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ABSTRACT 

Shared autonomous vehicles or SAVs have attracted significant public and private interest 

because of the opportunity to simplify vehicle access, avoid parking costs, reduce fleet size, and, 

ultimately, save many travelers time and money. One way to extend these benefits is through an 

electric vehicle (EV) fleet. EVs are especially suited for this heavy usage due to their lower 

energy costs and reduced maintenance needs. As the price of EV batteries continues to fall, 

charging facilities become more convenient, and renewable energy sources grow in market share, 

EVs will become more economically and environmentally competitive with conventionally 

fueled vehicles. EVs are limited by their distance range and charge times, so these are important 

factors when considering operations of a large electric SAV (SAEV) fleet.  

This study simulated performance characteristics of SAEV fleets serving travelers across the 

Austin, Texas 6-county region.  The simulation works in synch with the agent-based simulator 

MATSim, with SAEVs as a new mode. Charging stations are placed, as needed; to serve all trips 

requested (less than 75 km in length) over 30 days of initial model runs. Simulation of distinctive 

fleet sizes requiring different charge times and exhibiting different ranges, suggests that the 

number and location of stations depend almost wholly on vehicle range. Reducing charge times 

does lower fleet response times (to trip requests), but increasing fleet size improves response 

times the most. Increasing range above 175 km does not appear to improve response times and 

trips originating in the urban core are served the quickest. Unoccupied travel accounted for 
47 
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19.8% of SAEV mileage, with driving to charging stations accounting for 23.0% of this empty-1 

vehicle mileage  2 
 3 

KEYWORDS 4 
Charging station placement; Electric vehicle charging; Shared autonomous vehicles; Taxi fleet 5 
simulations 6 

  7 



3 
 

 1 

MOTIVATION 2 
An exciting application of self-driving automated-vehicle technology is one-way carsharing, 3 
similar to services like Car2Go and transportation network companies such as Lyft – but without 4 

a driver. Shared autonomous vehicles (SAVs) are envisioned to eventually save many travelers 5 
money and time, while reducing personal-vehicle fleet sizes in use today (Fagnant and 6 
Kockelman 2015). One way to extend such benefits is to use an electric vehicle (EV) fleet (as in 7 
Chen et al. 2016 and Chen and Kockelman 2016). EVs are especially suited for the heavy use 8 
(longer daily travel distances) experienced by shared fleets due to their relatively low energy and 9 

maintenance needs (U.S. DOE, 2016). A system of shared autonomous electric vehicles 10 
(SAEVs) can carry a relatively high fixed cost due to the cost of large batteries, which provide 11 
greater range before charging is required, and additional charging infrastructure, but may reduce 12 
overall costs via lower energy and maintenance needs. EVs are also expected to reduce 13 

environmental costs in most locations, especially where renewables are part of the power grid 14 
(Reiter and Kockelman 2016). As the price of EV technology continues to fall (Nykvist & 15 

Nilsson, 2015) and charging facilities become more convenient, EVs will become increasingly 16 
financially advantageous over traditional, petroleum-fueled vehicles.  17 

With heavy use of a shared fleet (e.g., over 100 miles per day per vehicle, rather than 20 mi 18 

[Fagnant and Kockelman 2015]), vehicle turnover will be faster, leading to quicker adoption of 19 
new EV technologies (Martinez, 2015). However, all-electric (non-hybrid) EVs are limited by 20 
their range (the distance an EV is able to drive on a single charge) and battery charge times, 21 

which tend to require two to forty times (or longer) as long as gas station refueling, depending on 22 
the power current. Anticipating the number, placement and size of charging stations is also an 23 

important prerequisite for an SAEV fleet, since charging stations are rare, while gas stations are 24 
quite common. Any self-driving fleet will incur high fixed costs, at least in early stages of 25 

technology release, so scenarios under which such a fleet is cost effective over a gasoline-26 
powered fleet should be explored before making this large capital investment, if such scenarios 27 

even exist. Slow charging times and poor battery-range have been major barriers for EV 28 
adoption by households  in the US and elsewhere (Stephens, 2013), but these barriers are steadily 29 
falling as charging times under an hour are becoming more and more available in many fast-30 

charge locations [see, e.g., https://www.tesla.com/supercharger] (Bullis, 2013). Battery ranges 31 
are rising with the Chevrolet Bolt (Chevrolet, 2016) and Tesla Model 3 (Tesla, 2016b) both 32 

expected to deliver 200 miles of range for under $40,000 price. 33 

This study simulates robust locations around the region for charging station placement, as well as 34 

the effects of battery range, charging times, and fleet size on SAEV system performance for the  35 
5,301 square-mile, 6-county Capital Area Metropolitan Planning Organization (CAMPO) region 36 
surrounding Austin, Texas. The work addresses gaps in much recent research by modeling SAV 37 

services across a very large region with a highly detailed (true to life) network of roadways and 38 
with variable population densities and land uses. The simulation framework improves upon 39 
agent-based simulations by Chen et al. (2016) and Bösch et al. (2016) by using more realistic 40 
vehicle speeds, allowing charging vehicles to respond to requests, using more robust charging 41 

strategies, and requiring that all demand for trips under 75 km (47 miles) be met, along with 42 
other improvements. All improvements deliver greater realism and many improve the fleet’s 43 
performance, via flexible-charging and passenger-pickup strategies.  44 

