1	ANTICIPATING THE REGIONAL IMPACTS OF CONNECTED AND AUTOMATED
2	VEHICLE TRAVEL IN AUSTIN, TEXAS
3	
4	Yong Zhao
5	Senior Transportation Planner
6	Jacobs Engineering Group
7	2705 Bee Cave Rd, Suite 300
8	Austin, TX 78746
9	yong.zhao@jacobs.com
10	
11	Kara M. Kockelman
12	(Corresponding author)
13	Professor and William J. Murray Jr. Fellow
14	Department of Civil, Architectural and Environmental
15	Engineering The University of Texas at Austin
16	kkockelm@mail.utexas.edu
17	Phone: 512-471-0210
18	Published in the Journal of Urban Planning & Development 144

(4) (2018)

21 ABSTRACT

22 Automated vehicles are undergoing development at an incredible speed and have potential to 23 revolutionize the existing transportation system. The paper investigates the impacts of connected 24 automated vehicles (CAVs) and shared automated vehicles (SAVs) using a conventional travel 25 demand model for the Austin, Texas region. A series of eight test scenarios on the year 2020 26 setting suggests that the introduction of CAVs and SAVs will add 20 percent or more demand for 27 new vehicle-miles traveled (VMT) to the 6-county region's roadway network. Relatively low 28 values of travel time for passengers of automated vehicles and relatively competitive pricing 29 assumptions of SAV use result in greater demand for longer distance travel and less transit 30 system use. Empty-vehicle travel for self-parking and SAVs will add even further to the 31 network's VMT, presumably increasing roadway congestion further, unless rides can be shared, 32 traffic flows can be smoothed, and inter-vehicle headways tightened. The scenario simulations 33 are sensitive to parking cost and vehicle operating cost assumptions. Policy makers, 34 transportation planners, systems operators and designers may do well to simulate additional 35 scenarios.

- Key Words: travel demand modeling, connected and autonomous vehicles, shared autonomous
 vehicles, travel behavior
- 38

39 **INTRODUCTION**

40 Advanced transportation technologies, including connected vehicles (CVs), automated vehicles

41 (AVs), and connected autonomous vehicles (CAVs), are undergoing development at an

42 incredible speed. CAVs, which incorporate the advantages of CVs and AVs, have the potential to

- 43 revolutionize the existing transportation system. One of the most significant benefits CAVs offer
- 44 is a more pleasant travel experience for drivers, effectively reducing their value of travel time

1 (VOTT). VOTT is defined as an individual's willingness to pay to avoid another hour of travel. 2 If an individual is able to both reduce stress and increase productivity while traveling, by 3 becoming a passenger, rather than being forced to maintain focus on driving, his/her VOTT falls. 4 This makes CAVs relatively attractive for current drivers, if not for current passengers. 5 Moreover, many believe CAVs will eventually increase lane and roadway capacity by reacting faster to changes in preceding vehicles' speeds and positions (via dedicated short-ranage 6 7 communications (DSRC), cameras, light-detecting and radio-detecting and ranging devices). 8 Technical competence and rising confidence in CAV response times can lead to shorter 9 following distances and headways between vehicles. Parking costs for CAVs may also fall, since 10 AVs may be able to drop off their passengers and seek lower-cost parking elsewhere, or otherwise serve someone else's trip-making needs (as in the case of shared autonomous vehicles 11 12 [SAVs] or a privately-owned CAV that is sent to another household member, for his/her trip).

13 SAVs are self-driving taxis, and so carry no driver costs. They can be "shared" as a rental fleet, and are likely to be quite cost competitive (as shown in Fagnant and Kockelman [2015], Chen et 14 al. [2016], and Chen and Kockelman [2016]). Like taxis and buses, SAVs are a form of public 15 transportation, and may be operated by public transit operators, such as a regional transit 16 17 authority (e.g., CapMetro in Austin, TX), or private entities, like Lyft and Uber. Although SAV 18 use may be more costly than buses, they can provide on-demand, door-to-door, and loweroccupant services. SAV users will benefit from more flexible schedules and pickup/dropoff 19 20 locations, shorter waiting times, privacy, and possibly greater comfort.

