
1 

2 
3 

4 
5 

6 

7 

8 

9 

10 

11 
12 

13 

14 

15 

16 

17 

18 

19 

20 
21 

22 

23 

24 

25 

26 

27 

28 

29 

30 
31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

ANTICIPATING THE EMISSIONS IMPACTS OF SMOOTHER DRIVING BY 

CONNECTED AND AUTONOMOUS VEHICLES, USING THE MOVES MODEL 

Jun Liu 

Post-Doctoral Fellow 

Center for Transportation Research 

The University of Texas at Austin - Suite 4.228, UT Administration Building 

Austin, Texas 78701 

jun.liu@utexas.edu 

Kara M. Kockelman 

(Corresponding Author) 

E.P. Schoch Professor of Engineering 

Department of Civil, Architectural and Environmental Engineering 

The University of Texas at Austin – 6.9 E. Cockrell Jr. Hall 

Austin, TX 78712-1076 

kkockelm@mail.utexas.edu 

Phone: 512-471-0210 & FAX: 512-475-8744 

Aqshems Nichols 

Undergraduate Research Assistant 

Department of Civil, Architectural and Environmental Engineering 

The University of Texas at Austin 

Austin, TX 78712-1076 

aqshems.nichols@utexas.edu 

Presented at the 95th Annual Meeting of the Transportation Research Board and published in
Smart Transport for Cities & Nations: The Rise of Self-Driving & Connected Vehicles (2018)

ABSTRACT 

Connected and autonomous vehicles (CAVs) are expected to have significant impacts on the 

environmental sustainability of transportation systems. This study examines the emission 

impacts of CAVs, presuming that CAVs are programmed to drive more smoothly than humans. 

This work uses the US Environmental Protection Agency’s (EPA’s) Motor Vehicle Emission 

Simulator (MOVES) to estimate CAVs’ emissions based on driving schedules or profiles. CAV 

engine load profiles are anticipated to be smoother than those of human-controlled vehicles 

(HVs), because CAVs are designed to be more situationally aware (thanks to cameras and radar 

1 

communications) and enjoy faster reaction times and more sophisticated throttle and brake 

control than HVs. Human drivers tend to demonstrate significant and frequent speed fluctuations 

and have relatively long reaction times.  

This study uses EPA driving cycles and Austin-specific driving schedules to reflect national, 

trip-based and local, link-based driving behaviors. Those driving cycles are smoothed using 

spline functions, to estimate how CAVs may handle; and emissions results suggest that 

the smoothed CAV cycles deliver lower average emission rates (in grams per mile) for all 

five 
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species of interest. For example, with gasoline vehicles, smoothing of the Federal Test Procedure 1 

(FTP) cycle delivers 5% fewer volatile organic compounds (VOC), 11.4% less fine particulate 2 

matter (PM2.5), 6.4% less carbon monoxide (CO), 13.5% less oxides of nitrogen (NOx), and 3% 3 

less sulfur and carbon dioxide (SO2 and CO2). Using Austin link-based cycles, average 4 

reductions were 10.9% for VOC, 19.1% for PM2.5, 13.2% for CO, 15.5% for NOx, and 6.6% for 5 

SO2 and CO2. While added travel distances by CAVs may more than cancel many of these 6 

benefits, it is valuable to start discussing a shift to gentle driving, to obtain these reductions via 7 

emerging technologies. 8 

 9 

KEYWORDS:  Autonomous Vehicles, Eco-Self-Driving, Smoothed Drive Cycles, MOVES 10 

Emissions Simulator 11 

 12 

BACKGROUND AND INTRODUCTION 13 
 14 

In addition to affecting human mobility and safety, connected and automated or fully 15 

autonomous vehicles (CAVs) are also expected to impact emissions, air quality, and energy use. 16 

Many elements of vehicular and fuel technologies are associated with the energy use and 17 

emissions, such as vehicle weights (Greene, 2008; Ford, 2012; Chapin et al., 2013; MacKenzie et 18 

al., 2014), fuel efficiencies and alternative fuels (Chapin et al., 2013; Liu et al., 2015; Reiter and 19 

Kockelman, 2016), and engine technologies (Paul et al., 2011; Folsom, 2012; Bansal et al., 2015; 20 

Reiter and Kockelman, 2016). CAVs are anticipated to be lighter than existing human-controlled 21 

vehicles (HVs) (Chapin et al., 2013; Anderson et al., 2014), and powered by alternative fuels or 22 

electricity (Chen and Kockelman, 2015; Chen et al., 2016) and more efficient engines (Anderson 23 

et al., 2014). CAV operational features are also likely to affect the energy used and emissions 24 

generated. Anderson et al. (2014) pointed out that CAVs would likely have fewer stop-and-go 25 

movements, given the connectivity of vehicle-to-vehicle (V2V), and vehicle-to-infrastructure 26 