LITERATURE REVIEW 45 
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While several studies have recently simulated the operations of SAV fleets in urban 1 

environments (Fagnant & Kockelman, 2015; Martinez, 2015; Spieser et al., 2014; Zachariah et 2 
al. 2014) , only Chen et al. (2016) and Chen and Kockelman (2016) have allowed for electric 3 
vehicles or for rural and low-density trip-making locations. They modeled SAEV services over a 4 

100 × 100 mile homogenous grid with quarter-mile spacing. They concluded that an SAEV 5 
system could serve all passenger demand with competitive response times as low as 7.7 minutes 6 
with 30 minute charge times, 160-mile vehicle range, and costs comparable to that of a gasoline-7 
powered fleet with just 6.6% more vehicles. Their systems were estimated to be cost-effective 8 
with gas prices as low as $2.50 per gallon assuming $45,000 purchase price for a long-range 9 

SAEV, $405 per kWh for replacement batteries (with batteries replaced once per vehicle, at 10 
115,000 miles), $0.061 per mile in vehicle maintenance costs, $1,600 in annual insurance and 11 
registration costs (per vehicle), and $0.13 per kWh (for battery charging). Their simulations 12 
begin by generating SAEVs wherever trips are generated and cannot be quickly served by 13 

existing vehicles, while adding charging stations as needed, across the gridded network, to 14 
ensure SAEVs will be within range of a charging station after meeting any request.After stations 15 

are located, fleet size is created in the same manner as the charging station generation phase to 16 
ensure that travelers in the initial runs do not wait longer than 10 minutes. After the initial runs, 17 

fleet size and charging stations are fixed and these simulations are performed many times, for a 18 
range of scenarios; scenarios include short-range (80 miles) and long-range (200 miles) EVs, as 19 
well as fast charging versus regular charging (30 minutes vs. 4 hours, respectively). 20 

Given their specific setup, Chen and Kockelman’s (2016) and Chen et al.’s (2016) simulation 21 

results suggest that fleet size is highly sensitive to charge times, as well as vehicle range, and that 22 
long-range (200-mile) SAEVs are able to reduce fleet size by 20 percent (relative to short-range, 23 

80-mile, settings) while fast-chargers reduce fleet size by 30% (comparing 4-hour charges to 30-24 
minute charges.) Combining long ranges and fast charges reduces fleet 44% over the base case. 25 

Their simulation setup suggests that the number of charging stations will not vary much, but the 26 
number of chargers needed at each station can be cut by 45.2% and 85.6%, network-wide, for 27 

short-range and long-range SAEVs respectively, using fast chargers. After analyzing all costs 28 
involved, they concluded that SAEV travel could be priced at $0.66 to $0.74 per person-trip-mile 29 
while allowing for 10% profit margins. This level of pricing would make SAEVs economically 30 

competitive with conventional cars, even with gasoline costing just $2.50/gallon; however, 31 
automated chargers are important (rather than having human attendants connecting charging 32 

cords to SAEVs), if SAEVs are to be competitive with gasoline-fueled SAVs (requiring 33 
attendants). While this current paper borrows much of its inspiration from the Chen et al. (2016) 34 
and Chen and Kockelman (2016) papers, it relies on a much more realistic network with 234,444 35 
directed (one-way) links, and allows vehicles to leave charging stations as needed, before being 36 
fully charged, thereby reducing SAEV downtime and response times (to reach trip-makers).   37 

In order to simulate SAV operations in Zurich, Bösch et al. (2016) created a special program to 38 
work with MATSim (Horni et al., 2016), which is an agent-based and activity-based model of 39 
travel demand that allows for dynamic traffic assignment to large-scale networks with reasonable 40 
computing times. Like most MATSim users, Bösch et al. (2016) simulated 10% of total personal 41 

travel demands. But they focused on SAV operations and SAV fleet size, concluding that one 42 
SAV could serve 10 trip-makers per day with wait times of 3.11 minutes after rejecting 3.8% of 43 
trips due to response times over 10 minutes. For most times of the day, a third or more of the 44 

SAVs were not needed/not in use; however, privately owned cars in Switzerland are used 45 
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productively just 3.2% of the day (according to survey data). Bösch et al.’s (2016) program is a 1 

major contribution to this paper’s work, along with Nagel’s (2016)MATSim code. By simulating 2 
the CAMPO region in MATSim and modifying and then using Bösch et al.’s (2016) code, this 3 
research is able to generate charging stations and then simulate realistic SAEV operations across 4 

the Austin region.   5 

Some studies were much more optimistic in their predictions of response times and replacement 6 
rates (the average number of conventional vehicles that can be replaced by each SAV). In a small 7 

