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ABSTRACT 

Increasing population and travel demand has prompted new efforts to model travel demand 

across the United States. One such model is rJourney that estimates travel demand among 

thousands of regions and models mode and destination choice. rJourney includes records 

representing 1.17 billion long-distance trips throughout the year 2010. Although inter-regional 

impacts caused by an increase of automated vehicles (AVs) has been investigated, there is little 

research on inter-regional travel and how longer distance destination and mode choices will 

change. Because of conveniences offered by AVs, the value of travel time of drivers is 

expected to fall, thus reducing the generalized cost of AV travel. To initially analyze the 

impacts of AVs in the United States, a new AV mode was added to a subset of the rJourney 

mode and destination choice models. With an initial scenario assuming an operating cost of 

AVs that is 118% of traditional cars, two outcomes are observed that are solely based on 

model results. First, the avaiability of AVs severely digs into the airline travel market, reducing 

airline revenues to 53%. Second, the introduction of AVs results in a shift of destination 

choice, increasing travel in further distances for personal vehicles by 9.6%, but favoring 

closer distances across all modes with a 6.7% overall trip-miles reduction. While this 

preliminary research has revealed an initial perspective on how an existing model can support 

AVs, the increasing availability of data as AVs emerge will refine nationwide long-distance 

modeling. 

Keywords: autonomous vehicle; long distance; travel demand modeling; national scale 
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As the United States population grows, it is expected that the demand for inter-city travel will 1 

rise, running up against the limited capacity of existing infrastructure. The Federal government 2 

and states continuously seek to improve long-distance mobility; however, national-scale 3 

passenger travel demand modeling is still an emerging area of research. In efforts to enable 4 

proactive planning, the Federal Highway Administration (FHWA) commissioned several studies. 5 

One of the studies produced a passenger travel demand model called rJourney that models all 6 

long-distance travel in the entire United States for the duration of the year 2010 (Federal 7 

Highway Administration, 2015). 8 

While the rJourney model surpasses the limitations of traditional travel demand forecasting 9 

methods by rigorously incorporating several forms of travel behavior, the prospect of applying 10 

the model to an increasingly automated future is challenged by the fact that automated vehicles 11 

(AVs) were not a mode of choice in 2010, and therefore are not represented in the model. While 12 

traveler behavior may gradually change as the future emerges and AVs continue to enter the 13 

marketplace, the most feasible and best-validated future-looking models at hand are inevitably 14 

based upon today’s knowledge.  15 

This preliminary research leverages the rJourney model to investigate how long-distance travel 16 

between pairs of regions across the continental United States may be affected by the option of 17 

having vehicles self-drive travelers to their destinations. Possible effects that arise include a 18 

general shift in destination choice that promotes a change in overall person-miles traveled 19 

(PMT), and a significant change in overall mode choice between personal vehicles and 20 

commercial air carriers. 21 

BACKGROUND 22 

AVs and Long-Distance Travel 23 

While there have been several simulations of AVs’ and shared AVs’ effects on intra-regional 24 

travel (e.g., Fagnant and Kockelman (2014) and Childress et al. (2015)), there is little research on 25 

inter-regional travel and how longer-distance destination and mode choices will change. 26 

LaMondia et al. (2016) explored mode choices in Michigan for trips over 50 miles in length, and 27 

forecasted that over 25 percent of airline trips under 500 miles will shift to AVs. Such changes 28 

will have important impacts on airlines, infrastructure planning and future land use (especially 29 

around long-distance transportation facilities), highway congestion, and the travel industry more 30 

generally.  31 

Long-distance travel is common in many countries and regions. Mercedes-Benz responded to the 32 

Google challenge in August 2013 with the S500 Intelligent Drive Autonomous Car long-distance 33 

test drive between Mannheim and Pforzheim without any driver input. Automated public 34 

vehicles may provide much of the long-distance travel between European countries (Heinrichs, 35 

