtain ߔ 

 Compute weights ߱ ൌ  ሻ. Here, an approximate posterior distribution of inputs with values߆ሺܮ
,ଵ߆} ,ଶ߆ … , ,ூ} and probabilities proportional to {߱ଵ,߱ଶ߆ … , ߱ூ} are obtained. 

 The posterior distribution of ߔ is no longer approximated by the set {߱} but now has a finite 
mixture distribution of the form 

ሻߔሺߨ																		 ൌ ∏ ሻ߆|ߔሺݓ
ூ
ୀଵ                            ሺ7ሻ 

In (7) the conditional distribution ሺ߆|ߔሻ has an assumed parametric form that reflects the 
additional sources of variation. 

The posterior distribution of ߖ has a similar form, namely 

ሺΨሻߨ ൌ ∏ ሻ߆|ሺΨݓ
ூ
ୀଵ                           ሺ8ሻ 

TWO TEST EXAMPLES   

To illustrate the different methods for uncertainty propagation in transportation and land-use models, 
we use Example 1 for LSAI and MC applications and Example 2 for BM application.  

Example 1 is as the following small test network (Fig. 2).  

Example 1. The test network (Fig.1) is a simple travel demand model (TDM), which consists of 3 
nodes (O is the origin, D1 and D2 are destination), 4 links. 	ሺ*, *ሻ denotes the free-flow travel time 
and capacity on each link.  

The equations for this TDM are as follows: 

   ܼ ൌ  ଷ                                       (9)ݔଶݔଵݔ

	ܼଵଶ ൌ ܼ ∗
ೣర∗ಸభమ

ೣర∗ಸభమାೣర∗ಸభయ
                            (10) 

	ܼଵଷ ൌ ܼ െ ܼଵଶ ൌ ܼ ∗
ೣర∗ಸభయ

ೣర∗ಸభమାೣర∗ಸభయ
                  (11) 

ଵଶܥܩ ൌ ݉݅݊ሼܥܮଵ,  ଶሽ                              (12)ܥܮ
ଵଷܥܩ ൌ ݉݅݊ሼܥܮଷ,  ସሽ                              (13)ܥܮ

ܥܮ		 ൌ ߛ ∗ time  Toll ∗                              (14)ݐ

where Z denotes number of trips generated, Z1j denotes number of trips going from the original node 
O to destination node j (j=D1,D2), GC1j denotes generalized cost going from O to j(j=D1,D2), LCi 



denotes generalized cost on link i, (i=1,2,3,4). This assumes the travelers have the same value of time 
(VOT), which is ߛ ൌ $6/hour (Chen et al., 2015). Toll is priced by using links (HT=$0.55/mile for 
links 1 and 3; LT=$0.20/mile for links 2 and 4 as Chen et al. (2015)). Network traffic assignment is 
based on user equilibrium (Sheffi, 1985). The BPR function is adopted as the form: time ൌ ሺ1ݐ 

ߙ ∗ ቀ
௩


ቁ
ఉ
ሻ, where ݐ is the free-flow travel time (and the distance of link), ݒ is the traffic flow on 

the link, and ܿ is the capacity of link, and  and  are volume/delay coefficients. The traditional BPR 
values for  and are 0.15 and 4.0, respectively. But for a small urban area using default parameters 
and wishing only to use a single volume-delay function, NCHRP Report 365 (Martin 1998) suggested 
larger values, of 0.84 and 5.5, respectively. These larger values are applied here. The parameters used 
in the test examples are illustrated in the following table:  

LSAI is applied on the test example by increasing all exogenous variables by 10%. The change of 
each model’s outputs (traffic flow on links) from ܠ to ܠଵ can be decomposed into 15 terms that 
account for the individual changes in ݔଵ, ݔଶ, ݔଷ,	ݔସ, to their interactions in pairs, and in the residual 
term that contains their overall and residual interactions. Here, 	2ସ ൌ 16 simulations are needed on 
the model. If we compute the first-order indices, the total-order indices and the effect of interactions 
associated with every exogenous variable, only 2 ∗ 4 ൌ 8 simulations are needed. The i-th order 
indices as well as their sum and the total-order indices are illustrated by Figs. 3-4. The elasticity of the 
first-order indices and the total-order indices are also shown in Fig. 5, where elasticities are computed 

