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ANALYZING THE DYNAMIC RIDE-SHARING POTENTIAL FOR SHARED 

AUTONOMOUS VEHICLE FLEETS USING CELLPHONE DATA FROM ORLANDO, 

FLORIDA 

ABSTRACT 

Transportation network companies (TNCs) are regularly demonstrating the economic and 

operational viability of dynamic ride-sharing (DRS) to any destination within a city (e.g., 

uberPOOL or Lyft Line), thanks to real-time information from smartphones. In the foreseeable 

future, fleets of shared automated vehicles (SAVs) may largely eliminate the need for human 

drivers, while lowering per-mile operating costs and increasing the convenience of travel. This 

may dramatically reduce private vehicle ownership resulting in extensive use of SAVs. This study 

anticipates DRS matches across different travelers and identifies optimum fleet sizes required 

using AirSage’s cellphone-based trip tables across 1,267 zones over 30 days. Assuming that the 

travel patterns do not change significantly in the future, the results suggest significant opportunities 

for DRS-enabled SAVs. Nearly 60% of the single-person trips could be shared with other 

individuals traveling solo and with less than 5 minutes added travel time (to arrive at their 

destinations), and this value climbs to 80% for 15 to 30 minutes of added wait or travel time. 

120,000 SAVs will be required to meet less than 43% of Orlando’s 2.8 million single-traveler trips. 

In other words, just 1 SAV per 22 person-trips, on average, is able to serve almost half the region’s 

demand, helping reduce congestion while filling up passenger vehicle seats. 

INTRODUCTION 

Traffic safety and congestion are key transportation issues for many regions around the world. 

Driver error remains the predominant reason for vehicle crashes (NHTSA, 2015), and rising 

vehicle-miles traveled (VMT) is worsening traffic congestion (FHWA, 2017). The introduction of 

autonomous vehicles (AVs) for personal use may dramatically reduce vehicle collisions by 

eliminating driver error. AVs will also improve mobility options for many travelers, especially 

those without driver’s licenses. 

Several transportation network companies (TNCs) offer a dynamic ride-sharing (DRS) option, like 

uberPOOL and Lyft Line. These TNC services attempt to match riders with similar trip plans so 

that overall travel costs are reduced for riders, without compromising driver wages and TNC 

profits. Some delay is added for travelers, as they wait to accommodate other riders (in their 

pickups and/or drop-offs). This also has been referred to as “ridesplitting” (Shaheen et al. 2016b). 

DRS is used here, since it is more widely used in the literature. Ride-sharing is not a new concept 

(Chan and Shaheen, 2012), with carpooling often being feasible for those with common origins 

and destinations, and stable, similar departure times on both ends of a round-trip (e.g., for many 

school trips within a neighborhood and for certain work trips). In practice, only casual carpooling 

or ‘slugging’ tends to serve real-time demands of flexible departure times (Ma and Wolfson, 2013; 

Dai, 2016), and is limited to very special corridors (where high toll and time savings induce many 

drivers to open their doors to different, unknown passengers every day). 

Smartphone technology is fundamental to more widespread use of DRS, since it enables real-time 

access to traveler (and vehicle) locations (Amey et al., 2014). Shaheen et al.’s (2016a) FHWA 

report notes how important smartphone technology has been in improving travel information 
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access for transit (Transit App), providing shortest paths in real time for many modes (Waze and 

Google Maps), and increasing carpool-use (Carma). Exploiting this feature, TNCs have designed 

user-friendly ridesourcing platforms that interface passengers and drivers, at any time of day and 

in any region the TNCs serve. By selecting the DRS option, travelers’ costs (but not travel times) 

are lowered, thanks to TNCs working to match two or more travelers with overlapping real-time 

routes. Such matches add some travel time, but deliver significant trip-cost savings and often good 

conversations among those sharing the ride, who had been strangers (alongside a TNC driver also 

on board). 

AVs will be expensive, at least initially, and not be available for personal ownership for many 

years (Bansal and Kockelman, 2017). Fleet operators may profitably invest in a fleet of AVs, and 

manage them as TNCs currently manage their (driver-supplied) fleets, but with lower labor costs 

and complete control of plans and routes. Safer technologies should eventually bring down 

insurance costs, making shared AVs, or SAVs, more economically viable. In terms of congestion, 

SAVs offering DRS can increase average vehicle occupancy (AVO) and reduce regional VMT 

(Fagnant and Kockelman, 2016; Rodier et al., 2016). It is useful to quantify the level of opportunity 

for such services, across a range of settings.  