(10 mi × 10 mi) region, with a tightly gridded network, Fagnant and Kockelman (2014, 2015) 8 
estimated that a single SAV could replace the trip-making of 9 conventional vehicles while 9 
providing minimal wait times and reductions in several emissions species (thanks to smaller-10 
than-average-US fleet vehicles and reductions in engine cold starts). Fagnant and Kockelman’s 11 
(2016) dynamic ride-sharing (DRS) evaluations of Austin’s 12 × 24 mile core region yielded 12 

similar results. However, higher replacement rates appear feasible when trip distances are 13 

shorter, as in the case of smaller-region simulations, which neglect longer-distance trip-making. 14 

Their results also show vehicle replacement rates rise, wait times fall, and empty vehicle-miles-15 

travelled (empty VMT) falls with greater spatial intensity of trip-making (thanks to more 16 
efficient use of SAVs and more opportunities for DRS).  17 

Zhang et al.’s (2015) SAVs-with-DRS simulationson a synthetic network predicted a 14:1 18 
vehicle replacement. Like Fagnant and Kockelman (2015), they did not presume that all travelers 19 

are willing to share rides with strangers. Their simulation framework employs a straightforward 20 
relocation strategy, where empty vehicles can move toward areas/zones with low available-21 
vehicle density (relative to expected near-term demands). Results suggest that only 6.7% of 22 

person-trips were able to and elected to participate in ride-sharing, though this share rises and 23 
SAV trip-making intensity rises (thanks to greater market adoption).  24 

Atasoy et al. (2015) simulated a conventional taxi-type system wherein passengers select which 25 
type of taxi or transportation networking company (TNC) service they prefer, based on real-time 26 

pricing and wait times (as provided by the fleet manager). They implemented this framework 27 
(with conventional vehicles, not self-driving vehicles) for a network resembling Tokyo's Hino 28 
City, but traffic conditions (and thus congestion feedbacks) are ignored. The authors tested 29 

several pricing scenarios and found that, in all cases, the shared (taxi-type) fleet delivered greater 30 
consumer surplus and profits than a public bus system serving the same demands, even with all 31 

human-driven vehicles (where the cost of labor makes taxi or TNC prices quite high). 32 

Burghout et al. (2015) predicted major VMT increases of 24% in the Stockholm, Sweden 33 
network with an SAV fleet without dynamic ridesharing; but, interestingly, found that the 34 
location of this increased VMT may not contribute substantially to congestion. When ride-35 
sharing was included in their model, VMT fell 11% from the base case, and total travel times fell 36 

7%. Their study performed traffic assignment to anticipate changing travel times. Similar to 37 
Fagnant and Kockelman (2015) and Chen et al. (2015), SAVs were created when a request was 38 
made (during the test start/initial simulation runs) and no vehicle was available to serve it within 39 

10 minutes or so. 40 

Martínez (2015) concluded that an SAEV fleet should be very plausible when each vehicle has a 41 

30-minute gap or downtime in which to charge every 175 km, by increasing the SAV fleet size 42 
only 2%. They simulated the Lisbon, Portugal region in detail, with travelers sharing SAV rides 43 
as a specific mode alternative (similar to Zhang et al.’s [2015] approach), alongside subway, 44 
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buses, non-motorized modes, and private (conventional) cars. They estimated that the same level 1 

of personal mobility for Lisbon travelers can be achieved with just 10% of current fleet sizes. 2 
Overall, vehicle travel or VMT was simulated to increase anywhere from 6% (with ridesharing 3 
and public transport) to 89% (no ridesharing or public transport), while 100% of on-street and 4 

80% of off-street parking was no longer needed, assuming 100% “adoption” (or release of all 5 
privately were vehicles). With only 50% penetration/user adoption of SAVs, total VMT was 6 
predicted to rise 30% to 90% due to elimination of public transit (for the 90% case) and empty 7 
repositioning trips in all cases. Martínez (2015) noted that heavy use of SAV fleet vehicles 8 
expedites rapid fleet turnover to newer and cleaner vehicle technologies. Martínez’s Lisbon 9 

simulations suggested that ridesharing may reduce VMT along arterial roadways, but add 10 
substantial VMT to local roads. In the worst case, VMT increased by nearly 90%. Another key 11 
finding was that, at 50% penetration, public transit was still needed to meet demand in a 12 
reasonable timeframe.  13 

Zachariah et al. (2014) simulated an SAV fleet for travel across the US state of New Jersey, with 14 

SAVs making pickups and drop-offs at discrete stations called aTaxiStands. The New Jersey 15 

network was created by pixelating the state into half-mile by half-mile squares, with all trips 16 
using gridded/Manhattan distances and fixed travel speeds rather than a true and congestible road 17 
network.  About 50% of the person-trips came from the top 6.1% of trip-producing pixels and 18 
95% of trips came from the top 44%. Their work did not consider fleet size or any kind of 19 
empty-vehicle mileage, with all aTaxiStands having an arbitrarily large number of SAVs able to 20 
suit any level of demand.   21 