2016). 19% of Americans with disabilities report leaving their homes relatively infrequently, and 36 

are less likely to take long-distance trips (BTS, 2003). However, Meyer and Deix (2014) noted 37 

that if AVs allow disabled individuals to make the same length and number of car trips, their 38 

vehicle-miles traveled (VMT) would probably increase by more than 50 percent. 39 

AVs reduce the burden of travel for drivers and may improve the quality of travel for passengers, 40 

who can now focus on more meaningful interactions with those previously focused on driving. 41 
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The value of travel time (VOTT) of the driver (or his/her willingness to pay to save travel time) 1 

is expected to fall, by 20 to 50 percent or more, so the generalized cost of travel can fall by 2 

several dollars per hour to $6 or more per hour, for many travelers. Auld et al. (2017) applied an 3 

integrated transportation system model to analyze the impact of hypothesized connected and 4 

autonomous vehicle (CAV) scenarios, varying the market penetration, capacity changes and 5 

travel time valuations, on performance of the transportation network and changes in mobility 6 

patterns for Chicago region. The results show that an increase in capacity of 80% can be 7 

achieved with only 4% induced additional VMT. Changes in travel time cost, or VOTT savings, 8 

have a significant impact, especially at very low levels of VOTT, increasing VMT by up to 59%. 9 

Extensions of Prior Models 10 

With the impending introduction of AVs as a viable mode choice in the near future, it is 11 

necessary for today’s future-looking travel demand forecasting models to incorporate them. 12 

Childress et al. (2015) used a Seattle, Washington activity-based travel model (including short-13 

term travel choices and long term work-location and auto-ownership choices) to anticipate the 14 

impacts of AV technology introduction on regional travel (attributed to higher roadway 15 

capacities, lowered value of travel time (VOTT), reduced parking costs, and increased car-16 

sharing). They estimated that higher income households are more likely to choose the AV mode, 17 

as costly technology and VOTT reductions for higher-VOTT travelers are likely to be more 18 

significant. When shared automated vehicles (SAVs) are modeled to cost $1.65 per mile (similar 19 

to costs of current ride-sharing taxi services, like Lyft and Uber), drive-alone trips were 20 

estimated to be reduced by one-third and transit shares increased by 140%, as modeled 21 

households did away with traditional vehicles and bought AVs, or shifted to SAVs as well as 22 

other travel options.  23 

Other existing projects introduced AVs as a new mode in mode choice or destination choice 24 

models. Gucwa (2014) used an activity-based model approach to simulate the travel decisions of 25 

individuals in the 9-county San Francisco Bay Area. The autonomous vehicle scenarios are 26 

modeled under different values of travel time and road capacity, using the Bay Area’s Travel 27 

Model One. The mode choice confirms to a random utility model. The result showed that the 28 

automation can expect a short-run increase of 4-8% in daily VMT. Zhao and Kockelman (2017) 29 

extended the Austin, Texas 6-county region local municipal planning organization’s 30 

conventional travel demand model with new CAV and SAV modes. The gravity model for trip 31 

distribution was replaced with a multinomial logit (MNL) model to allow destination choice to 32 

be influenced by the new modes. The mode choice model was also simplified and extended to 33 

support the new modes. Simulations varied the assumed operating and parking costs. Results 34 

suggested that by the year 2020, the introduction of these modes would add 20% demand to the 35 

region’s current VMT. An added consequence is a reduction of transit system usage. Both of 36 

these were attributed to the relative value of time of CAV and SAV travelers as well as an 37 

anticipated competitive SAV pricing scheme. Results of this paper suggest that without full 38 

realization of other anticipated benefits of CAVs and SAVs (e.g. smaller headways, shared 39 

rides), overall congestion would worsen from that of today. 40 

This research investigates a possible use of rJourney to forecast traditional personal car, 41 

commercial air carrier, and personal AV mode and destination choice offers insight on future 42 

United States inter-city travel. Since aircraft will still travel much faster than AVs between long-43 

distance city pairs (e.g., New York City to Los Angeles), it is intuitive that those markets could 44 
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be largely immune to this new mode alternative. However, looking at what routes will be 1 

significantly changed lacks research and is important for airline and infrastructure planning. If 2 

for example the 240-mile (385 km) route between Houston and Dallas is largely dominated by 3 

AVs, interstate planners should expect higher traffic on Interstate 45 and the airport managers 4 

should expect less short distance travel between the two cities. 5 

This remainder of this paper is organized as follows. First, the rJourney data set that is used in 6 

this research is introduced, followed by the preliminary methodology. Then, results of the 7 

research model are identified, as well as an exploration of how the model can be used to estimate 8 

how the introduction of AVs may affect overall airline industry revenue. Finally, this paper 9 

concludes and offers future research directions. 10 

DATA SET 11 

The rJourney data that is leveraged in this research is part of an extensive, nationwide tour-based 12 

long-distance travel model created by RSG for the United States Department of Transportation 13 