21 This paper uses regional travel demand models to evaluate the system benefit brought by CAVs and SAVs. Travel demand models currently in use by most MPOs, DOTs, and their consultants 22 23 are not set up to investigate the potential traffic impacts of CAVs and SAVs, though such 24 vehicles are expected to be quite common over the next 20 to 30 years (Gulipalli and Kockelman 25 2015). Long-range city, regional, state, and national transportation planning activities should 26 work to reflect the tremendous technological changes expected in the transportation sector, via 27 self-driving vehicles (shared and private, passenger and freight, short-distance and longdistance). To this end, this study investigated how to best modify an existing, trip-based travel 28 29 demand model in use in Texas, for the Austin region, to illustrate how MPOs and DOTs can start to account for CAVs' travel demand and traffic impacts. Such behavioral changes also affect 30 31 emissions and air quality, crash counts, noise levels, goods delivery and product prices. Given 32 the uncertainty surrounding CAVs' effects on behavior and travel costs, multiple model 33 scenarios were developed to illuminate a range of possible transportation system futures for the Austin region. These scenarios vary the VOTTs, parking costs, headways, and other important 34 travel choice factors. While these are initial rough estimates, they are still useful for 35 36 transportation and urban system planners and decision-makers, when charting a course for future 37 investments and policies. The methods applied should also prove useful to travel demand 38 modelers and planners.

The following section discusses existing literature on the travel demand effects of AVs, CVs, CAVs, and SAVs, and several proposed frameworks to anticipate their transportation system impacts. Subsequent sections include key modeling assumptions (e.g., preference for using CAVs and SAVs due to the reduction of travel time disutility) and methods (e.g., modification of the existing models to consider the impacts of CAVs and SAVs) used here. This memorandum then presents around 30 model scenarios to forecast the traffic impacts of CAVs and SAVs on 1 Austin's year 2020 networks, under different assumption scenarios. The memo concludes with

- 2 recommendations and suggestions for modeling extensions.
- 3

4 **LITERATURE REVIEW**

5 With the advent of CAVs, researchers and planners are investigating their potential travel-6 demand and traffic impacts, using existing travel demand modeling methods, including trip-7 based models and activity-based models. Spieser et al. (2014) specified a new transportation 8 system for Singapore by replacing all modes of personal transportation with a fleet of SAVs. 9 Their results suggest that the new system can meet personal travel needs while reducing the 10 number of passenger vehicles currently in operation by about 67 percent. Researchers at the International Transport Forum (ITF 2015) examined the potential traffic impacts of widespread 11 12 use of an SAV fleet in Lisbon, Portugal, a mid-sized European city. They explored the implementation of what they call "TaxiBot" (an AV shared by multiple passengers 13 14 simultaneously, or a mini-bus SAV with ride-sharing) and AutoVot (an SAV that can pick up 15 and drop off individual travel parties or passengers sequentially). Their findings suggest that such services can meet travelers' needs while reducing private vehicle ownership by 80 percent, 16 17 although VMT also rose. The reduced parking needs as a result of this SAV fleet implementation 18 would free up significant public and private space.

19 Childress et al. (2015) examined CAVs' potential outcomes by using the Seattle region's (PSRC 20 MPO's) activity-based model. CAVs were assumed to follow more tightly, thus increasing 21 roadway capacity, but also cost more, and so increase operating costs. They reduced VOTT and 22 parking costs for those choosing the CAV mode. Their scenario results indicated that 23 improvements in roadway capacity and travel utilities will result in noticeable increases in VMT 24 and VHT, although higher ownership and operating costs for CAVs and SAVs, respectively, 25 somewhat counteract such trends.