(V2I), resulting in lower levels of fuel consumption and emissions. Fagnant and Kockelman 27 

(2014) simulated a fleet of shared autonomous vehicles (SAVs) to serve travelers in an idealized, 28 

small city and estimated that each SAV might replace 11 HVs while increasing total vehicle-29 

miles traveled (VMT) – due to empty-vehicle driving (to reach the next trip-maker). However, a 30 

high rate SAV warm-starts (73 percent of trips began with a warm engine) and the use of smaller 31 

vehicles (as well as a need for fewer parking spaces, and their embodied emissions) let to overall 32 

estimates of lower emissions. Fagnant and Kockelman (2014) estimated that such SAV fleets 33 

could deliver an energy savings of 12 percent, along with a 5.6 percent reduction in greenhouse 34 

gas (GHG) emissions, relative to privately owend and operated HVs. AV platooning can also be 35 

expected to be associated with higher fuel efficiency and lower emission rates (Alam et al., 2010; 36 

Tsugawa, 2014). Wu et al., (2014)  discussed the sustainability benefits of vehicle automation at 37 

singalzied intersections. Their results indicated 5 to 7 percent reductions in engery use and GHG 38 

emissions, up to 7 percent reductions in hydrocarbon (HC) emissions and 15 to 22 percent 39 

reductions in carbon monoxide (CO) emissions. Wadud et al., (2016) expect greater enery 40 

savings and emissions reductions at higher levels of vehicle automation. Chen et al., (2015) 41 

estiamted the energy and emissions benefits from an autmated-vehicle-based personal rapid 42 

transit system and revealed approximately 30 percent engery saving and reductions in GHG 43 

emissions.  44 

 45 
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CAV technlogies are also expected to improve fuel economy and reduce emissions per mile 1 

driven through more automated and optimized driving, thanks to more gradual acceleration and 2 

deceleration in driving cycles. A driving cycle is often represented as a vehicle’s speed profile 3 

versus time. Figure 1 presents a driving cycle designed by the US Environmental Protection 4 

Agency (EPA) to represent highway driving conditions under 60 mph. In using HVs, driving 5 

patterns with gradual acceleration and deceleration are often referred to as “eco-driving” profiles 6 

(see, e.g., Anderson et al. 2014; (Barth and Boriboonsomsin, 2009; Chapin et al., 2013). Barth 7 

and Boriboonsomsin (2009) expect approximately 10 to 20 percent fuel savings and GHG 8 

emissions reductions, from humans driving conventional vehicles more thoughtfully, to reduce 9 

their energy use. Given the precision of fully automated driving, CAV driving profiles are likely 10 

to be much more fuel-efficient or at least smoother than human-controlled eco-driving profiles. 11 

Mersky and Samaras, (2016) simulated the automated following driving cycles to esimated the 12 

changes in engery use and found up to 10 percent engery savings. This paper estimates the 13 

energy and emissions impacts of CAVs, by presuming that CAVs can (and ultimately will be 14 

programmed to) deliver smooth driving cycles or engine loading profiles, effectively practicing 15 

Eco-Autonomous Driving (EAD).  16 

 17 
 18 

FIGURE 1 An EPA driving cycle for a conventional vehicle in highway driving conditions 19 

(EPA, 2013). 20 
 21 

To simulate the EAD profile, this study employed two types of existing HV driving cycles: 1) 22 

EPA driving cycles used to test for compliance with Corporate Average Fuel Economy (CAFE) 23 

standards for light-duty vehicles (EPA, 2012), and 2) Austin-specific driving schedules 24 

developed by the Texas A&M Transportation Institute (TTI) to reflect local driving patterns of 25 

light-duty vehicles (Farzaneh et al., 2014). The EAD profiles were simulated by smoothing the 26 

existing driving cycles, given the anticipation that CAV driving profiles will contain fewer 27 

extreme driving events (like hard accelerations, sudden braking, and sharp or quick turns) than 28 

HV cycles. Then, this study used the US EPA’s Motor Vehicle Emission Simulator (MOVES) to 29 

estimate emission rates (in grams per mile traveled) for various pollutants, including volatile 30 

organic compounds (VOC), fine particulate matter (PM2.5), carbon monoxide (CO), nitrogen 31 

oxides (NOx), sulfur dioxide (SO2) and carbon dioxide (CO2), based on the EAD profiles and 32 

HV cycles.  33 

 34 

MOVES is the EPA’s regulatory simulator for estimating on-road emissions from conventional 35 

vehicles such as passenger cars, buses, and trucks. It is used by planning organizations for 36 
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project conformity analyses that are required for state implementation plans (SIPs), as well as for 1 

environmental analyses that gauge the impacts of potential transport planning decisions (EPA, 2 