as 
∆୴/୴

∆୶/୶
  

Fig. 3(a) shows that increasing parameter ݔଷ by 10% will lead to the largest increase of traffic flows 
on links 1 and 2. While increasing input ݔଵ by 10% will lead the largest increase of traffic flows on 
links 1 and 2. Increasing ݔସ by 10% will lead to a decrease of traffic flows on links 1 and 2. The 
individual effect of ݔଵ is the most important on the traffic flow of links 3 and 4. The individual effect 
of ݔସ is the most important on the traffic flow of links 1 and 2. Fig. 3(b) shows that the interaction 
between the parameters xଶ and xଷ will lead to the largest increase of traffic flows on all links 
among all second order interactions. Other interactions (besides the interaction between xଵ and xଷ 
is 29.2) are all very small (the absolute values are all less than 15). The signs of second-order indices 
are negative, such as the interactions between ݔଶ and ݔସ, and ݔଷ and ݔସ on links 1 and 2, the 
interaction between ݔଵ and ݔସ on links 3, the interactions between  ݔଵ and ݔଶ, ݔଵ and ݔଷ, and 
 ସ  on links 4. Fig. 3(c) shows that almost all third order indices will lead to a negativeݔ ଵ andݔ
effect on the traffic flows on all links except the third-order interactions among ݔଵ, ݔଶ and ݔସ, and 
among ݔଵ, ݔଷ and ݔସ have positive effects on the traffic flows on links 3 and 4. The interactions 
among ݔଵ, ݔଶ and ݔଷ, and among ݔଶ, ݔଷ and ݔସ have almost same effect on the traffic flows on 
all links. The interactions among ݔଵ, ݔଶ and ݔସ, and among ݔଵ, ݔଷ and ݔସ have very small 
(positive or negative) effects on the traffic flows on all links. Fig. 3(d) shows that the fourth-order 
index has positive effects on all links. The fourth-order index has the largest effect on the traffic flow 
in link 4, and the smallest effect on the traffic flow on links 1 and 3. 

Fig. 4(a) shows that the sum of the third-order index has non-positive effects on all links (zero for link 
1, negative for other links). The sums of other order indices positively affect all links. Of all the sums 
of the order indices with positive effects on all links, the sum of the fourth-order has the biggest effect 
on the traffic flow on links 1, 2, and 3, while the sum of the first-order has the biggest effect on the 
traffic flow on link 4. Figure 4(b) shows that the total-order indices positively affect all links. Input 
 .ଷ have almost identical and the most impactful effect on traffic flows on all linksݔ ଵ and parameterݔ
	xଶ	 is the second. ݔସ is the third. Fig. 4(c) shows the effect of interactions associated with 
 ସ. The effect of interactions associated with every exogenous variable is almost theݔ ଷ, andݔ	,ଶݔ	,ଵݔ
same on the traffic flows on each link. Compared with the first-order indices in Fig. 3, the effect of 
first-order indices is less than that of interaction on the traffic flows on links 1, 2, and 3, while the 
effect of first-order indices is less than that of interaction on the traffic flows on link 4. The effect of 
interactions associated with 	ݔଶ	and 	xସ is almost same as that of the total-order indices on traffic 
flows on all links.  



Fig.5 shows the elasticities of the first-order and total-order indices. They have the same trend with 
the first-order index and the total-order index in Fig. 3(a) and Fig. 4(b), which resulted from the same 
increasing of exogenous variables in this test example.  

The Monte Carlo method was applied with the test example by randomly generating 16 different sets 
of model inputs and parameter values, and then drawing randomly from their associated probability 
distributions. In general, the number of simulation runs needs to be large enough to obtain robust and 
accurate results. Here, we randomly choose 16 different sets of inputs and parameters. Final link flows 
were obtained from the converged UE assignment results. Table 2 provides the mean, standard 
deviation (SD), and coefficient of variation (CoV) for the four links’ traffic flows.  