This paper studies the DRS potential for trip-making across the Orlando metropolitan area in 

Florida, as serviced by a fleet of SAVs. It relies on trip tables derived from cellphone data, as 

provided by AirSage across a period of 30 consecutive days, to provide a sense of day-to-day trip-

making variations. The remaining paper summarizes related work, describes the AirSage dataset, 

and then explains the methodology used to match distinct vehicle trips or traveling parties and 

simulate a fleet of SAVs. All simulation results are presented, along with various conclusions. 

RELATED LITERATURE  

Over the past 10 years, several contributions have been made to optimize and/or implement DRS, 

with various researchers suggesting that DRS is a key method for reducing future roadway 

congestion (Levofsky and Greenberg, 2001; Berbeglia et al., 2010; Ma et al., 2013; Farhan and 

Chen, 2017; Levin et al., 2017). More recently, DRS has been successfully demonstrated using 

agent-based models (see, e.g., Fagnant and Kockelman, 2016; Bischoff et al., 2016; Loeb et al., 

2018; and Hörl, 2017), such as MATsim (Horni et al., 2016) and a synthetically generated dataset 

of people and journeys to simulate dynamic traffic conditions.  

When it comes to actual trip-making, mode choices, and traffic patterns, DRS has been 

investigated for cities like Atlanta, Georgia, Taipei, Taiwan, and New York City. DRS applications 

include the entire U.S. state of New Jersey and the nation of Singapore, using travel demand model 

trip-making predictions, publically available taxi datasets, and/or synthetically generated 

itineraries. Investigations demonstrate system feasibility and/or assess the computational 

efficiency of different methods for assigning vehicles and/or matching travelers in shared rides. 

(See Agatz et al., 2011; Santi et al., 2014; Alonso-Moro et al., 2016; Brownell and Kornhauser, 

2014; Bhat, 2016; Tao, 2007; and Spieser et al., 2014) 

Agatz et al. (2011) developed a sophisticated algorithm to match riders to their drivers and 

conducted a simulation using person-trip data obtained from Atlanta’s travel demand model. Their 
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results suggest that DRS works well not only in high-density, high-use settings, but also in 

sprawling suburbs and at low rates of utilization. However, they focused on driver (and thus TNC 

vehicle) unavailability, which can hamper sharing and dilute DRS opportunities. Brownell and 

Kornhauser (2014) focused on SAV system performance for the state of New Jersey. Employing 

a gridded-network for the entire state, along with synthetic trip-making data, valuable precision, 

accuracy, and applicability may have been lost in assessing optimal fleet requirements.  

Santi et al. (2014) and Alonso-Moro et al. (2016) overcame both these issues by using publicly 

available taxi datasets for New York City and real networks (via OpenStreetMaps, an open-source 

platform for map data). Alonso-Moro et al. observed that 98% of the City’s 3 million taxi trips 

could be served with just 2,000 vehicles and low waiting times (averaging just 2.8 minutes), 

backing DRS capabilities. Bhat (2016) confirmed those New York City taxi results, and added a 

vehicle repositioning algorithm. Tao (2007) also used a taxi data set, but for the city of Taipei. He 

developed a heuristic DRS algorithm using real-time taxi movements (not just trip calls by 

travelers) to test its efficiency in a realistic network setting. Tao (2007) achieved 60% ride matches 

and concluded that a higher matching rate could be obtained across larger networks with greater 

density of trip-making.  

Of course, taxis do not represent all person-trips in any region. Such trips tend to be shorter than 

household-vehicle trips (due to their cost), more often for business reasons or those without 

parking access (again due to their cost), and for visitors (due to their unfamiliarity with the region). 