2014, 2015).The EPA and state environmental agencies have developed a database that provides 3 

basic emissions parameters for counties across the U.S. (EPA, 2015). Though this database is 4 

continually updated to provide the most accurate parameters for a given area, the EPA 5 

recommends that local data be developed and inserted into the MOVES simulator to provide the 6 

best estimate of on-road emissions at the project area, which Farzaneh et al. (2014) did for 7 

several Texas cities.  8 

 9 

In this paper, CAV emissions impacts are limited to differences in basic driving profiles, as 10 

elected by independent CAVs driving at the same time in the same locations, with the same 11 

traffic control strategies and traffic variations that HVs face. In reality, many other CAV 12 

technologies and applications (like cooperative intersection coordination systems, platooning and 13 

coordinated adaptive cruise control) should also help save fuel and reduce emissions, but these 14 

are not evaluated in this paper. In addition, many factors that may affect the fuel consumption 15 

and emissions of vehicles, such as vehicle size and road grade (Boriboonsomsin and Barth, 2009) 16 

are not discussed here.  17 

 18 

METHODLOGY  19 

 20 

Envisioning Eco-Autonomous Driving (EAD) Cycles of Autonomous Vehicles  21 
 22 

Smoothing Method  23 

 24 

Many methods may be used to smooth driving cycles, such as a simple moving average, local 25 

polynomial regression, kernel density estimation, and smoothing splines (Simonoff, 2012). Most 26 

data smoothing efforts are designed to impute missing data points or remove random noise. In 27 

contrast, this study envisions generation of new CAV EAD cycles by smoothing existing HV 28 

cycles. These smoothed driving cycles present two key objectives and complexities: 29 

 30 

1. CAVs’ EAD profiles should have far fewer extreme driving events, such as hard 31 

accelerations and sudden braking, as compared to HV cycles. Intelligent and connected 32 

vehicles should be able to anticipate several seconds of downstream driving conditions, 33 

making timelier decisions and ultimately smoother responses to evolving traffic conditions. 34 

In such cases, a greater extent of smoothing (like a wider smoothing window) can be 35 

expected. 36 

 37 

2. CAV movements on the road are influenced by other vehicles (when there is no free-flow 38 

and HVs are still in operation) and the traffic controls (like intersection signals and signs). 39 

Therefore, at the early stage of introducing CAVs on the roads, the CAV profiles will likely 40 

be similar to HV cycles at the microscopic level. In other words, the time-distance diagrams 41 

of both CAV (smoothed) and HV (unsmoothed) driving profiles should generally be similar 42 

to each other, to ensure that smoothed cycles do not make travelers late for meetings, late to 43 

green lights, or unyielding to (and thus colliding with) driveway-entering vehicles and the 44 

like. And the extent of smoothing (or level of smoothness) should not be extreme. This 45 

assumption implies largely unchanged driving patterns, from a macroscopic perspective. 46 
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However, CAV technologies are likely to eventually impact such patterns, as adoption and 1 

use rates rise; cooperative intersection management and smart CAV routing decisions will 2 

shorten travel times, everything else constant, but added VMT may make travel more 3 

congested. Such changes in load profiles are not examined here.  4 

 5 

In order to approximate this “balance” between these two concerns, the method of smoothing 6 

spline was employed in this study to minimize the objective function: 7 

 8 
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 9 

where the first term is the mean square error (MSE) (with    = the value of y at i
th

 data point    in 10 

the original driving cycle, i = 1, 2, …, n; and     ) = the predicted value of m at the i
th

 data 11 

point    in the smoothed cycle);      ) = the second derivative of m with respect to x (i.e., the 12 

curvature of m at x);   = a smoothness factor to penalize MSEs. As   → + ∞, the MSE is not a 13 

concern and there is only a linear function resulted from the smoothing process. In contrast, as   14 

→ 0, the curvature is negligible and remains the same as un-smoothed. To address both these 15 

ideas and the two objectives or complexities listed above, an appropriate smoothness factor   16 

was chosen to construct smoothing cycles.  17 

 18 

To determine the most appropriate smoothness factor, various   values were tested, as shown in 19 

Figure 2. Larger values of  , like   = 0.8, are associated with smoother but less realistic driving 20 

cycles that significantly deviate from the original cycle.  21 

 22 

To better appreciate the effects of the chosen  , the distributions of the smoothed and original 23 

cycles’ accelerations and decelerations were also compared. Figure 3 presents the distributions of 24 

acceleration/deceleration values before smoothing (when  =0) and after the smoothing. For 25 

comparison, typical distributions of acceleration/deceleration are shown in the figure as well, 26 

indicated by means (solid line) and means plus one standard deviation (dashed lines). The means 27 

and standard deviations were calculated for specific speed ranges (with bin width = 0.5 mph) 28 

using large-scale trajectory data from the Austin region.  29 

 30 

The trajectory data were obtained from the Transportation Secure Data Center (TSDC) of the 31 