26 Kim et al. (2015) analyzed the availability of AVs across the Atlanta, Georgia region, using the 27 MPO's (ARC's) existing activity-based model. They assumed increases in roadway capacity, 28 lower VOTT, lower parking costs, and 100-percent market penetration of the new technology (so 29 no conventional vehicles in the mix). Their findings suggested that Atlanta travelers will make 30 longer trips, on average, relative to the status quo or business as usual scenario (without CAV 31 technology), due to a reduction in VOTT, resulting in increases in both VMT and VHT. However, their models predicted that annual delay per person would fall, due to higher speed 32 33 travel across the network. Fagnant et al. (2015) anticipated the traffic impacts of SAVs for 34 Austin's 12 mi x 24 mi core using the real network, and microsimulations of travelers and 35 vehicles; but used fixed travel times (as used in all other micro-simulations for SAV fleets). 36 Their results suggested that one SAV can replace about 8 conventional vehicles with low wait 37 times, on average, and while meeting current passenger-travel demands across that 288 sq mi 38 region. Chen et al. (2016) and Chen and Kockelman (2016) micro-simulated a much larger (100 39 mi x 100 mi) region, with a gridded network (and fixed travel times). In some model 40 applications, they allowed for non-SAV mode choices and used the Austin region's trip tables; they estimated strong mode splits for the SAV choice and vehicle replacement rates of about 7 to 41 1, even though there were many long-distance trips to serve in their simulations. Their battery-42 only electric vehicle simulations of these settings suggest lower replacement rates, due to long 43

1 charge times and longer travel to reach a network of charging stations (vs. gasoline vehicle 2 refueling times and gas-station locations)

3 Many aspects of the travel choice and traffic impacts remain to be examined. Most travel models 4 track trip-makers, not vehicles. They are aggregate in space (with traffic analysis zones) and in 5 time (with multi-hour times of day) and do not allow empty-vehicle driving, shared vehicles, or dynamic (real-time) ride-sharing. They are not designed to anticipate CAVs' impacts. 6 7 Additionally, many modelers are already assuming that capacities rise notably, but such changes 8 can only be obtained after manufacturers feel confident using their vehicles with tight headways, 9 and passengers and traffic managers are comfortable with such operations. This work takes a 10 traditional trip-based "four-step" model for the Austin region, and changes many key parameters 11 and sub-model specifications to introduce new modes (private CAVs and shared AVs), with and 12 without capacity changes, to get an initial sense of how travelers and network conditions may 13 respond. Road pricing is also tested, to get a sense of how flexible the behavioral models are in 14 response to such travel demand management techniques.

15 CASE STUDY

16 A case study of Austin, TX is presented here, with the travel demand model data from the

17 Capital Area Metropolitan Planning Organization (CAMPO). The original CAMPO model is not

18 designed to study the CAVs so the modeling process has been modified. Specifically the trip

19 distribution step's gravity model has been replaced with a destination choice model to 20 accommodate the redistribution of the trips after introducing the CAVs and SAVs. The model

20 accommodate the redistribution of the trips after introducing the CAVs and SAV 21 was implemented in TransCAD and its details are described as follows.

22 **TAZs and Network**

23 The CAMPO travel demand model covers the greater Austin area's 6 counties, with 2,258 traffic

24 analysis zones (TAZs). Figure 1 illustrates this zoning structure. The highway network contains

25 21,738 links and 14,634 nodes.

1 2 3

4

Trip Generation

5 The CAMPO model uses a cross-classification model for generation of 13 trip types/purposes, 6 using household size and income as the classification variables. Trip attractions are based on a 7 cross-classification of demographic and employment data by area type. All trips are balanced to 8 production except the higher education trips (mainly University of Texas trips) are balanced to 9 attractions. Since this step is not sensitive to travel times and costs, total trip productions and 10 attractions, by TAZ, were assumed fixed in this study.

11 *Trip Distribution*

1 The CAMPO model uses a gravity model for trip distribution. The impedance variable in this 2 model is based on the highway's congested travel time, which does not reflect other modes' 3 travel characteristics. Therefore, this study replaced the gravity model with a multinomial logit 4 (MNL) model for destination choice, using Table 1's parameter values and where the logsum is a 5 measure of overall access across available modes, from any specific origin to any specific 6 destination TAZ. The parameters of this logsum come from Table 2's mode choice parameters, 7 interacted with travel time and travel costs for each mode, between each OD pair. Please note 8 that using the destination choice model only constrains on the production side.