DRS investigations of more representative trip-making are desired. By using a population-

weighted cellphone dataset, as done here, one overcomes the drawbacks of faked or taxi-based trip 

patterns. However, certain details are lost (such as trip-to-trip connections throughout the day), in 

order to protect travelers’ privacy, over space and time. Thus, cell-phone-based trips or other forms 

of extensive diary data tend to be aggregated by traffic analysis zones (TAZs) or neighborhoods, 

to obscure home and work addresses. To keep data size manageable (for dataset sharing), trips are 

often aggregated into hourly or multi-hour time-of-day bins as well. More detailed trip ends and 

trip schedules can be simulated/faked and disaggregated, while preserving the population’s basic 

trip patterns. This process ensures that matches are less obvious (with trips coming from all over 

a zone and hour, rather than from its centroid or mid-point, for example), and so was used here. 

But it comes at the expense of some accuracy and precision (versus the reality of actual trip 

locations and times, which are rarely available to anyone, for any large population). 

CELLPHONE DATASET 

The cellphone-based dataset employed here was generated by AirSage for the month of April 2014 

and for travel across the Orlando metropolitan area in Florida. AirSage uses the regular location 

pings of cell phones that are turned on and carried by customers of its partner companies (like 

Verizon and Sprint). Cellphone trips observed were aggregated based on six factors: each trip’s 

inferred origin and destination TAZs, the hour and day in which most of the trip was made (e.g., 

0100-0200 on April 4 or 1600-1700 on April 20), inferred trip purpose, and cell-phone subscriber 

class. All trips (and basic demographics) inferred from phone pings (of the carriers’ cell towers) 

were then expanded to reflect all trip-making in the region using population-weighted trip counts 

(including travel by persons who do not own cell phones or carry theirs, turned off). This type of 

cellphone data has been proven to represent origin-destination flows to a reasonably high-degree 
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of accuracy by capturing individuals’ activity-based data (Calabrese et al., 2011 and Alexander et 

al., 2015). Of course, limitations remain when researchers do not have access to all cell phone 

records and/or zone sizes are large. 

The Orlando region’s metropolitan planning agency models travel across 1,267 TAZs (with 1,261 

of them representing metropolitan area and the remaining 6 representing external TAZs). External-

zone trips can be very long, with ambiguity in their true destination or origin, so all external trips 

were removed from the dataset before seeking matches. The remaining 1,261 TAZs have a mean 

area of 2.22 sq. mi., a standard deviation of 9.92 sq. mi., and a median of 0.53 sq. mi. Traveler 

type based on work-type (such as, someone who works from home, works within the study area, 

commutes to the study area for work, or commutes away from the study area for work) also is not 

relevant, so it is not used here, in making matches. The population-weighted dataset obtained from 

AirSage lacks mode-specific classification, but since this study attempts to prove the viability of 

DRS considering all trips, this information can be neglected for the purposes of this study. 

MetroPlan Orlando, the region’s metropolitan planning organization (MPO), provided a detailed 

network, with nearly 24,000 nodes and around 61,000 links. Shortest-path travel times between 

each TAZ were used while disaggregating the trips, as discussed in the next section.  

METHODOLOGY 

Data Disaggregation 

Since AirSage provided an anonymized, spatially and temporally aggregate dataset (with trips 

classified into hourly bins and their origins and destinations by TAZs), smaller time steps and more 

detailed locations (instead of centroids) were needed for a DRS application of intra-regional trips. 

Also, the departure times of these trips need not always be in the hourly bin that AirSage indicated 

for each trip, because trips (within this region) can begin many minutes earlier (or can end many 

minutes later). This is because only the majority of the trip’s duration had to have occurred in the 

hour bin to which the trip was assigned by AirSage. Keeping these in mind, the data was 

disaggregated as explained below. 

A time-step of one minute was used here, to facilitate computation while preserving dataset 

integrity, and origins and destinations were randomly sampled from within the origin and 

destination TAZs. To simplify the process, the trips occurring within an hourly bin was uniformly 

distributed within the bin. Then, to account for the variability in departure time as mentioned 

above, 30-minutes of overflow was permitted into the previous and next hour bin, obtained by 

randomizing the minute-level departure time. The O’s and D’s for these trips, with varying 

departure times, were then sampled with equal probability from within their respective TAZs. 

Once a start time was assigned for these spatially disaggregated trips, the shortest-path travel times 

for that time of day, as obtained via Caliper Corporation’s TransCAD software, a travel-demand 

modeling tool, were used to sample individual trip travel times from a normal distribution, whose 

mean equaled this shortest-path travel time and had a standard deviation of ±2 minutes.  