National Renewable Energy Laboratory (NREL) (TSDC, 2014). The data were originally 32 

collected in TTI’s 2006 Austin/San Antonio GPS-Enhanced Household Travel Surveys. This 33 

study extracted   241 hours of second-by-second driving speed records collected from 231 34 

vehicles in Austin, Texas in 2005 - 2006. (More details about the calculation of distributions of 35 

acceleration/deceleration along speeds can be found in Wang et al. 2015. Note that the 36 

distributions can vary from one region to another). Figure 3 shows how, with a high smoothness 37 

factor ( =0.8), the accelerations/decelerations are close to zero across speeds. To ensure that AV 38 

cycles remain similar to existing HV cycles (in order stop at red lights, and slow when vehicles 39 

merge in front of a CAV), this study chose  =0.22999 as the smoothing factor, since this value 40 

allows most acceleration/deceleration data points to lay within the mean + one standard deviation 41 

of the typical distributions in the Austin region. In the study by Wang et al. (2015), the 42 

acceleration/deceleration data points were regarded as extreme driving events for falling beyond 43 
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the mean-value lines plus one standard deviation, reflecting the unpredictable maneuvers of HVs. 1 

As CAVs become more common in traffic streams, such unpredictable maneuvers are likely to 2 

fall dramatically (thanks to inter-vehicle communications).  3 

 4 

 5 

 6 
 7 
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 1 
FIGURE 2 Driving cycle example (smoothed CAV cycle vs. original HV cycle).  2 

 3 

 4 
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 1 
FIGURE 3 Distributions of acceleration and decelerations: before smoothing and after 2 

smoothing, assuming different smoothing factors. 3 
 4 

Envisioned CAV Driving Profiles using EPA Cycles 5 

The EPA has designed various driving cycles to represent a variety of driving conditions, such as 6 

highway versus city driving, aggressive driving behavior, and air-conditioner in use. Five EPA 7 

cycles are usually used in testing light-duty vehicles’ compliance with CAFE standards (Davis et 8 

al., 2009; Berry, 2010). This study uses these same five, well-established cycles to envision 9 

future CAV cycles in various driving contexts. Table 1 summarizes basic information about 10 

these cycles, and Figure 4 presents these cycles in their original time-speed schedule (blue solid 11 
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line) vs. a smoothed time-speed profile (red dashed line). The smoothed cycles are envisioned to 1 

be the driving profiles for CAVs operating in the trip conditions listed in Table 1 2 

 3 

TABLE 1 EPA Cycles 4 

 5 

 

EPA Cycle 

Travel 

Description 

Max. 

Speed 

Avg. 

Speed 

Max. 

Accel. 

Simulated 

Distance 
Duration 

Test 

Temp. 

FTP 

(Federal Test 

Procedure) 

Low speeds in 

stop-and-go 

urban traffic 

56 

mph 

21.2 

mph 

3.3 

mph/sec 
11 mi. 31.2 min. 

68°F–

86°F 

HWFET 

(Highway Fuel 

Economy Driving 

Schedule) 

Free-flow traffic 

at highway 

speeds 

60 

mph 

48.3 

mph 

3.2 

mph/sec 
10.3 mi. 

12.75 

min. 

68°F–

86°F 

US06 

(Supplemental FT) 

Higher speeds; 

harder 

acceleration & 

braking 

80 

mph 

48.4 

mph 

8.46 

mph/sec 
8 mi. 9.9 min. 

68°F–

86°F 

SC03 

(Supplemental FTP) 

A/C use under 

hot ambient 

conditions 

54.8 

mph 

21.2 

mph 

5.1 

mph/sec 
3.6 mi. 9.9 min. 95°F 

UDDS 

(Urban Dynamometer 

Driving Schedule) 

City test w/ 

colder outside 

temp. 

56 

mph 

21.2 

mph 

3.3 

mph/sec 
11 mi. 31.2 min. 20°F 

Source: EPA (2013). 6 
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 1 
 2 

FIGURE 4 EPA driving cycles before (solid line) and after (dashed line) the smoothing. 3 
 4 
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Envisioned CAV Driving Profiles using Austin Cycles 1 

 2 

This research also relies on the Austin-specific driving cycles, extracting them from the Database 3 

of Texas-Specific Vehicle Activity Profiles for use with MOVES (Farzaneh et al., 2014). These 4 

extracted cycles do not represent a complete automobile trip, but rather travel along any specific 5 

type of roadway (like a collector vs. an arterial roadway). These links may be combined to 6 

approximate a complete trip or driving cycle, but here the emissions analysis was conducted at 7 

the link level. For regional analysis, emissions on each coded network links are summed, to 8 

reflect their proportions in any region’s road network.  9 

 10 

In total, 36 links were extracted from the database, covering two types of light-duty vehicles 11 