Lastly, Spieser et al. (2014) estimated that in Singapore, SAVs can save drivers, on average, 50% 22 

in monetary travel costs per mile as opposed to using a private vehicle by splitting up the hefty 23 
cost of vehicle ownership. They concluded that all personal-travel needs in this island-state could 24 

be met using an SAV fleet approximately one-third the current passenger-vehicle fleet(or 1 SAV 25 

for every 17.28 Singaporeans, rather than the present ratio of 1 to 6.65). They used Singapore’s 26 

actual road network and trip data from 10,840 of its 1.14 million households. A minimum fleet 27 
size was found to be 92,693 vehicles, delivering poor service with peak-period wait times well 28 

over one hour. With 200,000 SAVs in circulation, 90% were available for requests at any given 29 
moment on an average, simulated weekday, and 50% were available/not in use during peak times 30 
of day. With 300,000 vehicles, these availability rates rose to 95% (across a 24-hour day) and 31 

72% during the peak times, with peak-period wait-times averaging less than 15 minutes. Their 32 
financial analysis estimates total mobility costs of $1.48 per person-milein Singapore and $1.14 33 
in the US, for SAV usage. This is when allowing for values of travel and wait times at just 20 34 

percent of the median wage (versus the 50 percent that the USDOT and others regularly assume 35 
(Small, 2012)), in part because those waiting or en route but not having to drive can often make 36 
reasonably productive use of that time. These figures are in contrast to private vehicles, which 37 

are estimated to cost, on average, $2.77 per person-mile in Singapore and $2.20 in the US, when 38 
including the travelers’ value of travel time, at 50% of the median wage. These values are far 39 
more than $0.78/mi reported by the American Automobile Association (AAA, 2013) for vehicle 40 
ownership and use costs, along with Fagnant and Kockelman’s (2015) and Chen et al.’s (2016) 41 

full-cost accounting for SAV operator costs.  42 

METHODOLOGY 43 

Tour Generation 44 
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This study uses three major steps to simulate SAV operations across Austin, Texas: tour 1 

generation, traffic assignment, and SAV simulation. The travel data come from Austin’s 2010 2 
Capital Area Metropolitan Planning Organization (CAMPO) trip-making predictions, in addition 3 
to U.S. National Household Travel Survey (NHTS) data for the year 2009(U.S. Department of 4 

Transportation, 2009). Liu et al. (2016) used CAMPO’s trip tables by trip purpose to generate 5 
reasonable activity plans (a key input to MATSim) for every resident of the 6-county region 6 
(Burnet, Bastrop, Caldwell, Hays, Williamson and Travis counties). As described in Liu et al. 7 
(2016), a 5% sample of the region’s  roughly 8.8 million daily trips were re-constructed, to 8 
provide far more spatial resolution (mapping to specific homes and then to the ends of every 9 

block or road segment in Open Street Maps) than an MPO’s TAZs allow. These trips were 10 
chained for individual travelers, creating a daily tour for performing planned/desired activities. 11 
15.7% of persons make no trips on the given travel day, while 22.6% persons make two trips.  12 

These activity plans are important for building a tour-based or activity-based model. Tour-based 13 

models are believed to offer a more realistic simulation of network use by connecting trip ends, 14 

and bringing most travelers back to their homes at the end of a travel day, rather than allowing 15 

trips to form and end rather independently in conventional (aggregate) models.  16 

Traffic Assignment to Obtain Travel Times 17 

Dynamic traffic assignment (DTA) was performed using the agent-based  MATSim model 18 
(Horni et al., 2016), which also seeks to optimize individuals’ trip patterns through a co-19 
evolutionary process (of scoring competing travel plans [for each traveler], across desired 20 

activity sets) in order to reach a network-wide quasi-user equilibrium. MATSim iteratively seeks 21 
to improve each traveler’s routes, modes – when flexible, and departure time selections, as 22 

feasible, through individualized scoring, and resulting vehicle demands are dynamically loaded 23 
onto the provided network, delivering real-time travel time estimates and congestion. Agents 24 

improve their scores via faster travel times and on-time arrivals at activity sites, but are penalized 25 
for slow travel times and late or early arrivals at their desired destinations. The MATSim 26 

simulation is run several times consecutively, as subsets of agents modify their behaviors 27 
slightly, in order to improve their own utility scores. MATSim’s time-step is just one second, so 28 
trip departures are scheduled nearly continuously over a 24-hour day. After the 1-day simulation 29 

is complete, MATSim creates an event-file containing a list of trips for each agent that is then 30 
used for calls on the SAEV simulation, as described below.  31 