Federal Highway Administration. The motivation for the creation of rJourney is to study intercity 14 

travel and to enhance interstate, long-distance modeling efforts. As noted earlier, long distance 15 

travel is modeled among almost all pairwise combinations of 4,486 National Use Microdata Area 16 

(NUMA) zones as shown in Figure 1. As part of the rJourney effort, NUMAs are derived from 17 

both Census Bureau Public Use Microdata Areas (PUMAs) and county boundaries. The 1.17 18 

billion rJourney tours are generated from a synthesized household population of 31.5 million, 19 

representing all long-distance travel in the year 2010. Destination and mode choice are modeled 20 

with cross-nested logit (CNL), supporting four modes: automobile, bus, rail and airlines. Trip 21 

models are organized among five purposes: business travel, commuting, personal business for 22 

shopping and relaxation, visiting friends and family, and leisure travel (Outwater et al. 2014). 23 

 24 
Figure 1: NUMA boundaries within the continental United States 25 

The generated tours provided in the rJourney set across all trip types are distributed as shown in 26 

Figure 2. Distances for all modes are measured as round-trip driving distance. All tours consist 27 

of one outbound and one return trip over the same path. Important aspects to note about this 28 

distribution are that no round-trips shorter than 100 miles (161 km) are expressed in the rJourney 29 

tours data set since rJourney only looks at longer-distance trips that involve originating in one 30 

NUMA and arriving at a distant NUMA. The longer-distance car trips amount to 1.2 trillion 31 
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VMT, which is 40% of the total 3.0 trillion highway VMT reported for 2010 (Bureau of 1 

Transportation Statistics, 2011). As expected, car usage largely dominates shorter trips (less than 2 

or equal to 500 miles, or 805 km), while air travel dominates for longer ranges. Bus and rail 3 

consistently account for a small portion of all trips. The average party size in a tour is 2.15 4 

people. 5 

a. 

 
b. 

 
Figure 2: Distribution of rJourney trips for all trip types for a. all distances (shown 6 

logarithmically), and b. further distances 7 

The rJourney set also provides a skim file that includes mode statistics of traveling between most 8 

possible pairs of NUMAs. These include estimated travel time by car or air, access and egress 9 

times, traveling toll or cost, and other factors that would influence a traveler’s choice of 10 

transportation mode. Corresponding to these are mode choice and destination choice coefficients. 11 

In these coefficients, value of travel time for car drivers is $12/hour (in 2010 dollars). These 12 

skims and data are used in this research for evaluating the effects of adding a new AV mode. 13 

 15 

METHODOLOGY 16 
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This analysis leverages a subset of rJourney data and models, and uses pre-existing parameters as 1 

a means to quickly characterize the trip distributions for each mode, while leaving the 2 

opportunity to add a new mode such as AVs. The subset of data and coefficients were used to 3 

closely reproduce the rJourney mode choice results, and then a new AV mode was added. For 4 

this analysis, the model was set up as a nested logit model, where mode choice was a nest within 5 

an overarching destination choice model. 6 

For finding mode choice from each origin to each destination, parameters include direct costs 7 

(value of time, tolls, and fares), NUMA household density, service frequency, transfer frequency, 8 

and rail station/airport access and egress penalty. For simplicity, data that are not available to the 9 

authors, and parameters not significantly influential in mode choice (e.g. with low T-stats) are 10 

not represented in utility functions as they are in the rJourney model, including household size, 11 

party size, and number of nights staying. Party size is currently assumed to be 1, and reporting 12 

below focuses upon VMT and trip-miles, not person-miles traveled. 13 

As a result, the model subset does not produce an exact replication of the rJourney tours data set. 14 

Furthermore, the attempted addition of the AV mode inherently lacks supporting data, already 15 

necessitating the use of a subset of existing parameters. Although model subset results show a 16 

similar distribution to that of the rJourney tours data set, air travel in particular was 17 

underrepresented, showing a correlation of 0.71 overall. To establish a closer representation, a 18 

strategy for adjusting (or “pivoting”) the results off of the rJourney tours data set is described 19 

further below in Equations 12 and 13. 20 

While future work related to this research will continue to improve upon the rJourney model 22 

usage, the preliminary exercise discussed in this paper illustrates the kinds of analyses that are 23 

possible with such a model. These are the mode choice utilities, functions of NUMA i, 24 

destination NUMA j, and trip purpose p. Refer to (Federal Highway Administration, 2015) for 25 