(passenger car and light-duty truck), two types of roadways (urban restricted and unrestricted 12 

road), and nine link-level average speed bins. Using the smoothing method introduced above, the 13 

links’ driving cycles were smoothed to envision the driving profiles of CAVs running in the 14 

Austin region. Figure 3 presents the distributions of acceleration/deceleration (i) before and (ii) 15 

after the smoothing. Figure 3(v) gives the distributions of acceleration/deceleration in envisioned 16 

CAV driving profiles.  17 

 18 

Preparing Data Inputs for MOVES 19 
Several studies have employed MOVES to estimate on-road emissions. Instead of using real data 20 

to estimate travel times, queue length, and other parameters, microsimulation data can provide 21 

the needed MOVES inputs. This method was employed by Xie et al. (2012) to estimate 22 

emissions on a freeway segment in Greenville, South Carolina. The researchers used PARAMIC 23 

software to simulate the freeway operations and outputs used in MOVES for emissions 24 

modeling. Xie et al. (2012) modified the fuel table to estimate the environmental benefits of 25 

using alternative fuels. Their results showed alternative fuels changed emissions rates as 26 

expected, but the scope of their study was limited to one freeway segment. Abou-Senna and 27 

Radwan (2013) employed MOVES to look at how traffic volume, vehicle speed, grade, and 28 

temperature affected CO2 emission rates. Their results reconfirmed that increasing factors like 29 

grade and traffic volume on a link leads to higher emission rates.  30 

 31 

The MOVES model’s key configurations include: 32 

 33 

1. Geographic Bounds of the county where the project is located. Here, Travis County was 34 

selected.  35 

 36 

2. Vehicles/Equipment that generate the emissions, and the fuels they use. Here, passenger cars 37 

and light-duty trucks powered by diesel fuel, ethanol (E-85), and gasoline were considered.  38 

 39 

3. Road Types modeled in MOVES are off-network, rural roads, and urban roads, with urban 40 

and rural roads classified as having either restricted or unrestricted access. Only urban road 41 

emissions were simulated here.  42 

 43 

4. Pollutants and Processes studied here are VOC, CO, CO2, NOx, and PM2.5, as noted early in 44 

this paper.  45 
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After finishing the configuration of the MOVES model, the user enters project-specific data into 1 

the Project Data Manager. Relevant inputs specified for this project are described below (with 2 

other inputs specified using MOVES’ default values): 3 

 4 

1. Links – the user specifies the road type, length, volume, average speed, and grade of each 5 

link being modeled in the project analysis. The road type, length, and average speed for each 6 

link considered was provided in the Texas drive cycle database referenced earlier. The grades 7 

of all roads were considered to be zero. Though this is a very simplistic assumption, 8 

analyzing the emissions impacts of smoothing cycles can still be performed effectively 9 

because the input parameters remain the same for both unsmoothed and smoother driving 10 

cycles. Only urban restricted and urban unrestricted roads were considered in this analysis to 11 

minimize MOVES run times. The volume of the link, which is the total traffic volume in one 12 

hour, was considered to be 145,000 vehicles for urban restricted roads and 10,000 for all 13 

urban unrestricted roads included in the analysis. Since link volumes are not readily available 14 

in a database for each link on a network, a conservative estimate was used for both urban 15 

restricted roads and urban unrestricted roads.  16 

 17 

2. Link Source Types – each link considered must have the vehicle mix specified. Only light 18 

vehicles were considered in this analysis due the lack of available data highlighting the actual 19 

vehicle mixes in this analysis. 20 

 21 

3. Link Drive Schedules – the speed vs. time profiles (drive cycles) extracted from the Texas 22 

drive cycle database were used as the model of driving behavior for vehicles in the project 23 

area.  24 

 25 

RESULTS 26 
This section presents emissions estimates based on smoothed driving cycles (for light-duty 27 

CAVs), using MOVES, as compared to the original HV-based driving schedules. Results using 28 

the EPA’s national driving cycles are presented first, followed by some Austin-specific driving 29 

cycle results.  30 

 31 

Emission Estimates from EPA Cycles 32 
The emission rates of a specific type of pollutants were estimated for light-duty passenger 33 

vehicles. The HV emission estimations were based on the original EPA schedules and the CAV 34 

emissions were estimated according to the corresponding smoothed EPA schedules.  35 

