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ABSTRACT 21 
Automated vehicles are undergoing development at an incredible speed and have potential to 22 
revolutionize the existing transportation system. The paper investigates the impacts of connected 23 
automated vehicles (CAVs) and shared automated vehicles (SAVs) using a conventional travel 24 
demand model for the Austin, Texas region. A series of eight test scenarios on the year 2020 25 
setting suggests that the introduction of CAVs and SAVs will add 20 percent or more demand for 26 
new vehicle-miles traveled (VMT) to the 6-county region’s roadway network. Relatively low 27 
values of travel time for passengers of automated vehicles and relatively competitive pricing 28 
assumptions of SAV use result in greater demand for longer distance travel and less transit 29 
system use. Empty-vehicle travel for self-parking and SAVs will add even further to the 30 
network’s VMT, presumably increasing roadway congestion further, unless rides can be shared, 31 
traffic flows can be smoothed, and inter-vehicle headways tightened. The scenario simulations 32 
are sensitive to parking cost and vehicle operating cost assumptions. Policy makers, 33 
transportation planners, systems operators and designers may do well to simulate additional 34 
scenarios. 35 

Key Words: travel demand modeling, connected and autonomous vehicles, shared autonomous 36 
vehicles, travel behavior 37 

38 

INTRODUCTION 39 
Advanced transportation technologies, including connected vehicles (CVs), automated vehicles 40 
(AVs), and connected autonomous vehicles (CAVs), are undergoing development at an 41 
incredible speed. CAVs, which incorporate the advantages of CVs and AVs, have the potential to 42 
revolutionize the existing transportation system. One of the most significant benefits CAVs offer 43 
is a more pleasant travel experience for drivers, effectively reducing their value of travel time 44 

mailto:yong.zhao@jacobs.com
mailto:kkockelm@mail.utexas.edu
sas6348
Typewritten Text

sas6348
Typewritten Text

sas6348
Typewritten Text

sas6348
Typewritten Text

maizyjeong
Highlight

maizyjeong
Highlight



2 

(VOTT). VOTT is defined as an individual’s willingness to pay to avoid another hour of travel. 1 
If an individual is able to both reduce stress and increase productivity while traveling, by 2 
becoming a passenger, rather than being forced to maintain focus on driving, his/her VOTT falls.  3 
This makes CAVs relatively attractive for current drivers, if not for current passengers. 4 
Moreover, many believe CAVs will eventually increase lane and roadway capacity by reacting 5 
faster to changes in preceding vehicles’ speeds and positions (via dedicated short-ranage 6 
communications (DSRC), cameras, light-detecting and radio-detecting and ranging devices). 7 
Technical competence and rising confidence in CAV response times can lead to shorter 8 
following distances and headways between vehicles. Parking costs for CAVs may also fall, since 9 
AVs may be able to drop off their passengers and seek lower-cost parking elsewhere, or 10 
otherwise serve someone else’s trip-making needs (as in the case of shared autonomous vehicles 11 
[SAVs] or a privately-owned CAV that is sent to another household member, for his/her trip). 12 

SAVs are self-driving taxis, and so carry no driver costs. They can be “shared” as a rental fleet, 13 
and are likely to be quite cost competitive (as shown in Fagnant and Kockelman [2015], Chen et 14 
al. [2016], and Chen and Kockelman [2016]). Like taxis and buses, SAVs are a form of public 15 
transportation, and may be operated by public transit operators, such as a regional transit 16 
authority (e.g., CapMetro in Austin, TX), or private entities, like Lyft and Uber. Although SAV 17 
use may be more costly than buses, they can provide on-demand, door-to-door, and lower-18 
occupant services. SAV users will benefit from more flexible schedules and pickup/dropoff 19 
locations, shorter waiting times, privacy, and possibly greater comfort.  20 