SAV Simulation Code  32 

The underlying code for much of the SAEV simulator was developed by Bösch et al. (2016) to 33 
model a conventionally-fueled SAV fleet serving the Zurich region. For this study, their SAV 34 

simulator was modified to enable SAEVs, along with a few performance enhancements 35 
including more accurate speed data, and allowing more trips to be met regardless of wait times. 36 

A random sample of travelers/agents is assumed to use SAEVs throughout the day rather than 37 
their original modes and request their SAEV trips 5 minutes before their desired departure times. 38 
This 5-minute  pre-planning (by travelers) is chosen to mimic travelers’ tendency to anticipate 39 
vehicle response times. Testing that assumption, by changing this variable from 0 to 10 minutes, 40 
effects little change on average response times.  41 

Once the traveler’s request is registered, the program searches for a vehicle that can reach the 42 
traveler within 5 minutes of the scheduled departure time (or within 10 minutes of the trip 43 
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request). The vehicle search is repeated every time step (i.e., every second) until a suitable 1 

vehicle is found (one with sufficient range to serve the trip and then reach a charging station); the 2 
first suitable vehicle found is immediately assigned to the request. If no suitable vehicle is found 3 
within 5 minutes of the requested departure time, the search algorithm selects the nearest 4 

available vehicle. Once an SAEV has received an assignment, it drives to the trip-maker. If the 5 
vehicle arrives before the scheduled departure time, it waits for the traveler; otherwise, the 6 
traveler boards immediately and heads to his/her destination. Travel time transporting SAEV 7 
users to their destinations is given in the MATSim event-file, from the MATSim run results 8 
described above. Since empty-vehicle movements are not modeled in the upstream traffic 9 

assignment, SAEV travel times are estimated using the beeline/Euclidean distance between each 10 
origin-destination pair, a distance correction factor, and the current average speedacross the 11 
entire network.The beeline correction factor comes from a separate program that finds the ratio 12 
of every trip’s/every OD pair’s true network distance (using the MATSim assignmentto its 13 

beeline distance). The average of these ratios is the beeline correction factor. Average speed is 14 
derived from the average speed of every trip on the network that starts within 5 minutes after the 15 

SAEV receives its assignment.After an SAV drops off its user, in the Bösch et al. (2016) code, it 16 
remains at that location until it receives a new assignment. In reality, SAVs must refuel every so 17 

often, and range-limited SAEVs deserve special re-charging consideration, as described below. 18 

Code Modifications to Simulate SAEVs 19 

Bösch et al.’s (2016) SAV code assumes all SAVs are gasoline-powered vehicles, and ignores 20 
refueling times and locations. In SAEV applications, recharge times are likely to vary from 20 21 
minutes to 8 hours, depending on charging station power and battery capacity, so vehicle range 22 

can have important impacts on an SAEV’s ability to serve trips throughout the day. The locations 23 
and number of charging stations also affect the amount of time SAEVs will spend driving to and 24 

from them. This study examines how station locations, vehicle range, and recharge speeds are 25 

likely to affect SAEV fleet performance. Many of the assumptions used here come from Chen et 26 

al.’s (2015) charging station generation and SAEV charging algorithms and were added to Bösch 27 
et al.’s (2016) SAV codes.  28 

Charging Station Generation 29 

Here, the first part of the SAEV simulation generates a base set of charging stations. This is done 30 

by first assuming a large/oversized (1 vehicle per traveler) SAEV fleet, randomly distributed 31 
over space, running to meet trip demands. Whenever a vehicle receives a travel request, it checks 32 

to see if it has enough remaining range/battery charge to pick up the passenger and then take the 33 
passenger to the desired destination. If not, a charging station is generated at the vehicle’s 34 
location, and the vehicle is immediately assigned to charge at that station. That vehicle is then 35 
removed from consideration for that particular request, and the simulator searches again to find a 36 

suitable vehicle. This process is run for 30 simulation days, and the vehicle fleet is re-set to 37 
random origins at the beginning of each day, while the list of charging stations is carried over 38 
into each subsequent day. For days 21 through 30, the daily number of visits for each station is 39 

recorded and at the end of the 30-day simulation, the stations with fewer than 1.2 visits per day 40 
are removed. (1.2 visits per day corresponds to 1 visit per hour after scaling up by a factor of 20, 41 
to reflect use of a 5% sample.)  The vehicle fleet is then randomized again and the simulation is 42 
given a final run where no new stations can be formed. This algorithm provides no guarantees of 43 
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optimality for station locations, however it does serve to minimize the number of stations given 1 

vehicle parameters.  2 

SAEV Charging Rules 3 
 4 

After the charging-station generation process, Bösch et al.’s (2016) upgraded SAV simulation 5 
code is run normally. Similar to the earlier model runs, for station generation, vehicles have to 6 
check that they have adequate range before responding to a request – but they also now must be 7 
able to reach a charging station after delivering the passenger(s). With this technique, an SAEV 8 
will always have a charging station in range, so it cannot be stranded.  9 