Table 40 that contains the coefficient values and T-stats for each of the trip purposes identified 26 

by coefficient subscript number. 27 

           (                                  )                              (1) 28 

where 29 

        = Car travel time from NUMA i to j, 30 

       = Distance in miles from NUMA i to j, 31 

       = Tolls incurred from NUMA i to j, 32 

    = Car operational cost in dollars per mile, $0.17/mile in initial analysis, 33 

         = Indicator for one-way distance > 500 mi. (805 km) for NUMAs i and j, and 34 

    ,      ,      ,       ,           =  Coefficients 35 

 36 

           (                         )                                      

                         
(2) 

where variables remain as defined earlier, and 37 

        = Bus travel time from NUMA i to j, 38 

        = Bus fare from NUMA i to j, 39 
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      = NUMA i log density (density is the sum of NUMA i total households and total 1 

employment divided by NUMA i square miles), 2 

         = Indicator for one-way distance 50 mi. (81 km) to 150 mi. (242 km) from 3 

NUMA i to j, and 4 

     ,         ,       ,       ,       ,         =  Coefficients. 5 

 6 

            

(                                                          

                             
               

      
)                            

                                      

(3) 

where variables remain as defined earlier, and 7 

        = Rail travel time from NUMA i to j, 8 

          = Rail fare for NUMA i to j, business fare if “employer” purpose, 9 

        = Rail transfers incurred from NUMA i to j, 10 

        = Rail frequency for traveling from NUMA i to j, 11 

        = Access time for getting to the rail station for NUMA i to j, 12 

        = Egress time for departing from the rail station for NUMA i to j, and 13 

     ,      ,      ,      ,      ,         ,       ,       ,       ,        =  Coefficients. 14 

 15 

 16 

           

(                                             

     √         
        

 
 

        

  
                    (               )  

     
               

      
)                                      

                          

(4) 

where variables remain as defined earlier, and 17 

        = Air travel time from NUMA i to j, 18 

          = Airfare for NUMA i to j, business fare if “employer” purpose 19 

        = Air transfers incurred from NUMA i to j, 20 

                           = Air service frequency for direct flights from NUMA i to j for 21 

direct flights, flights with one transfer, and flights with two transfers 22 

        = Air on-time rate for flights from NUMA i to j, 23 

        = Access time for getting to the airport for NUMA i to j, 24 

        = Egress time for departing from the airport for NUMA i to j, and 25 

     ,      ,      ,      ,      ,         ,       ,       ,       ,         =  Coefficients. 26 

 27 
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Coefficients are drawn from the rJourney model. In this analysis, the data series pertaining to 1 

cost of traditional vehicle operation was drawn using the estimated value of $0.17/mile. Because 2 

this model focuses on mode choice at the time of travel, the ownership cost is not incorporated as 3 

in (AAA, 2015). While this serves as a rough estimate, it would be possible with further research 4 

to better quantify operation costs as a function of each trip-maker’s annual driving distance. The 5 

results of the initial analysis shall inform how this function can be evaluated in the future. 6 

The rJourney data includes 285,579 NUMA pairs that lack car mode statistics. These NUMA 7 

pairs and corresponding trips are omitted from this analysis because of lack of car-distance data, 8 

which is needed in estimating the distance of all modes of travel. 9 

The introduction of AVs into the model presents challenges in implementation, mainly in that the 10 

rJourney models and results obviously do not consider the presence of AVs, and little data 11 

currently exist to specifically justify model parameters. For AVs to be considered as a new 12 

modal alternative, existing data and coefficients are leveraged to arrive at a “best-guess” 13 

parameter set. In initially designing how the new modal alternative is integrated, the following 14 

assumptions are made: a) a future time is modeled where AVs cost on average $0.20 per mile to 15 

operate; b) the $6.00 value of time to the occupant is half of that of traditional car; and c) all 16 

other parameters are that of traditional cars. The utility function for the AV mode choice is then: 17 

          (
     

 
                             )                              (5) 18 

where variables remain as defined earlier, and 19 

    = AV operational cost in dollars per mile ($0.20 per mile for the initial analysis). 20 

 21 

Probability splits for mode choice given each origin, destination, and purpose are then found: 22 

         
 
        

∑  
        

   