This paper uses regional travel demand models to evaluate the system benefit brought by CAVs 21 
and SAVs. Travel demand models currently in use by most MPOs, DOTs, and their consultants 22 
are not set up to investigate the potential traffic impacts of CAVs and SAVs, though such 23 
vehicles are expected to be quite common over the next 20 to 30 years (Gulipalli and Kockelman 24 
2015). Long-range city, regional, state, and national transportation planning activities should 25 
work to reflect the tremendous technological changes expected in the transportation sector, via 26 
self-driving vehicles (shared and private, passenger and freight, short-distance and long-27 
distance). To this end, this study investigated how to best modify an existing, trip-based travel 28 
demand model in use in Texas, for the Austin region, to illustrate how MPOs and DOTs can start 29 
to account for CAVs’ travel demand and traffic impacts. Such behavioral changes also affect 30 
emissions and air quality, crash counts, noise levels, goods delivery and product prices. Given 31 
the uncertainty surrounding CAVs’ effects on behavior and travel costs, multiple model 32 
scenarios were developed to illuminate a range of possible transportation system futures for the 33 
Austin region. These scenarios vary the VOTTs, parking costs, headways, and other important 34 
travel choice factors. While these are initial rough estimates, they are still useful for 35 
transportation and urban system planners and decision-makers, when charting a course for future 36 
investments and policies. The methods applied should also prove useful to travel demand 37 
modelers and planners. 38 

The following section discusses existing literature on the travel demand effects of AVs, CVs, 39 
CAVs, and SAVs, and several proposed frameworks to anticipate their transportation system 40 
impacts. Subsequent sections include key modeling assumptions (e.g., preference for using 41 
CAVs and SAVs due to the reduction of travel time disutility) and methods (e.g., modification of 42 
the existing models to consider the impacts of CAVs and SAVs) used here. This memorandum 43 
then presents around 30 model scenarios to forecast the traffic impacts of CAVs and SAVs on 44 
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Austin’s year 2020 networks, under different assumption scenarios. The memo concludes with 1 
recommendations and suggestions for modeling extensions. 2 

 3 

LITERATURE REVIEW 4 
With the advent of CAVs, researchers and planners are investigating their potential travel-5 
demand and traffic impacts, using existing travel demand modeling methods, including trip-6 
based models and activity-based models. Spieser et al. (2014) specified a new transportation 7 
system for Singapore by replacing all modes of personal transportation with a fleet of SAVs. 8 
Their results suggest that the new system can meet personal travel needs while reducing the 9 
number of passenger vehicles currently in operation by about 67 percent. Researchers at the 10 
International Transport Forum (ITF 2015) examined the potential traffic impacts of widespread 11 
use of an SAV fleet in Lisbon, Portugal, a mid-sized European city. They explored the 12 
implementation of what they call “TaxiBot” (an AV shared by multiple passengers 13 
simultaneously, or a mini-bus SAV with ride-sharing) and AutoVot (an SAV that can pick up 14 
and drop off individual travel parties or passengers sequentially). Their findings suggest that 15 
such services can meet travelers’ needs while reducing private vehicle ownership by 80 percent, 16 
although VMT also rose. The reduced parking needs as a result of this SAV fleet implementation 17 
would free up significant public and private space. 18 

Childress et al. (2015) examined CAVs’ potential outcomes by using the Seattle region’s (PSRC 19 
MPO’s) activity-based model. CAVs were assumed to follow more tightly, thus increasing 20 
roadway capacity, but also cost more, and so increase operating costs. They reduced VOTT and 21 
parking costs for those choosing the CAV mode. Their scenario results indicated that 22 
improvements in roadway capacity and travel utilities will result in noticeable increases in VMT 23 
and VHT, although higher ownership and operating costs for CAVs and SAVs, respectively, 24 
somewhat counteract such trends.  25 

Kim et al. (2015) analyzed the availability of AVs across the Atlanta, Georgia region, using the 26 
MPO’s (ARC’s) existing activity-based model. They assumed increases in roadway capacity, 27 
lower VOTT, lower parking costs, and 100-percent market penetration of the new technology (so 28 
no conventional vehicles in the mix). Their findings suggested that Atlanta travelers will make 29 
longer trips, on average, relative to the status quo or business as usual scenario (without CAV 30 
technology), due to a reduction in VOTT, resulting in increases in both VMT and VHT. 31 
However, their models predicted that annual delay per person would fall, due to higher speed 32 
travel across the network. Fagnant et al. (2015) anticipated the traffic impacts of SAVs for 33 
Austin’s 12 mi x 24 mi core using the real network, and microsimulations of travelers and 34 
vehicles; but used fixed travel times (as used in all other micro-simulations for SAV fleets). 35 
Their results suggested that one SAV can replace about 8 conventional vehicles with low wait 36 
times, on average, and while meeting current passenger-travel demands across that 288 sq mi 37 
region. Chen et al. (2016) and Chen and Kockelman (2016) micro-simulated a much larger (100 38 
mi x 100 mi) region, with a gridded network (and fixed travel times). In some model 39 
applications, they allowed for non-SAV mode choices and used the Austin region’s trip tables; 40 
they estimated strong mode splits for the SAV choice and vehicle replacement rates of about 7 to 41 
1, even though there were many long-distance trips to serve in their simulations. Their battery-42 
only electric vehicle simulations of these settings suggest lower replacement rates, due to long 43 
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charge times and longer travel to reach a network of charging stations (vs. gasoline vehicle 1 
refueling times and gas-station locations) 2 