9

10

Table 1 Destination Choice Model Parameters

Variable	Parameter
Zonal Average Parking Cost	-0.0166
Logsum	0.855

11

12 Mode Choice Model

Instead of using CAMPO's rather complex and nested MNL model for 20+ mode combinations (e.g., kiss-and-ride or walk or bike to a transit stop), a simplified model of mode choice is used here. Figure 3's MNL model of four competing alternatives (Auto, CAV, SAV and BUS) provides greater transparency in the model application process. Parameter assumptions come from a combination of the CAMPO model (CAMPO 2015) and NCHRP Report 716 (Cambridge Surtemation et al. 2012)

18 Systematics et al. 2012).

19

20

FIGURE 3 Mode choice model structure

21

22 The model specification is shown in Table 2. Note that the time and cost coefficients of each

23 mode also suggested a value of time.

24

25

Table 2 Multinomial Logit Model Parameters in the Scenarios

Variables	Auto	CAV	SAV	Bus
Constant		-0.05	-0.2	-2.8
In-vehicle Time	-0.019	-0.095	-0.095	-0.019
Operating costs	-0.072	-0.072	-0.072	-0.14

Implied VOTT (\$/hr)	\$15.83	\$7.92	\$7.92	\$8.14
----------------------	---------	--------	--------	--------

1

2 *Time-of-Day Model*

The daily trip tables from previous steps were disaggregated into four time periods, as defined in Table 3. To create the time period trip table, the daily trip table was first disaggregated in to hourly table based on hourly traffic data. Then the hourly trip tables were summarized into the four time periods. The final assignments use only the AM peak trip tables.

7

8

Table 2 CAMPO Model Time of Day Periods Definition

Period	Hours
AM Peak (AM)	6:00 am to 9:00 am (3 Hours)
Mid-Day (MD)	9:00 am to 3:30 pm (6.5 hours)
PM Peak (PM)	3:30 pm to 6:30 pm (3 hours)
Night (NT)	6:30 pm to 6:00 am (11.5 hours)

9

10 Traffic Assignment

11 Finally, a multi-modal multi-class traffic assignment was carried out for the region's four modes:

12 traditional automobile, CAV, SAV, and commercial trucks. The transit buses were preloaded

13 onto the network since they are rather fixed based on routes and schedule.

14 Travel Cost Feedback

15 Feedback of congested travel time information was used here, in the trip distribution step, over

16 10 iterations per scenario. This is consistent with the current CAMPO feedback settings, and

17 typically reaches reasonable relative gaps.

18 Sensitivity Test Results

19 Economists and others are likely to argue that the most significant advantage of electing to ride 20 in CAVs and SAVs is the reduction in the perceived travel-time burden (at least for former

21 drivers). While en route, those who previously drove can instead perform other activities (like

working, resting, making phone calls, and interacting very directly with other vehicle occupants),

22 working, resting, making phone cans, and interacting very directly with other vehicle occupants), 23 thus decreasing the perceived disutility of their travel time. This situation provides reduction in

the effective VOTT, which is the willingness to pay to save on one's travel time (Litman, 2014).

Here, a pre-technology base-case scenario offers trip-makers only two modes: automobile and
bus. The other 7 scenarios offer CAVs as privately owned vehicle options (at relatively high

27 monetary cost, but lowered perceived travel time burden) and SAVs as shared AV options (at

relatively competitive monetary cost and lowered travel time burden). CAVs' and SAVs' VOTT

29 parameters were set to be 25%, 50%, and 75% of those for conventional vehicles, as shown in

30 Table 2. In reality, many conventional vehicle users are occupants, rather than drivers, so they

31 probably will not experience any benefits of reduced travel burden, from being in an AV. 32 However, they may ultimately perceive that AVs offer a safer ride, and/or a more enjoyable ride, where they can interact more naturally with whoever was previously driving; those kinds of
 perceived benefits can also bring down the VOTT.