There are several conditions under which a vehicle may be assigned to a charging station. For 10 
example, in every 1-second simulator time step, SAEVs with a range below 5% of their battery’s 11 
capacity will be sent to charge. Those that have been sitting idle/without trip assignment for 30 12 

minutes are also sent to charge. Lastly, a vehicle will charge when it receives a request that it has 13 

too little range to fulfill and less than 80% charge remaining as is shown to work well by Chen et 14 

al. (2016). 15 

To start the charging procedure, the vehicle travels to the nearest charging station and 16 
immediately begins charging upon arrival. Charging occurs in two stages, when remaining range 17 

is above or below 80%. To achieve full charge, the battery first charges to 80% during the first 18 
half of the total assumed charge time, and the remaining 20% charges in the latter half as 19 

suggested by many state of charge graphs, a good example of which can be found at Tesla 20 
Motors (2016a). This implies two different charging rates:  21 

For remaining range under 80%:  𝑅𝑎𝑡𝑒𝑓𝑎𝑠𝑡 =
0.8𝑅𝑎𝑛𝑔𝑒

0.5𝑇𝑓𝑢𝑙𝑙
      (1) 22 

For remaining range above 80%:  𝑅𝑎𝑡𝑒𝑠𝑙𝑜𝑤 =
0.2𝑅𝑎𝑛𝑔𝑒

0.5𝑇𝑓𝑢𝑙𝑙
    (2) 23 

where Tfull is the time needed to achieve full charge if starting from zero charge, Range is the 24 
vehicle's range when it has full change, and Rateslow and Ratefast correspond to the charging rates 25 
when remaining range lies above or below 80% of battery capacity, respectively. Charging rate is 26 

expressed in units of distance per time (or miles per hour of charge time). Unlike Chen et al.’s 27 
(2016) SAEV simulations, charging vehicles may be undocked to fulfill a service request, after 28 

all other eligible SAEVs are first evaluated for their availability. If a charging vehicle is 29 
assigned, it will always be the vehicle with the greatest range at its respective station. A charging 30 

vehicle will cease charging when it has reached a full charge, but will not leave unless assigned 31 
to a request. In theory, charging stations should be able to operate without attendants, if the 32 
SAEVs are equipped with robotic or inductive charging interfaces, though bigger/more active 33 
stations can have attendants to fill tires, clean windows, and more.   34 

Simulated Scenarios 35 

The charging station assignment and SAEV simulations were run for several fleet size plus range 36 
plus charging rate scenarios to appreciate system performance metrics, like average response 37 
times, empty VMT, and number and size of stations generated. Fleet size is pre-determined here 38 

in terms average ridership per vehicle, or the average number of travelers served per SAEV. 39 
These average ridership rates were varied from 3:1 to 9:1 in increments of 1. In some cases, a 40 
ratio of 10:1 was tested, but with poor performance, due to longer wait times.  41 
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The share of travelers assumed to use an SAEV is fixed at 2% of the 5% trip sample simulated. 1 

In other words, 0.1% of the region’s travelers or total person-trip-making is simulated in each 2 
scenario, in order to avoid exceeding memory space on a personal computer. Charging time 3 
requirements were varied from 30 minutes through 240 minutes, in 30-minute increments, across 4 

scenarios simulated. Battery ranges varied from 100 km to 325 km, in 25 km increments. Unless 5 
otherwise noted in the discussion of results (below), the standard or base scenario’s range is 6 
assumed to be 150 km (93 miles), with a complete charging time of 240 minutes, and average 7 
ridership of 5 travelers or 5 trip-makers per SAEV. (Note: Since 15%of the population does not 8 
travel on any given day, this 5:1 ratio means about 6 persons in the local population per SAEV.) 9 

In order to prevent the simulator from spending an unreasonable number of iterations trying to 10 
meet longer trips, trip length is capped at 75 km and trips over this limit (approximately 8% of 11 
all trips) are rejected outright. Via trial and error, this number was found to give reasonable 12 
response times while rejecting a reasonable share of trips. Allowing all trips resulted in 13 

computation times of days and average response times of hours, especially with the low-range 14 
SAEV scenarios. Supercomputers will allow for much more comprehensive runs with much 15 

larger sample sizes in the near future.  16 

RESULTS 17 

First, various vehicle ranges were simulated and the number and location of stations needed for 18 
these scenarios were estimated (as shown in Figure 1). 19 