Many aspects of the travel choice and traffic impacts remain to be examined. Most travel models 3 
track trip-makers, not vehicles. They are aggregate in space (with traffic analysis zones) and in 4 
time (with multi-hour times of day) and do not allow empty-vehicle driving, shared vehicles, or 5 
dynamic (real-time) ride-sharing. They are not designed to anticipate CAVs’ impacts. 6 
Additionally, many modelers are already assuming that capacities rise notably, but such changes 7 
can only be obtained after manufacturers feel confident using their vehicles with tight headways, 8 
and passengers and traffic managers are comfortable with such operations. This work takes a 9 
traditional trip-based “four-step” model for the Austin region, and changes many key parameters 10 
and sub-model specifications to introduce new modes (private CAVs and shared AVs), with and 11 
without capacity changes, to get an initial sense of how travelers and network conditions may 12 
respond. Road pricing is also tested, to get a sense of how flexible the behavioral models are in 13 
response to such travel demand management techniques. 14 

CASE STUDY 15 
A case study of Austin, TX is presented here, with the travel demand model data from the 16 
Capital Area Metropolitan Planning Organization (CAMPO). The original CAMPO model is not 17 
designed to study the CAVs so the modeling process has been modified. Specifically the trip 18 
distribution step’s gravity model has been replaced with a destination choice model to 19 
accommodate the redistribution of the trips after introducing the CAVs and SAVs. The model 20 
was implemented in TransCAD and its details are described as follows.  21 

TAZs and Network 22 
The CAMPO travel demand model covers the greater Austin area’s 6 counties, with 2,258 traffic 23 
analysis zones (TAZs). Figure 1 illustrates this zoning structure. The highway network contains 24 
21,738 links and 14,634 nodes.  25 
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 1 
FIGURE 1 TAZ system for CAMPO region. 2 

(Source: CAMPO 2015) 3 

 4 
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 1 
FIGURE 2 CAMPO model network.  2 

 3 
Trip Generation 4 

The CAMPO model uses a cross-classification model for generation of 13 trip types/purposes, 5 
using household size and income as the classification variables. Trip attractions are based on a 6 
cross-classification of demographic and employment data by area type. All trips are balanced to 7 
production except the higher education trips (mainly University of Texas trips) are balanced to 8 
attractions. Since this step is not sensitive to travel times and costs, total trip productions and 9 
attractions, by TAZ, were assumed fixed in this study.  10 

Trip Distribution 11 
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The CAMPO model uses a gravity model for trip distribution. The impedance variable in this 1 
model is based on the highway’s congested travel time, which does not reflect other modes’ 2 
travel characteristics. Therefore, this study replaced the gravity model with a multinomial logit 3 
(MNL) model for destination choice, using Table 1’s parameter values and where the logsum is a 4 
measure of overall access across available modes, from any specific origin to any specific 5 
destination TAZ. The parameters of this logsum come from Table 2’s mode choice parameters, 6 
interacted with travel time and travel costs for each mode, between each OD pair. Please note 7 
that using the destination choice model only constrains on the production side. 8 

 9 

Table 1 Destination Choice Model Parameters 10 

Variable Parameter  

Zonal Average Parking Cost -0.0166 

Logsum 0.855 

 11 

Mode Choice Model 12 

Instead of using CAMPO’s rather complex and nested MNL model for 20+ mode combinations 13 
(e.g., kiss-and-ride or walk or bike to a transit stop), a simplified model of mode choice is used 14 
here. Figure 3’s MNL model of four competing alternatives (Auto, CAV, SAV and BUS) 15 
provides greater transparency in the model application process. Parameter assumptions come 16 
from a combination of the CAMPO model (CAMPO 2015) and NCHRP Report 716 (Cambridge 17 
Systematics et al. 2012).  18 