 (6) 23 

where 24 

         = Utility function for mode m, from NUMA i to j for purpose p, 25 

  = Set of all modes being analyzed. 26 

 27 

The destination choice portion of the model incorporates the logsum of the mode choice utility 28 

functions along with indicators pertaining to distance ranges, as well as household and 29 

employment counts that come from the NUMA zone data set. Again, for simplicity as well as 30 

lack of access to data, parameters that are not strongly influential in mode choice and destination 31 

choice were omitted. However, as noted later, preliminary results are helpful in identifying 32 

investigations of the model in future work. As an observation, the rJourney model does not 33 

include gross domestic product per NUMA zone, which could possibly be helpful for future 34 

efforts in better representing destination attractiveness. 35 

The following represents the destination choice model, using coefficients drawn from (Federal 36 

Highway Administration, 2015) Table 39. Future research efforts will evaluate how more of the 37 

rJourney destination-choice model can be leveraged for arriving at an improved representation of 38 

attractiveness. 39 
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               ∑          
    (7) 1 

                              (      )  (         ) (
      

   
)
 

              2 

                                                                        3 

                                                                  (8) 4 

       
 
                   

∑  
                    

 

 (9) 5 

where variables remain as defined earlier, and 6 

     = Size for NUMA j, purpose p. This leverages employment, land use, and education 7 

data as identified here, selected by purpose, multiplied with given log-coefficients 8 

and summed together: 9 
Coeff. 1-Personal 2-Visit 3-Leisure 4-Commute 5-Employer 
1 Medical Accommodation Accommodation Other service Accommodation 

log α20_p Entertainment Entertainment Entertainment Entertainment Entertainment 

log α21_p Other service Medical Other service 

Retail + 

wholesale 

Retail + 

wholesale 

log α22_p All other empl All other empl All other empl All other empl All other empl 

log α23_p 

University 

enrollment Households Park area (sqm) 

University 

enrollment 

University 

enrollment 
 10 

 11 
                                                                  = Indicators for respective 12 

distance ranges from NUMA i to NUMA j, 13 

            = Indicators for destination NUMA j urban and rural indications, 14 

respectively. Urban is defined to have a density of  1000, and rural is defined to 15 

have a density of  25, 16 

                  = Indicators for both origin and destination NUMAs i and j having both 17 

urban or rural indications, respectively, 18 

      = Size multiplier for purpose p, 19 

  = Number of NUMAs being analyzed, and 20 

    ,     ,     ,     ,                                        ,            , 21 

               =  Coefficients.  22 

 23 

From this, joint mode/destination choice probabilities are found by combining the mode choice 24 

and destination choice conditional probabilities for each origin/destination pair: 25 

                        (10) 26 

The last step is to use the joint probabilities to distribute trips that are generated from each origin 27 

across all modes and destinations. For this analysis, the number of generated trips are obtained 28 

from the rJourney tours data that was simulated from generated households across the United 29 

States. Because the idea is to study how mode choice and destination choice changes with the 30 

introduction of AVs, the mode choices represented in the rJourney tours dataset are ignored to 31 

allow the same number of generated tours to be redistributed according to the post-AV 32 

introduction model. The modeled tours are defined as: 33 

                 ∑       
 
  (11) 34 
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where variables remain as defined earlier, and 1 

       = Number of trips in the rJourney trips dataset from origin NUMA i to destination k 2 

for purpose p. 3 

 4 

As mentioned earlier, the model subset does not produce an exact replication of the rJourney 5 

tours data set. The authors therefore “pivoted” modeled tours Ti,j,m with the rJourney tours data 6 

set Ri,j,m to arrive at T*i,j,m as follows: 7 

         
  

      
     

 
     

      
×       

      
  𝑚  {                   }            (12) 8 

         
  

 
        
     

 
         

      
×           

      
                 (13) 9 

Computation of this model can be classified as a big data problem. In representing the expanded 10 

1.17 billion trips, 38 million rJourney trip records over 2 million NUMA pairs constitute 4 GB of 11 

data, and files representing the intermediate and final computational results for all trip purposes 12 

amount to gigabytes of additional storage requirements. The Python Pandas library is used to 13 

perform the computations along with HDF5 file format support. With a number of considerations 14 

made for vectorized matrix operations, the entire set takes on the order of 30 minutes to run on a 15 

modern, high-end computer. Operations that read and write files from flash storage account for 16 

over half of the run time.  17 

RESULTS 18 

Figure 3 shows the resulting number of trips after the AV mode is added to the initial model as 19 

described in the methodology. This can be compared with the tours data set distribution in Figure 20 