Thus, the original 30-day 24-hour dataset was disaggregated resulting in smooth, minute-by-

minute trip-request files for each of the 30 days, with higher spatial detail and natural looking 

departure and arrival time patterns throughout each of the 30 days. The uniform disaggregation in 
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time and space employed here would serve as conservative estimates of the actual DRS 

capabilities. One day in this disaggregated dataset contains nearly 6.2 million person-trips. 

 

FIGURE 1  The Orlando network and nodes used for spatial disaggregation 

a) Orlando network separated by TAZ gridlines b) Centroids used in aggregated data c) 

Nodes available for spatial disaggregation. 

Day to Day Variability in Travel Patterns 

The cumulative trip distribution for each of the 30 days was obtained by time of day, as shown in 

Figure 2. It is evident that trip patterns are similar between weekdays and weekends. Variability, 

and consequently correlation, between each day was assessed using R software’s statistical tool. 
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Table 1 shows correlation coefficients for trip counts across all origin-destination pairs and across 

all 30 days of the month, with shading to highlight correlation patterns. Table 1 indicates that high 

correlation exists for trip patterns on Saturdays and Sundays, and for those made on weekdays, as 

one would expect (since weekdays have high shares of work and school trips, starting early in the 

day, while weekends have more flexible departure times and more recreational trip-making). 

Given these similarities, the following results are presented for a single weekday and a single 

weekend day. Results are very similar for other days of the 30-day dataset.  

 

FIGURE 2  Orlando trip distribution differences, by time of day, between weekdays and 

weekends. 

Trip Matching 

An analysis of these trip patterns suggests how many single-person trips can be matched with other 

trips, enabling ride-sharing, under different trip-delay and re-routing assumptions. A MATLAB 

code was developed to identify trips whose rides (in an SAV, for example) can be shared. An 

assumption of 4-person maximum vehicle occupancy was made, along with various travel delay 

thresholds, before running the code, for various maximum-delay scenarios (ranging from 5 

minutes of extra travel time, to a maximum of 30 minutes). 

Error! Reference source not found. illustrates how travel times under DRS conditions is 

calculated for this exploratory analysis, with ride-sharing en-route, as compared to those sharing 

an origin zone and a destination zone and having similar departure times. As noted above, the O-

D DRS program matches individual trip-makers so that the earliest departing traveler (in a group 

of matched travelers, all having the same O and D zone pair) does not experience a wait time 

greater than the pre-determined limit. The en-route DRS program approach is more complex, in 

that it matches travelers with potentially different O’s and D’s such that they have an intersecting 
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path where each of their wait times (between each traveler’s pick-up and drop-off time) are within 

the same pre-determined limits. This en-route approach is more in line with services currently 

available, though many uberPOOL and Lyft Line travelers probably share a general origin or 

destination (e.g., different airlines’ gates at the same airport). 

Including the entire dataset of trips would mean that trips that are already shared/performed 

together, like family members travelling together for dinner, inflate the trip-sharing percentages. 

Florida DOT (2013) estimates that over 50% of all automobile trips in that state are driven alone 

and 90% of all person-trips are driven in an automobile. Thus, only the portion of the person-trips 

in the AirSage dataset that may have been a single occupancy vehicle trip were used here, to 

perform matching (of solo travelers with one another, rather matching those already in traveling 

parties). This was found to be nearly 2.8 million single occupancy vehicle trips. 

 

FIGURE 3  Illustrations of fleet-sharing of O-D DRS and DRS en-route. 



TABLE 1  Correlation between Hourly Trip-Count Vectors between all Days for the Month of April 

 

Tue Wed Thu Fri Sat Sun Mon Tue Wed Thu Fri Sat Sun Mon Tue Wed Thu Fri Sat Sun Mon Tue Wed Thu Fri Sat Sun Mon Tue Wed

Tue 1.0000 0.9979 0.9984 0.9955 0.9346 0.9143 0.9979 0.9942 0.9986 0.9988 0.9954 0.9410 0.9248 0.9984 0.9972 0.9976 0.9974 0.9832 0.9351 0.9166 0.9979 0.9987 0.9988 0.9986 0.9953 0.9450 0.9235 0.9972 0.9961 0.9977