 36 

Figure 5 presents the estimates of volatile organic compounds (VOC) emissions. The estimates 37 

are generally reasonable. For example, 1) the SC03 cycle with air-conditioning on in high 38 

temperature of 95°F and FTP cycle with frequent acceleration and brake events at low speeds 39 

lead to the high emission rates in both gasoline and diesel vehicles; and 2) the HWFET cycle 40 

representing free-flow freeway traffic is associated with the least emission rates, with other 41 

factors held constant. CAV emission levels are expected to be lower than those of HVs. Among 42 

both gasoline and diesel passenger vehicles, all five cycles are estimated to have lower VOC 43 

emission rates after the spline smoothing. Noticeably, the HWFET cycle is associated with the 44 

smallest emissions reductions, perhaps because this cycle does not contain many hard brakes and 45 

accelerations. The US06 cycle is linked with greatest emissions reductions (6.25% to 6.65%), as 46 
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the original US06 cycle contains many rapid acceleration and hard-braking events that may 1 

occur only rarely in CAV operations. FTP cycle is associated with the second greatest reductions 2 

(4.99% to 5.23%) in VOC emissions. 3 

 4 

 5 
FIGURE 5 Emission Estimates for VOC 6 

 7 

Figure 6 shows estimated emissions of particulate matters (PM), carbon monoxide (CO), 8 

nitrogen oxides (NOx), and carbon dioxide (CO2). Variations are found in these emission 9 

species. US06 cycle leads to greater emission rates than FTP and HWFET cycles for emissions 10 

of PM 2.5 and CO, owing to the hard brakes and accelerations in US06 cycle. UDDS SC03 11 

cycles are found to have the greatest emission rate of PM2.5, and CO, respectively, for gasoline 12 

vehicles. The reason may be related to the testing temperature: UDDS was tested at extreme cold 13 

temperature, 20°F, and SC03 cycle was to simulate the driving in hot weather, 95°F. For 14 

emissions of NOx, US06 cycle leads to greatest emission rates among both gasoline and diesel 15 

vehicles. FTP cycle has relatively great CO2 emission rates, which may be related to the low-16 

speed driving, and frequent acceleration or brake events.  17 

 18 

Regarding the emission reductions from HVs and CAVs, FTP and UDDS cycles seem to have 19 

great reductions (> 10%) in emissions of PM 2.5 and NOx. US06 cycle is expected to have great 20 

reductions (around 7%) in emissions of CO. Again, HWFET cycle with least hard brake and 21 

acceleration events is related to the smallest reductions across all emission species.  22 

 23 
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 1 
FIGURE 6 Emission Estimates for PM2.5, CO, NOx, and CO2 2 

 3 
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Overall, smoothed EPA cycles were associated with lower emission rates, indicating that CAVs 1 

are likely to be more environmentally friendly than HVs. However, these reductions are not 2 

guaranteed, and vary according to emission types, fuel types, and driving contexts.  3 

 4 

Emissions Estimates from Austin-area Cycles  5 
The emissions were estimated in 36 Austin-specific cycles that represent the local driving 6 

patterns. Given the variety of pollutant types, fuel types, vehicle types, various cycles, etc., 7 

simple regression models were constructed to present and explain the results. The correlates of 8 

emissions reductions for a specific pollutant were explored. The response or dependent variable 9 

is the percentage reduction in any specific pollutant species. Explanatory or independent 10 

variables (X1, X2, etc.) include fuel type, vehicle type, temperature, and link-level average speed 11 

values. All explanatory variables, except link-level average speed values, are indicator (X = 0 or 12 

1) variables, and just two ambient temperature conditions (cold, 40°F in January, and hot, 75°F in 13 

September) were simulated. Table 2 shows the descriptive statistics of variables in the regression 14 

models. The models for different pollutants had exactly the same descriptive statistics.  15 

 16 

TABLE 2 Summary Statistics of Emissions-Related Variables 17 

(i) Explanatory Variables 

Variable Mean or Proportion S.D. or Freq. Min  Max 

Vehicle Type 
Passenger Car 50% 216 0 1 

Light-Duty Truck 50% 216 0 1 

Fuel Type 

Gasoline 33% 144 0 1 

Diesel  33% 144 0 1 

Ethanol 33% 144 0 1 

Temperature 
Cold  50% 216 0 1 

Hot  50% 216 0 1 

Link Mean Speed (mph) 30.18 21 2.5 69.5 

(ii) Emission Reeducations  

Emission Species Average Drop S.D. Min  Max 

Volatile Organic Compounds - VOC 10.89% 9.09% -4.56% 30.77% 

Fine Particulate Matter - PM2.5 19.09% 17.31% -23.81% 59.66% 

Carbon Monoxide - CO 13.23% 16.50% -16.93% 40.04% 

Nitrogen Oxides - NOx 15.51% 11.50% -7.41% 38.63% 

Sulfur Dioxide – SO2 6.55% 5.45% -4.12% 16.77% 

Carbon Dioxide - CO2 6.55% 5.45% -4.11% 16.76% 

Note: all variables except Link Mean Speed and Emission Reduction are indicator variables. No. of 18 
observations = 432 for each emission type. 19 
 20 