2. A notable observation is that the distribution of AV trips tracks the distribution of traditional 21 

vehicles with an increase in mode share at further distances. This can be attributed to high 22 

correlation of several parameters that are represented in the traditional vehicles. The key 23 

differences with AVs are the increase in operating cost, and reduced value of time driving. With 24 

similarity in parameters, this mode split is influenced by the independence from irrelevant 25 

alternatives (IIA) property (or, noted many times in the literature as the “red bus/blue bus 26 

paradox”) inherent in multinomial logit models. This property causes highly correlated inputs to 27 

be treated as independent, which creates an artificial demand that may not necessarily happen in 28 

reality. The high degree of correlation and presence of IIA can best be addressed by creating a 29 

nest (e.g. “personal vehicles”) that contains both of the AV and car results, an area for future 30 

work. 31 

  32 
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a. 

 
b. 

 
Figure 3: Number of trips from the mode choice/destination choice analysis, all purposes, 1 

at a. all distances (shown logarithmically), and b. further distances 2 

There are two notable outcomes that offer insight on the possible effects of AV introduction to 3 

the market, as well as a shift in destination choice. First, results show that the introduction of 4 

AVs deeply cuts into the number of trips that had formerly been air trips. See the first two sets in 5 

Table 1 for results in terms of shorter and longer trips (e.g. < 500 miles (805 km) versus  500 6 

miles). As largely influenced by the        coefficient as well as travel time, trips over 500 miles 7 

in length are penalized because of the negative “captivity factor” of remaining in a car for a long 8 

period of time possibly over several days. It is assumed in this model that this disutility would be 9 

similar for AVs as it would be for traditional cars. Note that in Table 1, “Car+AV” is shown as a 10 

means to represent respective totals of personally owned vehicles. 11 

Second, among traditional cars and new AVs, more destinations are chosen after introduction of 12 

AVs that are further in distance from origins. When looking at the long-distance personal vehicle 13 

travel represented in the model, the 3.0 trillion highway VMT reported for 2010 (Bureau of 14 

Transportation Statistics, 2011) increases to 3.1 trillion. However, if all modes are considered, 15 
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the trend is reversed, possibly because of the severe reduction of air trips that dominate the 1 

longer-distance trips. The third set in Table 1 shows a change in distribution across overall trip 2 

distances. For both pre- and post-AV introduction the model uses the same number of trip 3 

generations per NUMA per trip purpose. The significant decrease of air travel may be a 4 

consequence of the aforementioned IIA property. In addition to treating cars and AVs as a single 5 

nest, further work on characterizing VOTT and operating cost, as well as specifying additional 6 

factors in the destination-choice portion of the model may have the outcome of evolving how trip 7 

distances are biased among closer and further long-distance trips. 8 

Table 1: Trip mode choice impact of AV introduction for all trip purposes 9 

TOURS 

BY MODE 

AV Market 

Penetration 

Car+AV < 500 

mi. round trip 
Car+AV  500 

mi. round trip 

Air < 500 mi. 

round trip 
Air  500 mi. 

round trip 

Before AV 0% 860.5 M 168.8 M 9.3 M 79.5 M 

After AV 51% 906.9 M 189.0 M 4.9 M 42.0 M 

% change - 105.4% 112.0% 52.9% 52.8% 
 10 

VEHILCE- 

MILES 

Car+AV < 

500 mi. 

round trip 

Car+AV  

500 mi. 

round trip 

Car+AV 

Total 

Air < 500 

mi. round 

trip 

Air  500 

mi. round 

trip 

Air Total 

Before AV 400.8 B 821.0 B 1,221 B 6.4 B 437.9 B 444.3 B 

After AV 425.2 B 913.7 B 1,339 B 3.4 B 232.3 B 235.7 B 

% change 106.1% 111.3% 109.6% 52.9% 53.0% 53.0% 
 11 

TOURS FOR 

ALL MODES 

Tours < 500 

mi. one way 

VMT for tours 

< 500 mi. 
Tours  500 

mi. one way 

VMT for tours 

 500 mi. 