3 Parking costs can also be lowered by the arrival of CAVs and SAVs. Users can send their CAVs 4 to lower-cost parking lots, although this practice will generate extra VMT. SAVs generally will 5 not be required to park in space-constrained locations (but can use local on-street and off-street 6 parking areas, for temporary storage, as needed). SAVs can relocate to serve other customers, or 7 find low-cost storage locations when demand is low. Therefore, the parking costs of SAVs are 8 set here to zero, for their users (though fleet operators may have storage costs, and this can be wrapped into the per-mile or per-trip prices incurred by users), and CAV parking costs are 9 10 assumed to be 100%, 50%, and 0% of conventional vehicles' parking costs, since it is not known whether privately-held CAVs will be allowed to travel empty to find low-cost parking. 11

12 In terms of operating costs, the American Automobile Association (AAA 2015) estimates the full 13 cost of conventional vehicle ownership and operation to be about \$0.60/mile, recognizing 14 depreciation, insurance, maintenance, and operations and assuming 15,000 vehicle-miles per 15 year in travel. Since CAVs will cost more, their full ownership and operating costs are generally 16 assumed to be \$1.00/mile here. Similarly, SAVs' operation costs are assumed to be \$1.50/mile 17 under most scenarios. The results of different combinations of CAV and SAV operation costs

18 were simulated here, as listed in Table 4.

19

20 **Table 4 Scenario assumptions on key parameters** (relative to base-case/no-AV scenario)

Scenario	VOTTs of those in CAVs & SAVs, as a % of current VOTT	Parking costs of CAVs, as % of conventional parking costs	CAV operating costs (\$/mile)	SAV operating costs (\$/mile)	
1	50%	100%	1	1.5	
2	25%	100%	1	1.5	
3	75%	100%	1	1.5	
4	50%	50%	1	1.5	
5	50%	0%	1	1.5	
6	50%	100%	1	1	
7	50%	100%	1.5	1.5	

21

22 Model Results

23 Table 5 presents regional VMT forecasts across different vehicle types, including automobiles

24 (i.e., conventional vehicles), CAVs and SAVs. Truck and bus traffic remain separate from the

above modes and so are excluded from the table.

26 In comparing this base case scenario's results, where only auto and bus modes are available to

travelers, to all other scenarios, with CAV and SAV alternatives, results in over 20% more

28 vehicle-miles traveled (VMT), during the AM peak.

% Change relative to Parameter value assumptions VMT per day Scenario 1 values VOTTs of % Parking Operating Operating Scenario CAVs & costs of Base costs of costs of SAVs CAVs CAV SAV Case CAV SAV Auto Auto SAVs CAVs (as %of as % of (\$/mile) (\$/mile) Auto) Auto 5,823,350 Base _ _ mi 1 50% 100% \$1/mi \$1.5/mi 1,562,157 3,926,846 1,820,202 126% 2 25% 100% 1.5 803,487 5,116,016 2,298,955 51.4% 130.3% 126.3% 1 141% 75% 100% 2,212,197 3,149,242 80.2% 3 1 1.5 1,488,724 118% 141.6% 81.8% 3,931,598 4 50% 50% 1 1.5 1,561,185 1,817,080 99.9% 100.1% 99.8% 126% 5 50% 0% 1.5 1,560,335 3,937,089 1,814,158 99.9% 100.3% 99.7% 1 126% 6 50% 100% 1 1 94.7% 96.9% 119.9% 1.478.870 3,805,329 2.181.801 128% 100% 7 50% 1.5 1.5 1,751,416 3,660,881 2,099,617 93.2% 115.4% 129% 112.1%

Table 3 Regional VMT forecasts during AM peak period

2 The implementation of CAVs and SAVs is predicted to move car-owners from conventional

3 vehicles to AVs, assuming they would enjoy the in-vehicle time and reduce their VOTTs.

4 Scenario 2 suggests that if the VOTTs of AVs are reduced to 25% of autos, about 50% additional

5 auto traffic will shift to AVs, compared to Scenario 1 where VOTTs of AVs are 50% of autos.

6 On the other hand, if the VOTTs of AVs are 75% of autos, as shown in Scenario 3, auto traffic

7 will obtain about 40% from AVs. These tests suggest that how people evaluate their in-vehicle

8 travel time in the AVs is the key for the shifts between autos and AVs. That is, the comfort,

9 convenience, and safety of the AVs are important to travelers to spend even more time on the 10 AVs.