Figure 7 presents the distributions of percent reductions (Y) in emissions of VOC, PM2.5, CO, 21 

NOx, SO2, and CO2. The positive percentages indicate the emissions reductions from HV to 22 

CAV cycles. The magnitudes of percent reductions are generally consistent with the estimates 23 

from EPA cycles. As shown in Figure 10, in most cases, the estimated emissions decreased 24 

during the shift from HV to CAV cycles (i.e., positive percentages). The mean emission 25 

reductions are 10.89% for VOC, 19.09% for PM2.5, 13.23% for CO, 15.51% for NOx, and 26 

6.55% for SO2 and CO2.  27 
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 1 
 2 

FIGURE 7 Distributions of emissions reductions (in percentages) of VOC, PM2.5, CO, 3 

NOx, SO2, and CO2. 4 
 5 

Table 3 delivers the regression models, showing the correlates of emission reductions (from HV 6 

to CAV EAD cycles) with the factors shown in Table 2. The coefficients refer to the changes in 7 

emission reductions (%) from HV to CAV cycles, with one unit change in explanatory variables, 8 

when controlling for other variables. The findings from the models include the following: 9 

 10 

 VOC: Greater reductions in VOC emissions are expected for passenger cars, 1.925 11 

percentage points more than for passenger trucks. Diesel vehicles showed smaller 12 

emission reductions, 4.636 percentage points less than vehicles powered by ethanol. 13 

Higher average link speeds lead to greater reductions in VOC emissions, while a one-unit 14 

increase in speeds results in a reduction in VOC of 0.273 percentage points less. 15 

 16 

 PM2.5: Gasoline vehicle are associated with a greater reduction (4.367 percentage points 17 

more) in emissions of PM2.5, and diesel vehicle are linked with a smaller reduction 18 

(8.307 percentage points less), as relative to the vehicles powered by ethanol. The road 19 

links with higher average speeds are expected to have a greater emission reduction. A 20 

one-unit increase (1 mph) in average speed corresponds to a 0.302 percentage point 21 

reduction in PM2.5 emissions.  22 
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 1 

 CO: Passenger cars are related to greater CO emission reductions (1.655 percentage point 2 

more) when moving from HV to CAV cycles, as relative to passenger trucks. Diesel 3 

vehicles demonstrated smaller emission reductions, 2.131 percentage points less than 4 

vehicles powered by ethanol. Higher average link speeds are expected to result in a 5 

greater reduction in CO emissions. The regression shows that a one-unit increase in 6 

average link speed results in a 0.505 percentage points greater emission reduction in CO.  7 

 8 

 NOx: Passenger cars demonstrated greater NOx emission reductions from the HV to 9 

CAV cycles, 1.363 percentage points more than passenger trucks. Diesel vehicles showed 10 

smaller emission reductions, 4.042 percentage points less than vehicles powered by 11 

ethanol. Higher average link speeds are expected to result in a lower reduction in NOx 12 

emissions, while a one-unit increase in speeds results in a reduction in NOx of 0.048 13 

percentage points less. 14 

 15 

 SO2 and CO2: These two types of emissions were found to have similar correlates of 16 

emission reductions. Only the link average speed has a significant correlation with these 17 

emission reductions. Higher link average speeds are expected to result in a lower 18 

reduction in SO2 and CO2 emissions. A one-unit increase in speeds results in a reduction 19 

in SO2 and CO2 emissions of 0.069 percentage points less.  20 

 21 

  22 
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TABLE 3 Regression Results for Y = % Emission Reductions, as a Function of Vehicle, Fuel 1 

Type, Starting Engine Temperature, and Average Speed 2 
Emission Species Variable β Std Error p-value R-Square 

Volatile Organic 

Compounds 

VOC 

Constant 2.641 ** 5.74 <.0001 0.643 
Passenger Car (base: Passenger Truck) 1.925 ** 7.33 <.0001   

Gasoline (base: Ethanol) -0.588 
 

-1.58 0.1146   
Diesel (base: Ethanol) -4.636 ** -12.47 <.0001   

Cold (base: Hot) -0.188 
 

-0.72 0.4737   
Link Mean Speed (mph) 0.273 ** 21.81 <.0001   

Fine Particulate 

Matter PM2.5 

Constant 9.983 ** 7.87 <.0001 0.253 
Passenger Car (base: Passenger Truck) -0.862 

 
-1.19 0.2342   

Gasoline (base: Ethanol) 4.367 ** 4.27 <.0001   
Diesel (base: Ethanol) -8.307 ** -8.12 <.0001   

Cold (base: Hot) 0.550 
 

0.76 0.4477   
Link Mean Speed (mph) 0.302 ** 8.75 <.0001   

Carbon Monoxide 

 CO 

Constant -2.011 ** -2.95 0.0034 0.646 
Passenger Car (base: Passenger Truck) 1.655 ** 4.25 <.0001   