Before AV 914.1 M 422.4 B 256.1 M 1,294 B 

After AV 937.0 M 437.1 B 235.2 M 1,165 B 

% change 102.5% 103.5% 91.8% 90.0% 
 12 

AIRLINE 

REVENUE 

Tours < 500 

mi. round trip 
Tours  500 

mi. round trip 

Total 

revenue 

Before AV $16.0 B $159.1 B $175.1 B 

After AV $8.4 B $83.9 B $92.3 B 

% change 52.7% 52.7% 52.7% 

 13 

Market Penetration 14 

The degree that AVs penetrate the market varies according to trip distance. Figure 4 shows 15 

market penetration both for AVs among the personal vehicle modes (e.g. car and AV), and also 16 

AVs among all mode choices. With respect to personal vehicles, the market penetration increases 17 

as distance increases because of the significance of lower VOTT. However, air travel continues 18 

to be preferred for longer distances and results in the AV mode share diminishing at further 19 

distances. The deviation in penetration for the 7000-mile bin is likely a result of fewer trip 20 

samples for that furthest distance. 21 
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 1 
Figure 4: Penetration of AVs among personal vehicles (car+AV) and all modes 2 

Passenger Airline Sales 3 

Given that large-scale introduction of AVs has not yet happened and that no data can be 4 

collected directly from AV usage today, a model such as this rJourney subset with AVs added as 5 

a new mode can be helpful in roughly estimating market effects that could result from the 6 

widespread introduction of AVs. One question that can be addressed with this model is how 7 

much revenue the airline industry can possibly lose due to more travelers choosing AVs over air 8 

travel. The rJourney data set gives airfare estimates in USD for all NUMA pairs that have 9 

suitable access to airports served by commercial passenger carriers. The fourth set in Table 1 10 

shows estimated airline sales before and after the addition of AVs for all modeled trips. Note that 11 

because these are based upon cost to the traveler, these sales figures include airport taxes.  12 

In this result, the percent changes between sales between shorter and longer long-distance trips 13 

are similar. This is counterintuitive because of the idea that AVs should have a more significant 14 

attractiveness for shorter trips and thus cut more into the shorter distance market. It may be here 15 

that the model is dominated by the IIA property in adding AVs as a separate mode rather than as 16 

a car+AV “personal vehicle” nest. Additionally, with refinements in the mode choice and 17 

destination choice models the split may improve in accuracy. 18 

AV Parameter Sensitivity 19 

As mentioned earlier, the parameters and assumptions given to AVs are largely unknown and 20 

must be estimated. Two notable parameters include cost of operating the vehicle, as well as 21 

personal VOTT. (Another parameter that is relevant but not yet analyzed includes a more 22 

pronounced representation of the 500-mile captivity factor, which may be different for car 23 

drivers than it is for AV passengers.) A thorough analysis should offer a set of scenarios that 24 

span a range of expected operational costs and personal VOTT, given the targeted years, 25 

expected AV market penetration, and socioeconomic classes of trip-makers that are being 26 

analyzed. 27 
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To further understand the sensitivity of these variables on the resulting mode split and 1 

destination choice, six new scenarios are created for the “leisure” trip purpose. Scenarios are: 2 

Scenario Oper. Cost ($/mile) VOTT ($/hr) Notes 

A $0.20 $6.00 Base case 

B $0.10 $6.00 Operating cost is cheaper 

C $0.50 $6.00 Operating cost is more expensive 

D $0.20 $3.00 VOTT is decreased 

E $0.20 $9.00 VOTT is increased 

F $1.65 $6.00 AVs are modeled as shared vehicles 

Recall that dollar amounts are expressed in year 2010 dollars. The scenario of AVs having the 3 

same operating cost and VOTT of cars has been omitted because there would be no distinction 4 

between the car and AV modes. Scenario F in particular has been included as a hypothetical 5 

scenario to roughly model all AVs on the roadways as shared autonomous vehicles (SAVs). 6 

With SAVs, passengers do not own their vehicles, but rather pay per mile for travel in a 7 

borrowed vehicle that others can use for other trips, in this case $1.65 per mile. As more data 8 

emerges, an improved model would likely offer SAVs as a mode choice that is separate from 9 

personally-owned AVs. Table 2 shows the results of each of these scenarios. 10 

Table 2: Trip generations with varied AV parameters, for “leisure” trip purpose 11 

Mode Dist. Scenario A B C D E F 

Car+AV Trips < 

500 mi. 

Before AV 253.5 M 253.5 M 253.5 M 253.5 M 253.5 M 253.5 M 

After AV 271.5 M 267.2 M 279.4 M 268.1 M 274.3 M 280.3 M 

% change 107.1% 105.4% 110.2% 105.7% 108.2% 110.6% 

Trips  

500 mi. 

Before AV 55.7 M 55.7 M 55.7 M 55.7 M 55.7 M 55.7 M 

After AV 63.4 M 65.7 M 57.8 M 65.3 M 61.7 M 46.7 M 

% change 113.8% 118.0% 103.7% 117.2% 110.7% 83.9% 

Air Trips < 

500 mi. 