  20 
FIGURE 1  Number of stations relative to vehicle range (left) and map of stations for the 21 
100 km-range, 4-hour charge time scenario across the CAMPO region (right) 22 
 23 
As seen in Figure 1’s 4-hour (240-minute) charge time scenario, the number of stations needed to 24 
meet demand depends greatly on vehicle range: it goes from 183 stations at 100 km (62 mile) 25 
range to just 7 stations when assuming SAEVs have 325 km (201 mile) range. It is interesting to 26 
note how, in Figure 1, the rate of change in station counts turns sharply at 175 km, so that may 27 
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be a type of “sweet spot” for operators electing an optimal range, in a region of this size and trip-1 

making density.  2 
 3 
Response times for these scenarios were also computed, to illuminate how they may be affected 4 

by the sparse stations present at higher ranges. As shown in Figure 2a, for the 4-hour charge 5 
scenario, as range increases, average response times fall: from 44.4 minutes for 100 km range 6 
vehicles to 8.61 minutes with 175 km range. After this point, response times show very little 7 
change, reaching a minimum at of 7.13 minutes at 300 km and climbing back up to 10.5 min at 8 
325 km (as station count falls further, so SAEVs are spending more time getting to and from 9 

charging locations). However, for shorter charge times (120 min, 60 min and 30 min), there 10 
appears to be no such correlation. At all other ranges and charge times, response times fall 11 

betweena minimum of 4.51 minutes and a maximum of 6.88 minutes.  12 

A gasoline-powered fleet was also approximated, by giving each vehicle an infinite range and 13 

ignoring refuel times (effectively presuming that they can be handled each night, without 14 

compromising service levels). This fleet yielded the best response times at 4.15 minutes.  15 

Figure 2b shows distributions of wait times, where a trip met "on time" indicates an SAEV 16 
arrived before the agent's scheduled departure time, met in "0 - 5 minutes" indicates the SAEV 17 
was 0 to 5 minutes late, and so on. This chart shows that trips met within 5 to 10 minutes late are 18 
very rare. Improvements in response times come primarily from shrinking the relatively small 19 
proportion of trips met in over 30 minutes: decreasing from 10.04% at 100 km range to 3.38% at 20 
175 km range. The distribution of response times appears to become more polarized as range 21 

increases, with the percentage of responses more than 30 minutes late reaching a minimum of 22 
2.23% at a 325 km range and trips met on time reaching its minimum of 50.71% at 300 km 23 

range.  24 
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 1 
FIGURE 2 Response times relative to vehicle range (assuming 5:1 average vehicle ridership 2 
and 240-minute charge times, unless otherwise noted). 3 

 4 
Response times were then modeled with respect to charge time (Figure 3) assuming 150 km 5 
range, demonstrating that response times are mostly unaffected by charge time until charge times 6 

exceed about 90 minutes increasing from 4.78 minutes at 90-minute charge times to 10.12 7 
minutes at 240-minute charge times (Figure 3a). This increase in response times is again heavily 8 

weighted by trips more than 30 minutes late (as shown in Figure 3b), which increased from 9 
0.95% to 3.78% for the same scenarios.  10 
 11 
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 1 
FIGURE 3 Response times with respect to charge times (150 km scenario). 2 
 3 
Various fleet sizes were modeled to determine their effect on response times in Figure 4. It is 4 

clear that for each charge time, the response time "breaks" at a certain point and increases rapidly 5 
for higher replacement rates. It is important to see that for larger fleet sizes, improving charge 6 
times may not help with response times. A similar study was repeated with four different range 7 

scenarios shown in Figure 5a.  The results appear similar, where there is a clear linear 8 
relationship up until a "break point" at a ridership rate of 6. Most notably there is nearly 9 

negligible differences between the 100 km and 175 km range scenarios. The poorer response 10 
times correlated with higher range is likely caused by the substantial decrease in the number of 11 
charging stations generated during the station generation phase. To account for this, the station 12 

array for one of the 100 km range runs was kept fixed for all subsequent runs, and the results are 13 

shown in Figure 5b. Somewhat surprisingly, vehicle range does not seem to have an effect 14 
response times (at least with 30-minute charge times), except at very high ridership rates. Only at 15 
a ridership rate of 9 travelers per vehicle is there a strong correlation between range and response 16 

times yielding response times of 25.3 minutes, 19.4 minutes, 18.6 minutes and 17.9 minutes for 17 
the 325 km, 250 km, 175 km, and 100 km ranges, respectively.   18 

 19 

 20 

FIGURE 4 Response times with respect to vehicle ridership rates for four charge scenarios.  21 
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(a) 1 

  2 

(b) 3 

 4 

 5 

FIGURE 5 Response times relative to vehicle ridership rates for four range scenarios 6 

(assuming 30-minute charge times) with station array varied (a) and fixed (b).  7 

Table 2 provides a summary of key results for five major scenarios. Chen et al. (2015) found 8 

similar results where number of charging stations appears to be wholly dependent on vehicle 9 
range. They did however find, in general, lower response times and lower empty unoccupied 10 
travel. The primary reason for this is likely their highly aggregate and unrealistic network which 11 
could not account for the nuances of a true network with directed links. Another way Chen et al. 12 
(2015) reduced average wait times was by rejecting trips after a passenger waits for 30 minutes 13 

to be picked up.   14 

TABLE 1 Key findings from 5 simulation scenarios including a gasoline-powered base-15 
case. 16 
Scenario 
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Range (mi) Infinite 62 62 202 202 202 
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Recharge Time (min) N/A 240 30 240 30 30 