11 Parking costs appear to be a good traffic management tool to control AVs, assuming that CAVs

12 can find lower-cost parking lots away from their destinations and that SAVs will not need any

13 paid parking. Scenarios 4 and 5 assume parking costs of CAVs will be half that of conventional

14 vehicles autos, and potentially even free, resulting in a marginal increase on CAV VMTs.

15 However, since parking is only not free in downtown areas in most cities in Texas (and the U.S.).

it is necessary to take a close look at Austin's CBD parking costs, as shown in Figure 4. This 16 17

downtown area's model results for Scenarios 1, 4, and 5 are shown in Table 6. When CAVs'

parking costs are assumed to be half the cost of storing regular automobiles (due to self-parking 18 19

in lower-cost locations, away from the actual destination), the model predicts a roughly 4% 20 increase in CAVs' VMT or use; and, when CAV parking carries zero cost, the increase is about

21 8%, versus the scenerious where CAV parking costs equal those of conventional automobiles. Of

22 course, CAV self-parking does carry other costs, that are not simulated here: driving to a new

23 location, to park at low or zero cost, carries operating costs, as well as added system VMT that is

24 neglected here. Unfortunately, conventional models of travel demand are not designed to

25 accommodate self-driving or shared vehicles: essentially, vehicles become travelers in their own

26 right. Shared vehicles also pick new destinations and routes in a very dynamic way, so agent-

27 based simulation (as done in Fagnant et al. 2015, Chen et al. 2016, Loeb et al. 2016, Liu et al.

28 2016, and other papers) is the best way to reflect such settings, but is much more

29 computationally intensive than various approximate modifications to existing software packages,

30 like TransCAD.

1

1 2 3 4

FIGURE 4 Map of downtown Austin with AM period parking costs

Scenario	Downtown Austin VMT			% Change	e, relative to S	Scenario 1
Scenario	Auto	CAV	SAV	Auto	CAV	SAV
1	22,288	71,850	46,525	N/A	N/A	N/A
4	21,532	74,751	44,451	96.6%	104.0%	95.5%
5	20,736	77,596	42,304	93.0%	108.0%	90.9%

TABLE 6 Downtown Austin VMT during AM Peak Period

5 Finally, AVs' assumed operating costs play an important role in travelers' choices, as shownin

6 Table 6. For example, when SAVs' operating costs (as perceived by the users) fall to that of

7 CAVs (about \$1/mile, which is still higher than a standard automobile's assumed \$0.6/mile),

8 VMT levels by SAV are predicted to rise 20%, relative to the \$1.5-per-SAV-mile scenario.

9 However, if CAVs' operating costs are increased from \$1/mile to \$1.5/mile (reaching SAVs'

10 same cost level), CAV VMT values are predicted to fall about 7%.

11 CONCLUSIONS AND FUTURE WORK

12 This study illustrates potential traffic impacts of CAVs and SAVs on regional metropolitan areas,

13 using a case study of Austin, Texas and the regional travel demand model. The model results

14 suggest that with reduced VOTTs, operating costs, and parking costs, more travelers will choose

15 AVs over the conventional vehicles and buses, resulting in more than a 20% rise in VMT around

- 1 the region, with associated congestion delays. The sensitivity analysis of the different
- 2 assumptions of VOTT, operating costs, and parking costs indicated significant impacts arising 3 from the use of AVs and SAVs
- 3 from the use of AVs and SAVs.
- 4 If people want to embrace advanced transportation technologies without increasing current
- 5 traffic congestion, dynamic ride-sharing would be a feasible alternative for the local DOT. The
- 6 exact impacts of dynamic ride-sharing, however, are difficult to investigate in the regional travel
- 7 demand model, particularly based on the trip-based model. The traditional travel demand model
- 8 also cannot directly model the travel of AVs when there are no passengers in the vehicles, such
- 9 as when CAVs look for parking lots and SAVs drive emptily.
- 10 More advanced travel demand modeling, such as activity-based and agent-based modeling, 11 should be developed. For future work, the research team recommends adding a vehicle 12 ownership model to the travel demand model to evaluate the impacts of CAVs and SAVs. Creating and analyzing more scenarios will help us understand how CAVs and SAVs will 13 14 increase the network burden and bring heavier traffic congestion. The activity-based model has 15 other benefits, such as a disaggregate level of travel behavior, compared with the trip-based model. Further exploration of the activity-based model would present another interesting aspect 16 17 for future work. Toll policy may play a role in controlling the total VMT and VHT, which, in 18 turn, may reduce traffic congestion. Increasing operating costs may also make carpooling a more
- 19 attractive alternative for travelers who want to minimize their travel costs.