Wed 0.9979 1.0000 0.9991 0.9980 0.9476 0.9305 0.9984 0.9956 0.9989 0.9989 0.9978 0.9526 0.9394 0.9982 0.9984 0.9985 0.9988 0.9889 0.9482 0.9305 0.9982 0.9977 0.9989 0.9990 0.9976 0.9563 0.9382 0.9972 0.9943 0.9971

Thu 0.9984 0.9991 1.0000 0.9984 0.9451 0.9262 0.9979 0.9955 0.9987 0.9995 0.9982 0.9500 0.9357 0.9982 0.9980 0.9980 0.9990 0.9879 0.9452 0.9258 0.9982 0.9978 0.9986 0.9996 0.9982 0.9536 0.9342 0.9966 0.9940 0.9967

Fri 0.9955 0.9980 0.9984 1.0000 0.9534 0.9356 0.9963 0.9958 0.9963 0.9971 0.9997 0.9567 0.9436 0.9956 0.9975 0.9958 0.9978 0.9918 0.9537 0.9319 0.9962 0.9943 0.9958 0.9979 0.9989 0.9597 0.9424 0.9949 0.9908 0.9938

Sat 0.9346 0.9476 0.9451 0.9534 1.0000 0.9941 0.9411 0.9415 0.9423 0.9419 0.9531 0.9986 0.9966 0.9432 0.9467 0.9526 0.9541 0.9768 0.9990 0.9917 0.9414 0.9287 0.9384 0.9445 0.9531 0.9981 0.9955 0.9352 0.9218 0.9296

Sun 0.9143 0.9305 0.9262 0.9356 0.9941 1.0000 0.9258 0.9292 0.9227 0.9220 0.9341 0.9896 0.9989 0.9244 0.9311 0.9353 0.9370 0.9683 0.9958 0.9952 0.9261 0.9096 0.9195 0.9254 0.9332 0.9910 0.9990 0.9201 0.9061 0.9128

Mon 0.9979 0.9984 0.9979 0.9963 0.9411 0.9258 1.0000 0.9975 0.9970 0.9976 0.9961 0.9453 0.9344 0.9984 0.9992 0.9975 0.9973 0.9886 0.9422 0.9266 0.9996 0.9980 0.9977 0.9980 0.9946 0.9505 0.9342 0.9995 0.9979 0.9979

Tue 0.9942 0.9956 0.9955 0.9958 0.9415 0.9292 0.9975 1.0000 0.9933 0.9944 0.9950 0.9436 0.9361 0.9934 0.9977 0.9935 0.9949 0.9908 0.9441 0.9253 0.9970 0.9943 0.9945 0.9959 0.9935 0.9487 0.9367 0.9976 0.9956 0.9965

Wed 0.9986 0.9989 0.9987 0.9963 0.9423 0.9227 0.9970 0.9933 1.0000 0.9993 0.9963 0.9489 0.9330 0.9978 0.9968 0.9986 0.9982 0.9849 0.9427 0.9252 0.9970 0.9983 0.9995 0.9989 0.9970 0.9524 0.9313 0.9959 0.9935 0.9974

Thu 0.9988 0.9989 0.9995 0.9971 0.9419 0.9220 0.9976 0.9944 0.9993 1.0000 0.9970 0.9477 0.9321 0.9983 0.9974 0.9983 0.9986 0.9857 0.9420 0.9234 0.9980 0.9986 0.9992 0.9995 0.9976 0.9513 0.9307 0.9966 0.9944 0.9972

Fri 0.9954 0.9978 0.9982 0.9997 0.9531 0.9341 0.9961 0.9950 0.9963 0.9970 1.0000 0.9568 0.9424 0.9958 0.9973 0.9957 0.9976 0.9910 0.9529 0.9310 0.9957 0.9942 0.9957 0.9978 0.9988 0.9595 0.9411 0.9945 0.9905 0.9934

Sat 0.9410 0.9526 0.9500 0.9567 0.9986 0.9896 0.9453 0.9436 0.9489 0.9477 0.9568 1.0000 0.9939 0.9494 0.9508 0.9586 0.9586 0.9768 0.9974 0.9907 0.9456 0.9349 0.9448 0.9498 0.9574 0.9988 0.9921 0.9394 0.9269 0.9354