Gasoline (base: Ethanol) 0.038 
 

0.07 0.9455   
Diesel (base: Ethanol) -2.131 ** -3.87 0.0001   

Cold (base: Hot) 0.080 
 

0.21 0.8373   
Link Mean Speed (mph) 0.505 ** 27.20 <.0001   

Nitrogen Oxides 

NOx 

Constant 14.054 ** 15.21 <.0001 0.103 
Passenger Car (base: Passenger Truck) 1.363 * 2.59 0.0101   

Gasoline (base: Ethanol) 0.116 
 

0.16 0.8768   
Diesel (base: Ethanol) -4.042 ** -5.42 <.0001   

Cold (base: Hot) -0.275 
 

-0.52 0.6017   
Link Mean Speed (mph) 0.048   1.92 0.0555   

Sulfur Dioxide 

SO2 

Constant 4.480 ** 10.09 <.0001 0.076 
Passenger Car (base: Passenger Truck) -0.392 

 
-1.55 0.1225   

Gasoline (base: Ethanol) -0.089 
 

-0.25 0.8043   
Diesel (base: Ethanol) 0.247 

 
0.69 0.4903   

Cold (base: Hot) 0.046 
 

0.18 0.8562   
Link Mean Speed (mph) 0.069 ** 5.69 <.0001   

Carbon Dioxide  

CO2 

Constant 4.479 ** 10.10 <.0001 0.076 
Passenger Car (base: Passenger Truck) -0.391 

 
-1.550 0.1231   

Gasoline (base: Ethanol) -0.089 
 

-0.250 0.804   
Diesel (base: Ethanol) 0.248 

 
0.690 0.4898   

Cold (base: Hot) 0.046 
 

0.180 0.8562   
Link Mean Speed (mph) 0.069 ** 5.690 <.0001   

Note: ** = significant at 99% confidence level; * = significant at 95% confidence level.  3 
 4 

 5 

CONCLUSIONS AND FUTURE STUDY 6 
This study seeks to anticipate some of the emission impacts of CAVs. CAV driving profiles are 7 

envisioned to be smoother than those of HVs, because CAVs are expected to be faster and more 8 

precise than human drivers, in terms of reaction times and maneuvering. Human drivers tend to 9 

create significant, frequent speed fluctuations (i.e., hard brakes and rapid accelerations) and have 10 

relatively long reaction times (e.g., 1.5 seconds). CAV technologies may rarely suffer from such 11 

fluctuations, allowing for smoother driving profiles, referred to here as Eco-Autonomous Driving 12 

(EAD) cycles. Hard braking and rapid acceleration events are associated with increased 13 

emissions, so, by smoothing HVs’ existing driving cycles, this work anticipates the emission 14 

benefits of CAVs.  15 

 16 
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National EPA cycles and Austin, Texas cycles were smoothed to obtain EAD emissions 1 

estimates using MOVES. Various emission species were considered here, including volatile 2 

organic compounds (VOC), fine particulate matter (PM2.5), carbon monoxide (CO), nitrogen 3 

oxides (NOx), sulfur dioxide (SO2), and carbon dioxide (CO2). Differences in HV vs. CAV 4 

emissions estimates suggest valuable air quality from CAVs – assuming CAVs are driven no 5 

more than HVs would be. 6 

 7 

The results from EPA cycles suggest that, in general, if HVs are replaced by AVs, greater 8 

emission benefits (up to 14% emission reductions) are anticipated in driving conditions where 9 

there are many hard acceleration and braking events, and for drivers with aggressive driving 10 

styles. The results from Austin cycles indicate the mean emission reductions are 10.89% for 11 

VOC, 19.09% for PM2.5, 13.23% for CO, 15.51% for NOx, and 6.55% for SO2 and CO2. 12 

Regression models revealed that passenger cars were found to be associated with lower emission 13 

reductions for , VOC, PM2.5, CO, and NOx than passenger trucks. Diesel vehicles are linked 14 

with smaller emission reductions for these six types of emissions. The road links with higher 15 

average speeds have greater emission reductions for all emission species.  16 

 17 

The results are solely based estimates from MOVES models. Other emission modeling tools, 18 

such as UC Riverside’s Comprehensive Modal Emissions Model (CMEM) (Scora and Barth, 19 

2006), may be employed in continuing efforts. At this point, the discussion of emission impacts 20 

of AVs is limited to the differences between the anticipated EAD profiles of CAVs and existing 21 

HV driving cycles. CAV profiles are envisioned to be smoother than HV cycles as compared to 22 

HV cycles. Other CAV-based technologies (like platooning of vehicles and CACC) may also 23 

save fuel and reduce emissions further. 24 

 25 
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