 19 
FIGURE 3 Mode choice model structure  20 

 21 
The model specification is shown in Table 2. Note that the time and cost coefficients of each 22 
mode also suggested a value of time. 23 

 24 

Table 2 Multinomial Logit Model Parameters in the Scenarios 25 

Variables Auto CAV SAV Bus 

Constant  -0.05 -0.2 -2.8 

In-vehicle Time -0.019 -0.095 -0.095 -0.019 

Operating costs -0.072 -0.072 -0.072 -0.14 
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Implied VOTT ($/hr) $15.83 $7.92 $7.92 $8.14 

 1 
Time-of-Day Model 2 

The daily trip tables from previous steps were disaggregated into four time periods, as defined in 3 
Table 3. To create the time period trip table, the daily trip table was first disaggregated in to 4 
hourly table based on hourly traffic data. Then the hourly trip tables were summarized into the 5 
four time periods. The final assignments use only the AM peak trip tables.  6 

 7 

Table 2 CAMPO Model Time of Day Periods Definition 8 

Period Hours 

AM Peak (AM) 6:00 am to 9:00 am (3 Hours) 

Mid-Day (MD) 9:00 am to 3:30 pm (6.5 hours) 

PM Peak (PM) 3:30 pm to 6:30 pm (3 hours) 

Night (NT) 6:30 pm to 6:00 am (11.5 hours) 

 9 

Traffic Assignment 10 

Finally, a multi-modal multi-class traffic assignment was carried out for the region’s four modes: 11 
traditional automobile, CAV, SAV, and commercial trucks. The transit buses were preloaded 12 
onto the network since they are rather fixed based on routes and schedule.  13 

Travel Cost Feedback 14 

Feedback of congested travel time information was used here, in the trip distribution step, over 15 
10 iterations per scenario. This is consistent with the current CAMPO feedback settings, and 16 
typically reaches reasonable relative gaps. 17 

Sensitivity Test Results  18 
Economists and others are likely to argue that the most significant advantage of electing to ride 19 
in CAVs and SAVs is the reduction in the perceived travel-time burden (at least for former 20 
drivers). While en route, those who previously drove can instead perform other activities (like 21 
working, resting, making phone calls, and interacting very directly with other vehicle occupants), 22 
thus decreasing the perceived disutility of their travel time. This situation provides reduction in 23 
the effective VOTT, which is the willingness to pay to save on one’s travel time (Litman, 2014).  24 

Here, a pre-technology base-case scenario offers trip-makers only two modes: automobile and 25 
bus. The other 7 scenarios offer CAVs as privately owned vehicle options (at relatively high 26 
monetary cost, but lowered perceived travel time burden) and SAVs as shared AV options (at 27 
relatively competitive monetary cost and lowered travel time burden). CAVs’ and SAVs’ VOTT 28 
parameters were set to be 25%, 50%, and 75% of those for conventional vehicles, as shown in 29 
Table 2. In reality, many conventional vehicle users are occupants, rather than drivers, so they 30 
probably will not experience any benefits of reduced travel burden, from being in an AV. 31 
However, they may ultimately perceive that AVs offer a safer ride, and/or a more enjoyable ride, 32 
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where they can interact more naturally with whoever was previously driving; those kinds of 1 
perceived benefits can also bring down the VOTT.  2 

Parking costs can also be lowered by the arrival of CAVs and SAVs. Users can send their CAVs 3 
to lower-cost parking lots, although this practice will generate extra VMT. SAVs generally will 4 
not be required to park in space-constrained locations (but can use local on-street and off-street 5 
parking areas, for temporary storage, as needed). SAVs can relocate to serve other customers, or 6 
find low-cost storage locations when demand is low. Therefore, the parking costs of SAVs are 7 
set here to zero, for their users (though fleet operators may have storage costs, and this can be 8 
wrapped into the per-mile or per-trip prices incurred by users), and CAV parking costs are 9 
assumed to be 100%, 50%, and 0% of conventional vehicles’ parking costs, since it is not known 10 
whether privately-held CAVs will be allowed to travel empty to find low-cost parking.  11 