The coefficients of variation of the traffic flows on links 2 and 4 are larger than 0.10, which suggests 
the final uncertainty may be compounded and end higher than any input or parameter uncertainty. The 
coefficients of variation of the traffic flows on links 1 and 3 are smaller than 0.06, which suggests the 
final uncertainty is lower than any input or parameter uncertainty.  

For better understanding and interpretation of the results, ordinary least squares (OLS) regression was 
used to identify model inputs that are key contributors to uncertainty in model output (Table 3), which 
characterizes the linear relationship between inputs and outputs. 

MC methods involve random sampling from the distribution of inputs, and successive model runs 
until a statistically significant distribution of outputs is obtained. These can be used to solve problems 
with probability structures, or non-probabilistic problems such as finding the area under a curve. 
However, these methods require a large number of samples. In order to achieve computational 
efficiency, methods that sample the input distribution in an efficient manner have been introduced. 
One such variant of the standard Monte Carlo method is the Latin Hypercube (LH) sampling method 
(McKay et al., 1979; Eglajs and Audze, 1977; Iman et al., 1980, 1981). In this method, the range of 
probable values for each input parameter is divided into ordered segments such that the parameter 
space, consisting of all uncertain parameters, is partitioned into cells having an equal probability. 
Thus, parameter estimates are sampled in an efficient manner, since each parameter is sampled only 
once from each of its possible segments. The advantage of this approach is that it allows 
representation of the extremes of the probability distribution of the outputs. 

Example 2. To illustrate how BM method works, an integrated land-use and transportation model is 
presented by the following equations: 

ଵݔ   
௧ೕ ൌ ሺ1  ଵݔሻ௱௧ߜ

௧ೕషభ	ሺ݆ ൌ 1,2, … ሻ, where	 ݐ∆ ൌ ݐ െ 	ିଵݐ 	 	 	 	 	 	 	 	 	 (15)	

ܼ௧ೕ ൌ ଵݔ
௧ೕݔଶݔଷ	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 (16)	

ܼଵଶ
௧ೕ ൌ ܼ௧ೕ ∗

ೣర∗ಸభమ

ೣర∗ಸభమାೣర∗ಸభయ
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 ሺ17ሻ	

					ܼଵଷ
௧ೕ ൌ ܼ௧ೕ െ ܼଵଶ

௧ೕ ൌ ܼ௧ೕ ∗
ೣర∗ಸభయ

ೣర∗ಸభమାೣర∗ಸభయ
															 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 ሺ18ሻ	

ଵଶܥܩ
௧ೕ ൌ ݉݅݊ሼܥܮଵ

௧ೕ , ଶܥܮ
௧ೕሽ	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 ሺ19ሻ	

ଵଷܥܩ	
௧ೕ ൌ ݉݅݊ሼܥܮଷ

௧ೕ, ସܥܮ
௧ೕሽ	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 ሺ20ሻ	

ܥܮ		
௧ೕ ൌ ߛ ∗ ݁݉݅ݐ  ݈݈ܶ ∗ 	ݐ 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 ሺ21ሻ	

where ܼ௧ೕ  denotes number of trips generated at time ݐ, ܼଵ
௧ೕ  denotes number of trips going from O 

to D(D=D1,D2) at time ݐ, ଵܥܩ
௧ೕ 	denotes generalized cost going from an O to D (where D=D1 or D2) 

at time ݐ, 	ܥܮ
௧ೕ  denotes generalized cost on link i,( i=1,2,3,4) at time ݐ, ݔଵ

௧ೕ	denotes the total 
number of population in zone O at time ݐ. Other notation is the same as those provided in Example 1. 

In this example, Equation (15) is a simple land-use model (LUM), while Equations (16)–(21) describe a 
simple TDM. LUM reacts to travel network changes and such. But there’s not nearly as strong a link 
from TDM to LUM as there is from LUM to TDM because it’s hard to move one’s home & to construct 
new buildings, for example – and we don’t want to destroy old buildings. Thus, in this land-use and 
transportation model, we only research the interaction of land-use model on TDM because only the 
outputs of the land-use model acts as an inputs for a TDM without feedback of TDM to LUM. Outputs 



from LUM act as inputs for a TDM; and where travel times from the traffic-assignment stage of the 
TDM are fed forward into the subsequent years LUM.  