20 ACKNOWLEDGEMENTS

- 21 The authors wish to thank to the Texas Department of Transportation (TxDOT) for financially
- supporting this research under TxDOT project 6838. The authors also want to thank Tianxin Li
 and Scott Schauer-West for help in developing and editing this paper.

24 **REFERENCES**

- AAA (2015) Your Driving Costs. Retrieved from: http://exchange.aaa.com/wp content/uploads/2015/04/Your-Driving-Costs-2015.pdf
- Cambridge Systematics, et al. (2012) National Cooperative Highway Research Program
 (NCHRP) Report 716: Travel Demand Forecasting: Parameters and Techniques. Washington
- 28 (NCHKP) Report /10. Haver Demand Forecasting. Parameters and Techniques. washing 29 DC. Online at: http://onlinepubs.trb.org/onlinepubs/nchrp/nchrp rpt 716.pdf.
- 29 DC. Onnic at. http://onnicpuos.tro.org/onnicpuos/nemp/nemp_tpt_/to.pdt.
- 30 CAMPO (2015) CAMPO 2010 Planning Model Guide, Capital Area Metropolitan Planning
- 31 Organization (CAMPO), Austin, TX. Online at: http://www.campotexas.org/plans-programs/
- 32 Chen, D., and Kockelman, K. (2016) Management of a Shared, Autonomous Electric Vehicle
- 33 Fleet: Implications of Pricing Schemes, Transportation Research Record No. 2572
- 34 DOI 10.3141/2572-05.
- 35 Chen, D., Hanna, J., and Kockelman, K.M. (2016) Operations of a Shared, Autonomous, Electric
- 36 Vehicle (SAEV) Fleet: Implications of Vehicle & Charging Infrastructure Decisions,
- 37 Proceedings of the 95th Annual Meeting of the Transportation Research Board, and under review
- 38 for publication in *Transportation Research Part A*.
- 39 Childress, S., Nichols, B., Charlton, B., Coe, S. (2015) Using an Activity-Based Model to
- 40 Explore Possible Impacts of Automated Vehicles, Proceedings of 94th Annual Meeting of the
- 41 Transportation Research Board. Washington, DC.

- 1 Fagnant, D.J., Kockelman, K.M. (2014) The Travel and Environmental Implications of Shared
- Autonomous Vehicles, using Agent-Based Nodel Scenarios. *Transportation Research Part C: Emerging Technologies* 40, 1-13.
- 4 International Transport Forum. (2015) Urban Mobility System Upgrade: How shared self-driving
- 5 cars could change city traffic, Corporate Partnership Board Report. Retrived from
- 6 http://www.citymobil2.eu/en/upload/Presentations/Urban%20mobility%20system%20upgrade-
- 7 ITF.pdf.
- 8 Kim, K., Rousseau, G., Freedman, J., Nicholson, J. (2015) Autonomous Vehicles in Metro 9 Atlanta through Activity-Based Modeling. Presentation at The 15th TRB National 10 Transportation Planning Applications Conference. Slides available at 11 http://www.atlantaregional.com/File%20Library/Transportation/Travel%20Demand%20Model/t
- $12 \quad p_mug_travelimpactofautonomous vehicles in metroatlant athrough abm_052915.pdf.$
- Litman, T. (2014) Autonomous Vehicle Implementation Predictions. *Victoria Transport Policy Institute* 28. Retrived from http://www.vtpi.org/avip.pdf
- 15 Spieser, K., Treleaven, K., Zhang, R., Frazzoli, E., Morton, D., Pavone, M. (2014) Toward a
- 16 systematic approach to the design and evaluation of automated mobility-on-demand systems: A
- 17 case study in Singapore, *Road Vehicle Automation*. Springer, 229-245.