Sun 0.9248 0.9394 0.9357 0.9436 0.9966 0.9989 0.9344 0.9361 0.9330 0.9321 0.9424 0.9939 1.0000 0.9345 0.9395 0.9451 0.9457 0.9730 0.9977 0.9970 0.9349 0.9202 0.9296 0.9351 0.9421 0.9952 0.9993 0.9290 0.9155 0.9224

Mon 0.9984 0.9982 0.9982 0.9956 0.9432 0.9244 0.9984 0.9934 0.9978 0.9983 0.9958 0.9494 0.9345 1.0000 0.9981 0.9986 0.9977 0.9861 0.9430 0.9281 0.9984 0.9977 0.9980 0.9985 0.9951 0.9535 0.9334 0.9973 0.9956 0.9963

Tue 0.9972 0.9984 0.9980 0.9975 0.9467 0.9311 0.9992 0.9977 0.9968 0.9974 0.9973 0.9508 0.9395 0.9981 1.0000 0.9974 0.9974 0.9907 0.9477 0.9309 0.9988 0.9967 0.9973 0.9983 0.9960 0.9550 0.9393 0.9984 0.9962 0.9972

Wed 0.9976 0.9985 0.9980 0.9958 0.9526 0.9353 0.9975 0.9935 0.9986 0.9983 0.9957 0.9586 0.9451 0.9986 0.9974 1.0000 0.9986 0.9894 0.9531 0.9390 0.9974 0.9966 0.9983 0.9984 0.9961 0.9621 0.9437 0.9961 0.9931 0.9962

Thu 0.9974 0.9988 0.9990 0.9978 0.9541 0.9370 0.9973 0.9949 0.9982 0.9986 0.9976 0.9586 0.9457 0.9977 0.9974 0.9986 1.0000 0.9914 0.9543 0.9374 0.9976 0.9962 0.9978 0.9988 0.9974 0.9621 0.9445 0.9956 0.9925 0.9953

Fri 0.9832 0.9889 0.9879 0.9918 0.9768 0.9683 0.9886 0.9908 0.9849 0.9857 0.9910 0.9768 0.9730 0.9861 0.9907 0.9894 0.9914 1.0000 0.9787 0.9647 0.9886 0.9809 0.9841 0.9877 0.9892 0.9807 0.9736 0.9866 0.9804 0.9825

Sat 0.9351 0.9482 0.9452 0.9537 0.9990 0.9958 0.9422 0.9441 0.9427 0.9420 0.9529 0.9974 0.9977 0.9430 0.9477 0.9531 0.9543 0.9787 1.0000 0.9930 0.9425 0.9297 0.9392 0.9447 0.9531 0.9976 0.9972 0.9368 0.9237 0.9313

Sun 0.9166 0.9305 0.9258 0.9319 0.9917 0.9952 0.9266 0.9253 0.9252 0.9234 0.9310 0.9907 0.9970 0.9281 0.9309 0.9390 0.9374 0.9647 0.9930 1.0000 0.9273 0.9125 0.9215 0.9259 0.9306 0.9931 0.9969 0.9212 0.9084 0.9141

Mon 0.9979 0.9982 0.9982 0.9962 0.9414 0.9261 0.9996 0.9970 0.9970 0.9980 0.9957 0.9456 0.9349 0.9984 0.9988 0.9974 0.9976 0.9886 0.9425 0.9273 1.0000 0.9982 0.9975 0.9981 0.9948 0.9511 0.9346 0.9990 0.9973 0.9974

Tue 0.9987 0.9977 0.9978 0.9943 0.9287 0.9096 0.9980 0.9943 0.9983 0.9986 0.9942 0.9349 0.9202 0.9977 0.9967 0.9966 0.9962 0.9809 0.9297 0.9125 0.9982 1.0000 0.9988 0.9980 0.9942 0.9402 0.9191 0.9981 0.9972 0.9983

Wed 0.9988 0.9989 0.9986 0.9958 0.9384 0.9195 0.9977 0.9945 0.9995 0.9992 0.9957 0.9448 0.9296 0.9980 0.9973 0.9983 0.9978 0.9841 0.9392 0.9215 0.9975 0.9988 1.0000 0.9990 0.9963 0.9485 0.9283 0.9969 0.9952 0.9985