In terms of operating costs, the American Automobile Association (AAA 2015) estimates the full 12 
cost of conventional vehicle ownership and operation to be about $0.60/mile, recognizing 13 
depreciation, insurance, maintenance, and operations and assuming 15,000 vehicle-miles per 14 
year in travel. Since CAVs will cost more, their full ownership and operating costs are generally 15 
assumed to be $1.00/mile here. Similarly, SAVs’ operation costs are assumed to be $1.50/mile 16 
under most scenarios. The results of different combinations of CAV and SAV operation costs 17 
were simulated here, as listed in Table 4.    18 

 19 

Table 4 Scenario assumptions on key parameters (relative to base-case/no-AV scenario) 20 

Scenario 

VOTTs of those 

in CAVs & SAVs, 

as a % of current 

VOTT
 

Parking costs of 

CAVs, as % of 

conventional 

parking costs
 

CAV operating 

costs ($/mile) 

SAV operating 

costs ($/mile) 

1 50% 100% 1 1.5 

2 25% 100% 1 1.5 

3 75% 100% 1 1.5 

4 50% 50% 1 1.5 

5 50% 0% 1 1.5 

6 50% 100% 1 1 

7 50% 100% 1.5 1.5 

   21 

Model Results 22 

Table 5 presents regional VMT forecasts across different vehicle types, including automobiles 23 
(i.e., conventional vehicles), CAVs and SAVs. Truck and bus traffic remain separate from the 24 
above modes and so are excluded from the table.  25 

In comparing this base case scenario’s results, where only auto and bus modes are available to 26 
travelers, to all other scenarios, with CAV and SAV alternatives, results in over 20% more 27 
vehicle-miles traveled (VMT), during the AM peak.  28 
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Table 3 Regional VMT forecasts during AM peak period 1 

Scenario 

Parameter value assumptions  VMT per day 

% 
Base 
Case 

% Change relative to 
Scenario 1 values 

VOTTs of 
CAVs & 

SAVs 
(as %of 
Auto) 

Parking 
costs of 
CAVs 

as % of 
Auto 

Operating 
costs of 
CAVs 

($/mile) 

Operating 
costs of 
SAVs 

($/mile) 

Auto CAV SAV Auto CAV SAV 

Base         5,823,350 
mi - - 

 
   

1 50% 100% $1/mi $1.5/mi 1,562,157 3,926,846 1,820,202 126%    
2 25% 100% 1 1.5 803,487 5,116,016 2,298,955 141% 51.4% 130.3% 126.3% 
3 75% 100% 1 1.5 2,212,197 3,149,242 1,488,724 118% 141.6% 80.2% 81.8% 
4 50% 50% 1 1.5 1,561,185 3,931,598 1,817,080 126% 99.9% 100.1% 99.8% 
5 50% 0% 1 1.5 1,560,335 3,937,089 1,814,158 126% 99.9% 100.3% 99.7% 
6 50% 100% 1 1 1,478,870 3,805,329 2,181,801 128% 94.7% 96.9% 119.9% 
7 50% 100% 1.5 1.5 1,751,416 3,660,881 2,099,617 129% 112.1% 93.2% 115.4% 

The implementation of CAVs and SAVs is predicted to move car-owners from conventional 2 
vehicles to AVs, assuming they would enjoy the in-vehicle time and reduce their VOTTs. 3 
Scenario 2 suggests that if the VOTTs of AVs are reduced to 25% of autos, about 50% additional 4 
auto traffic will shift to AVs, compared to Scenario 1 where VOTTs of AVs are 50% of autos. 5 
On the other hand, if the VOTTs of AVs are 75% of autos, as shown in Scenario 3, auto traffic 6 
will obtain about 40% from AVs. These tests suggest that how people evaluate their in-vehicle 7 
travel time in the AVs is the key for the shifts between autos and AVs. That is, the comfort, 8 
convenience, and safety of the AVs are important to travelers to spend even more time on the 9 
AVs.  10 