# of Charging Stations N/A 254 218 5 6 7 

Avg. Travelers Served 

(per vehicle) 
5 5 5 5 5 7 

Avg. Daily Trips per 

Vehicle 
18.8 18.9 18.9 18.8 19.1 26.8 

Avg. Daily Miles per 

Vehicle 
297 328 318 353 331 490 

Avg.  Wait Time Per 

Trip (minutes) 
3.54 29.8 3.83 7.00 4.95 6.60 

% Unoccupied Travel 11.2 18.7 15.3 23.7 17.6 22.3 

% Travel for Charging N/A 7.25 4.16 7.75 5.21 6.45 

Max % Concurrently 

Charging Vehicles 
N/A 82.8 46.4 53.9 13.0 23.1 

CONCLUSIONS 1 

The rising popularity of carsharing, electric vehicle technology, and vehicle automation is 2 

leading to new research on the operations of SAV fleets. This study sought to find more cost-3 
effective and more environmentally sustainable solutions for long-term mobility needs and 4 

demands by all types of travelers. These simulations of SAEV fleet activities across the greater 5 
Austin, Texas region provide promising results. Operations of various SAEV fleet scenarios 6 

were simulated to appreciate the need for different charging station locations and charge times. 7 
After excluding trips over 75 km, a fleet size serving 7 travelers per SAV was able to serve 91% 8 
of travelers within 10 minutes of making their request, with an average response time of 6.6 9 

minutes, assuming 175 km-range vehicles and 30-minute charge times. Under this same 10 
scenario, unoccupied travel accounted for 19.8% of VMT, with driving to charging stations 11 

accounting for 23.0% of this empty-vehicle mileage. This percentage of empty VMT is higher 12 
than found in other papers, as somewhat expected, thanks to a very large and realistic network 13 

along with frequent travel to and from charging stations. Moreover, charging stations become 14 
scarce as vehicle range rises, increasing those distances. If operators wish to offer more charging 15 

locations (with fewer charging cords, for example), this excess VMT statistic can be brought 16 
down. Economies of scale and density in sizing and siting the stations will probably determine 17 
the optimal result.  18 

A sensitivity analysis was conducted next, using different charge times, vehicle ranges, and 19 
average vehicle occupancies or travel party sizes, to see how these factors impact vehicle 20 
response times and the number of charging stations simulated. Those results suggest that the 21 
number of stations is highly dependent on vehicle range, calling for 232 stations for a 409-22 
vehicle fleet with 100 km ranges, but just 5 to 6 stations needed for the same size  fleet with 325 23 

km ranges. The other two factors considered (fleet size and charge times) do not appear to 24 
correlate/vary with the number of stations generated. Average response times tend to not depend 25 

on vehicle range, except when charge times are very long (i.e., 4 hours). However, in all cases, 26 
ranges above 175 km do not appear to improve response times, even when the number of stations 27 
is fixed. These results suggest that a fleet operator should not seek vehicles with ranges over 175 28 
km unless the intention is to reduce the number of charging stations.  29 

Importantly, increasing fleet size (or SAVs per traveler) is found to have a profound effect on 30 
response times. With 150 km range vehicles and 30-minute charge times, a fleet averaging 10 31 
travelers-per-vehicle resulted in average response times of 44.3 minutes, whereas a fleet with 7 32 
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travelers-per-vehicle delivered average response times of just 7.08 minutes. At 3 travelers per 1 

vehicle, average response times fell to 3.1 minutes. Reducing charge times also improves 2 
response times. For the fleet with 150 km range and 5 travelers per vehicle, a charge time of 4 3 
hours resulted in an average response time of 10.1 minutes, which falls to 4.8 minutes with 90-4 

minute charge times. However, these improvements diminish quickly, since 30-minute charge 5 
times deliver an average response time of 4.4 minutes. Therefore, it is not recommended that a 6 
fleet manager expend significant resources to achieve charge times less than 90 minutes. Lastly, 7 
results suggest that trips originating in the urban center are served best, since every trip within 8 
city limits was served in under 30 minutes. These findings suggest that a fully electric SAEV 9 

fleet is reasonable for a region similar to Austin, Texas, with the support of policymakers and 10 
fleet managers. Understanding financial tradeoffs between vehicle range and station construction 11 
is another important prerequisite for delivering such services. Also important will be analyzing 12 
the balance of charge times and fleet size with desired response times. A financial analysis of 13 

these steps will be useful future work, along with a mode choice model (similar to the one found 14 
in Liu et al. [2016]) to determine financial viability of this operation. Fleet performance metrics 15 

can also be enhanced by employing a dynamic ridesharing system. Accuracy of these simulations 16 
can also be improved by simulating a larger proportion of trips in MATSim (greater than 5%) 17 

and by beginning the simulation with a destination choice simulation.  18 
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