Before AV 2.30 M 2.30 M 2.30 M 2.30 M 2.30 M 2.30 M 

After AV 1.23 M 1.20 M 1.28 M 1.21 M 1.24 M 1.40 M 

% change 53.2% 52.1% 55.7% 52.3% 54.0% 60.9% 

Trips  

500 mi. 

Before AV 18.11 M 18.11 M 18.11 M 18.11 M 18.11 M 18.11 M 

After AV 9.65 M 9.43 M 10.16 M 9.47 M 9.81 M 11.17 M 

% change 53.3% 52.1% 56.1% 52.3% 54.2% 61.7% 

 12 

In observing Scenarios B, A, and C in order of increasing operation cost, it can be seen that 13 

closer trip generations increase and longer trips decrease because of the significance of operating 14 

cost on longer trips. Meanwhile, the cut into the air market decreases as the operation cost 15 

increases. In the rough SAV Scenario F, the results coincide with a similar trend, where longer 16 

distance trips are more significantly curtailed. For Scenarios D, A, and E in order of increasing 17 

VOTT, a similar phenomenon occurs. The reduction of air trips decreases as VOTT increases. 18 

In all cases, the variations that are evaluated do not show an extreme difference in outcomes. In 19 

considering travelers’ expenses and VOTT, it is possible to reason that the results should be 20 

more distinct. Two factors may be dominating the models as these inputs are varied. First, the 21 

addition of the AV mode as an independent choice may be an inaccurate model structure that is 22 

highly correlated and represented too significantly in the results. As mentioned earlier, it may be 23 
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more appropriate to treat cars and AVs as a “personal vehicle” nest and estimate the correlation 1 

that is to be expected among the mode choices of hypothetical travelers. Second, the 2 

representation of AVs in the model is somewhat indistinct from cars, as few parameters exist to 3 

offer better differentiation. The addition of new parameters to the car and AV modes can help 4 

with this and reduce the correlation between the two modes. 5 

CONCLUSIONS 6 

This preliminary research has leveraged the nationwide, inter-regional rJourney travel demand 7 

model for estimating impacts of future introduction of AVs. While models such as rJourney had 8 

been created in efforts to better understand intercity travel and offer enhanced capabilities for 9 

planning, little research today addresses the introduction of AVs in such models. This effort 10 

therefore is intended as an early investigation in allowing AVs to be treated as a viable mode 11 

within the same class of modeling framework. 12 

A subset of the rJourney model was implemented to predict mode and destination choice of long-13 

distance travelers with AVs fully considered as a viable mode alternative. The integration of 14 

AVs into the model includes some of the preexisting car-specific parameters while employing 15 

higher cost of vehicle operation and reduced VOTT that are expected of AVs within the 16 

oncoming years. 17 

These preliminary results are solely based upon the rJourney results after adding AVs as a 18 

distinct mode. First, in the initial scenario where the cost of ownership and operation for an AV 19 

is assumed to be $0.20 per mile and VOTT is half of that of car travel, air travel trip generation 20 

for shorter and further long-distance trips is cut to 53% of the original value, largely replaced 21 

with an increased demand for AVs. It follows that commercial passenger air carriers may benefit 22 

from understanding the implications of AV introduction, perform research on the problem, and 23 

target their services and marketing accordingly. Second, with the introduction of AVs, trips 24 

among cars and AVs favor further distances for trips; but trips appear to favor closer distances 25 

when considering all modes. Here, the total number of car and AV trips increases by 5% for 26 

shorter-distance trips and 12% for longer-distance trips; however, among all modes there is a 27 

6.7% reduction in trip-miles. It can be surmised that federal and state DOTs should further 28 

investigate possible needs for upgrading interregional infrastructure in preparation for specific 29 

levels of AV market penetration. 30 

For further future research, it will be prudent to find and analyze data that is collected in the field 31 

as AVs emerge, including willingness to pay, technology cost, travel time savings, and 32 

socioeconomic aspects of AV usage. Along the way, it would be helpful to have data on public 33 

resistance and acceptance to aid in estimating future AV market penetration. The model would 34 

also possibly benefit from nesting together the car and AV modes to account for correlation 35 

among the two modes. These are all factors that can help to establish a more accurate, 36 

nationwide AV mode and destination-choice model that reflects current and future trends. 37 
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