Thu 0.9986 0.9990 0.9996 0.9979 0.9445 0.9254 0.9980 0.9959 0.9989 0.9995 0.9978 0.9498 0.9351 0.9985 0.9983 0.9984 0.9988 0.9877 0.9447 0.9259 0.9981 0.9980 0.9990 1.0000 0.9980 0.9533 0.9339 0.9970 0.9946 0.9976

Fri 0.9953 0.9976 0.9982 0.9989 0.9531 0.9332 0.9946 0.9935 0.9970 0.9976 0.9988 0.9574 0.9421 0.9951 0.9960 0.9961 0.9974 0.9892 0.9531 0.9306 0.9948 0.9942 0.9963 0.9980 1.0000 0.9595 0.9403 0.9929 0.9884 0.9928

Sat 0.9450 0.9563 0.9536 0.9597 0.9981 0.9910 0.9505 0.9487 0.9524 0.9513 0.9595 0.9988 0.9952 0.9535 0.9550 0.9621 0.9621 0.9807 0.9976 0.9931 0.9511 0.9402 0.9485 0.9533 0.9595 1.0000 0.9941 0.9454 0.9333 0.9401

Sun 0.9235 0.9382 0.9342 0.9424 0.9955 0.9990 0.9342 0.9367 0.9313 0.9307 0.9411 0.9921 0.9993 0.9334 0.9393 0.9437 0.9445 0.9736 0.9972 0.9969 0.9346 0.9191 0.9283 0.9339 0.9403 0.9941 1.0000 0.9291 0.9161 0.9222

Mon 0.9972 0.9972 0.9966 0.9949 0.9352 0.9201 0.9995 0.9976 0.9959 0.9966 0.9945 0.9394 0.9290 0.9973 0.9984 0.9961 0.9956 0.9866 0.9368 0.9212 0.9990 0.9981 0.9969 0.9970 0.9929 0.9454 0.9291 1.0000 0.9988 0.9981

Tue 0.9961 0.9943 0.9940 0.9908 0.9218 0.9061 0.9979 0.9956 0.9935 0.9944 0.9905 0.9269 0.9155 0.9956 0.9962 0.9931 0.9925 0.9804 0.9237 0.9084 0.9973 0.9972 0.9952 0.9946 0.9884 0.9333 0.9161 0.9988 1.0000 0.9976

Wed 0.9977 0.9971 0.9967 0.9938 0.9296 0.9128 0.9979 0.9965 0.9974 0.9972 0.9934 0.9354 0.9224 0.9963 0.9972 0.9962 0.9953 0.9825 0.9313 0.9141 0.9974 0.9983 0.9985 0.9976 0.9928 0.9401 0.9222 0.9981 0.9976 1.0000



  9 

 

 

Fleet Simulation 

A fleet simulation was carried out to assess a practical SAV fleet requirement for the metropolitan 

region of Orlando to cater to the trips with pre-specified service characteristics (such as, maximum 

waiting time or maximum additional in-vehicle travel time). Here, practicality is defined from an 

operator’s perspective: a practical fleet is one with fewest vehicles able to serve the most (single-

person) trips possible while adhering to these pre-specified characteristics. A framework was 

developed in MATLAB to simulate a fleet of SAVs for a typical day. The trip request file generated 

from data disaggregation served as an input to the framework, along with the characteristics that 

are expected of the fleet. This included: fleet size, maximum allowable waiting time before an 

SAV is assigned to a passenger, maximum allowable time an SAV can take to reach the passenger, 

maximum additional time that is imposed on passengers who will be detoured for a new pickup 

and maximum additional time that a newly picked-up passenger has to wait while the previous 

occupants are dropped off. Table 2 states all these variables along with their abbreviations and this 

will stay consistent in definition for the remaining sections of the paper. In addition to this, 

Orlando’s network was converted into a MATLAB directional graph (digraph) and used to analyze 

shortest-path routes and times taken by SAVs. 