We randomly choose 16 samples, and ran the model 3 times for each set of inputs & parameters. 
Therefore, I=16;J=3;K=4. Starting from t0 = 2010, we will use t1 = 2015 as “present" year and run 
the simulation forward until t2 = 2020. According to the steps of BM, the ߪො

ଶ, aො,and ߪොఋ
ଶ are 

computed as follows: ොܽ ൌ0.18; ߪොఋ
ଶ ൌ6.65. Because, ݕ|߆ ∼ ܰሺ ොܽ  పෞߤ , ݒ ሻ withݒ ൌ ොߪ

ଶ 
ఙෝഃ
మ


,	߱ 

being computed by the following equation: 

߱ ൌ ሻ߆|ݕሺ ൌ ∏ ଵ

ඥଶగ௩
ݔ݁ ቂെ

ଵ/ଶሺ௬ೖିොିఓഢೖෞ ሻమ

௩
ቃ

ୀଵ                   (22) 

In order to compute the posterior distribution of the traffic flow on link k, the propagation factors ܾ 

and ܾ௩ are set to 15/15, equal to 
ଶଵହିଶଵ

ଶଶିଶଵହ
. 

The posterior distribution of the traffic flow on link k is given by a mixture of normal distributions, as 
follows: 

ሻߖሺߨ ൌ ∑ ߱ܰሺ ොܾܽ  ݉, ሺߪො
ଶ 

ఙෝഃ
మ


ሻܾ௩ሻ

ூ
ୀଵ ൌ ܰሺ∑ ߱ሺ ොܾܽ  ݉ሻ

ூ
ୀଵ , ∑ ߱ሺߪො

ଶ 
ఙෝഃ
మ


ሻܾ௩

ூ
ୀଵ ሻ   (23) 

where ݉ ൌ
ଵ


∑ ߖ

ୀଵ . 

The distribution of the traffic flow on link k is given by N(ࣆ, ߪ where ,(࣌ ൌ 1110, ଵߤ ൌ 912, ଶߤ ൌ
862, ଷߤ ൌ 1540, and	ߤସ ൌ 646. 

CONCLUSIONS 

In this paper, two small land use-transportation examples were used to demonstrate how LSAI, MC 
and BM methods of uncertainty characterization really work, and to compare these three methods’ 
strengths and weaknesses. LSAI was to obtain interaction effects of exogenous variables due to 
changes in endogenous values. MC involved simply sampling the distribution of inputs and 
parameters, and running the models several times until a statistically significant distribution of outputs 
was obtained. BM helped put the analysis of simulation models on a solid statistical basis with 
calibration. Moreover, the feedback from traffic assignment to trip distribution was used in these test 
examples.  

To summarize the findings, LSAI has a direct interpretation in terms of comparative statics, since it 
relies on the computation of derivatives and relative changes across small input shifts. This method 
can provide the sign of change implied by the changes in exogenous variables, the relative importance 
of the change in exogenous variables and the decomposition of the change of output into the 
individual and interaction changes in exogenous variables. LSAI’s computing time requires about 
2,000 simulations simply to obtain the first-order indices, the total-order indices, and the effect of 
interactions associated with K (groups of) exogenous variables and 2K simulations to obtain all 
interaction effects. Moreover, LSAI only obtains point estimation, while MC and BM can provide 
distributions of needed outputs. MC methods involve random sampling of the distribution of inputs, 
and successive model runs until a statistically significant distribution of outputs is obtained. These 
methods can be used to solve problems with probability structures, or non-probabilistic problems such 
as finding the area under a curve. It is straightforward to obtain output distributions via random 
sampling of the distribution of inputs and parameters. However, such activities require a large number 
of samples. As with LSAI, MC only solves the deterministic problems while BM can solve both 
deterministic and stochastic problems. The BM method was proposed as a way of putting the analysis 
of simulation models on a solid statistical basis. The basic idea is to combine all the available 
evidence about model inputs and model outputs in a coherent Bayesian way, to yield a Bayesian 
posterior distribution of the quantities of interest. It can obtain the posterior distribution of output 
from prior probability distributions and likelihoods of inputs and parameters. Users are provided with 
probability intervals around forecasts which add value to model validation, scenario comparison and 
external review and comment procedures. However, this method could be extremely expensive 



computationally, as it requires several hundred runs of the model. The intermediate outputs must be 
known for intermediate validation. 
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Table 1: Parameters Used in Examples 