Parking costs appear to be a good traffic management tool to control AVs, assuming that CAVs 11 
can find lower-cost parking lots away from their destinations and that SAVs will not need any 12 
paid parking. Scenarios 4 and 5 assume parking costs of CAVs will be half that of conventional 13 
vehicles autos, and potentially even free, resulting in a marginal increase on CAV VMTs. 14 
However, since parking is only not free in downtown areas in most cities in Texas (and the U.S.), 15 
it is necessary to take a close look at Austin’s CBD parking costs, as shown in Figure 4. This 16 
downtown area’s model results for Scenarios 1, 4, and 5 are shown in Table 6. When CAVs’ 17 
parking costs are assumed to be half the cost of storing regular automobiles (due to self-parking 18 
in lower-cost locations, away from the actual destination), the model predicts a roughly 4% 19 
increase in CAVs’ VMT or use; and, when CAV parking carries zero cost, the increase is about 20 
8%, versus the scenerious where CAV parking costs equal those of conventional automobiles. Of 21 
course, CAV self-parking does carry other costs, that are not simulated here: driving to a new 22 
location, to park at low or zero cost, carries operating costs, as well as added system VMT that is 23 
neglected here. Unfortunately, conventional models of travel demand are not designed to 24 
accommodate self-driving or shared vehicles: essentially, vehicles become travelers in their own 25 
right. Shared vehicles also pick new destinations and routes in a very dynamic way, so agent-26 
based simulation (as done in Fagnant et al. 2015, Chen et al. 2016, Loeb et al. 2016, Liu et al. 27 
2016, and other papers) is the best way to reflect such settings, but is much more 28 
computationally intensive than various approximate modifications to existing software packages, 29 
like TransCAD.  30 
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 1 
FIGURE 4 Map of downtown Austin with AM period parking costs 2 

 3 

TABLE 6 Downtown Austin VMT during AM Peak Period 4 

Scenario 
Downtown Austin VMT % Change, relative to Scenario 1 

Auto CAV SAV Auto CAV SAV 

1 22,288 71,850 46,525 N/A N/A N/A 

4 21,532 74,751 44,451 96.6% 104.0% 95.5% 

5 20,736 77,596 42,304 93.0% 108.0% 90.9% 

Finally, AVs’ assumed operating costs play an important role in travelers’ choices, as shownin 5 
Table 6. For example, when SAVs’ operating costs (as perceived by the users) fall to that of 6 
CAVs (about $1/mile, which is still higher than a standard automobile’s assumed $0.6/mile), 7 
VMT levels by SAV are predicted to rise 20%, relative to the $1.5-per-SAV-mile scenario. 8 
However, if CAVs’ operating costs are increased from $1/mile to $1.5/mile (reaching SAVs’ 9 
same cost level), CAV VMT values are predicted to fall about 7%.   10 

CONCLUSIONS AND FUTURE WORK 11 
This study illustrates potential traffic impacts of CAVs and SAVs on regional metropolitan areas, 12 
using a case study of Austin, Texas and the regional travel demand model.  The model results 13 
suggest that with reduced VOTTs, operating costs, and parking costs, more travelers will choose 14 
AVs over the conventional vehicles and buses, resulting in more than a 20% rise in VMT around 15 
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the region, with associated congestion delays. The sensitivity analysis of the different 1 
assumptions of VOTT, operating costs, and parking costs indicated significant impacts arising 2 
from the use of AVs and SAVs.  3 

If people want to embrace advanced transportation technologies without increasing current 4 
traffic congestion, dynamic ride-sharing would be a feasible alternative for the local DOT. The 5 
exact impacts of dynamic ride-sharing, however, are difficult to investigate in the regional travel 6 
demand model, particularly based on the trip-based model. The traditional travel demand model 7 
also cannot directly model the travel of AVs when there are no passengers in the vehicles, such 8 
as when CAVs look for parking lots and SAVs drive emptily.  9 

More advanced travel demand modeling, such as activity-based and agent-based modeling, 10 
should be developed. For future work, the research team recommends adding a vehicle 11 
ownership model to the travel demand model to evaluate the impacts of CAVs and SAVs. 12 
Creating and analyzing more scenarios will help us understand how CAVs and SAVs will 13 
increase the network burden and bring heavier traffic congestion. The activity-based model has 14 
other benefits, such as a disaggregate level of travel behavior, compared with the trip-based 15 
model. Further exploration of the activity-based model would present another interesting aspect 16 
for future work. Toll policy may play a role in controlling the total VMT and VHT, which, in 17 
turn, may reduce traffic congestion. Increasing operating costs may also make carpooling a more 18 
attractive alternative for travelers who want to minimize their travel costs. 19 
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