Parameter Description Mean SD CoV Distribution 
 ଵ The total number of population in zone O 2000 200 0.10 Lognormalݔ
 ଶ The trip production rate 2.303 0.2303 0.10 Lognormalݔ
 ଷ The base trip production 1000 100 0.10 Lognormalݔ
 ସ The impedance parameter -0.02* 0.002 0.10 Lognormalݔ

 ଵ௧బݔ
The total number of population in zone O at 

time ݐ 
1000 100 0.10 Lognormal 

 Annual percentage increase in population 2% 0.2% 0.1 Lognormal ߜ

*To impose negativity, these parameters are drawn from a lognormal distribution and then given 
negative signs. 

 

Table 2: Summary Statistics for Link-level Traffic Flows (n = 16) 

 Mean (veh/day) SD CoV 
Link 1 1006 58.83 0.0584 
Link 2 1279 165.6 0.1294 
Link 3 1569 21.87 0.0139 
Link 4 1307 386.4 0.2957 

 

Table 3: OLS Parameter Estimates for Traffic Flows on Links (n = 16 simulations) 

Traffic Flow v1 v2 v3 v4 

 Coefficients t Stat Coefficients t Stat Coefficients t Stat Coefficients t Stat 

Intercept 285.1 12.3 -775.5 -14.6 1290 37.3 -3815 -93.9 

x1 0.1796 31.5 0.5088 38.9 0.0608 7.14 1.199 120.0 

x2 0.0916 9.76 0.2507 11.7 0.0549 3.92 0.6049 36.8 

x3 156.5 31.5 443.3 38.9 52.95 7.14 1045 120.0 

x4 -2934 -6.25 -7267 -6.76 -493.8 -0.705 -3899 -4.74 

Adjusted R2 0.9925 0.9950 0.8789 0.9995 

 

Table 4: ߪො
ଶ and ω୧ over all i (n = 16) 

ෝ࣌ 
 ܑ ࣌ ෝ

 ܑ 
1 5,832 0.0017 9 3,433 0.0052 
2 6,336 0.0014 10 3,748 0.0042 
3 6,032 0.1630 11 1,0140 0.0014 
4 5,419 0.3250 12 9,270 0.0197 
5 2,182 0.0226 13 1,947 0.2650 
6 2,303 0.0163 14 1,862 0.1490 
7 13,883 0.0045 15 20,352 0.0014 
8 12,827 0.0058 16 19,022 0.0017 

 

  



 

Figure 1: Illustration of the Bayesian Melding Method for Deterministic Models  

The uncertain model inputs, ߆, refer to the starting time of the simulation, ݐ, and the outputs, ߔ and 
the data relevant to the outputs, y, are observed at the ”present” time, ݐଵ, while the quantities of interest, 
߆ ଶ. The quantitiesݐ	,refer to the future ,ߖ  , refer to the i-th simulated values of inputsߖ  andߔ ,
outputs and quantities of interest, respectively. 
 
 
 
 
 
 
 
 

 

Figure 2: The Test Network 

  



 
Fig. 3(a): First-order Indices 

 
Fig. 3(b): Second-order Indices 

 
Fig. 3(c): Third-order Indices 

 
Fig. 3(d): Fourth-order Indices 

Figure 3: The ith-order Indices Using LSAI 



 
Fig. 4(a): Sums of ith-order Indices 

 
Fig. 4(b): Total-order Indices 

 

Fig 4(c): The Effect of Interactions Associated with Inputs 

Figure 4: The Sums of ith-order Indices, Total-order Indices with the Effect of Interactions 
Associated with Inputs and Parameters Using LSAI 

 



 

Fig. 5(a): First-order Index 

 

Fig. 5(b): Total-order Index 

Figure 5: First-order and Total-order Indices of Link Flows Using LSAI 

 