TABLE 2  List of Abbreviations Used in Reference to the Simulation Framework 

Abbreviation Description Values Considered 

#SAVs Total number of SAVs in the fleet 

5,000 , 10,000 , … 

30,000 , 60,000 , 

120,000 

maxExtraTripTime 
Minimum time imposed on travelers sharing 

their trips 

5 minutes and 10 

minutes, … 30 minutes 

maxWaitingTime 
Maximum time that a passenger has to wait 

before an SAV reaches him/her 
5 minutes, 10 minutes 

maxSearchTime 
Maximum time that a trip is stored on the 

waitlist before being rejected 

0 minutes, 1 minute, 3 

minutes, 10 minutes 

unserviced 
Total trips that cannot be serviced under the 

above restrictions 
Internally calculated 

ETA 
Estimated arrival time for an SAV to either 

pick up or drop off a passenger 
Internally calculated 

 

The framework was composed of three distinct blocks: SAV allocation, SAV update and waitlist 

management. The SAV allocation block allocates the nearest SAV to a trip request based on the 

maxWaitingTime criterion. If no SAV was found satisfying this criterion, the trip request is stored 

in the waitlist. If an SAV with an existing occupant is located, the maxExtraTripTime criterion is 

checked prior to allocation, to minimize delays imposed on the travelers. After all the trips in a 

particular time step are either allocated to an SAV or stored in the waitlist, the SAV update block 

for the next time step is executed. In the SAV update block, the current location, destination and 

ETA of an SAV is monitored. If the SAV has not reached its destination for either a pickup or a 

dropoff operation, then its current location and ETA are updated. If the SAV has reached its 
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destination for pickup, the dropoff operation is initiated. If a dropoff was executed, the second 

destination for dropoff of shared rides is processed, or the SAV stays idle, waiting for the next 

request. Once the update block has executed, all previously waitlisted trip requests are checked for 

SAV allocation before moving on to the next time step of trip requests. If the trip requests have 

been on the waitlist for more than maxSearchTime, they are removed from the waitlist and 

unserviced is updated to reflect the same. The flowchart for the process described is shown in 

Figure 4. Fleet sizes varying from 5,000 - 120,000 SAVs, in intervals of 5,000 up to 30,000 and 

two sizes of 60,000 and 120,000, was used for these simulations and the results are discussed in 

the next section.  

 

FIGURE 4  The flowchart describing the main modules of the simulation framework. 

RESULTS 

Infinite Fleet based Trip Matching 

Trips matched assuming availability of an infinite fleet provided optimistic results. As shown in 

Table 3, even after removing a large share of trips that reflect traveling parties (and thus focusing 

only on Orlando trips undertaken by a single person), nearly 60% of all such single-person trips 

can be shared with less than 5 minutes of added total travel (for each of the ride-sharing travelers, 

including any wait time added). This percentage reaches 86% matching or shared when travelers 

are willing to wait (or delay their destination arrivals, for example) up to 30 minutes. Of course, 

not all travelers need to be willing to wait that long; most of the matches are made with added 
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delays of under 5 minutes. It is interesting to note that O-D DRS remains almost a constant for 

trips with maximum allowed travel time greater than 10 minutes. This is due to the spatial 

constraint on these trips which restricts scope for matches after a point in temporal flexibility. 

TABLE 3  Percentage of Orlando Trips That Can Be Shared With O-D DRS and DRS en-

route for a 4-Passenger SAV under Different Maximum-Delay Assumptions 

Maximum Added 

Travel Time (including 

wait time) 

Percentage of 

Trips that Can 

be Shared 

(O-D DRS) 

Percentage of 

Trips that Can 

be Shared 

(DRS en-route) 

5 min 18.48% 56.82% 

10 20.56 74.15 

15 20.55 80.56 

20 20.57 83.57 

25 20.65 85.29 

30 20.65 86.23 

 

Fixed Fleet based DRS Simulation 

A fixed fleet assumption offers reliable results in terms of ready applicability. A simulation based 

on a fixed fleet size and given service characteristics were simulated to obtain fleet sizes for each 

permutation and combination that was found to be practically valid. Figure 5 below shows the 

different fleet sizes assumed in different scenarios, as well as the different service characteristics. 

The percentage demand served, percentage VMT reduction observed, percentage empty VMT and 

the average number of trips served by an SAV have been shown as metrics to assess the best fleet. 

A vehicle replacement ratio is also calculated, as done by Loeb and Kockelman (2017) and Fagnant 

and Kockelman (2016). The average number of trips made by a conventional vehicle in one day is 

3.02 (NHTS, 2009). Since the average SAV focused on solo travelers in the Orlando region serves 

22.05 person-trips/day, it appears that more than 7 conventional vehicles can be replaced by 1 

SAV. The average trip-length per person-trip for all the scenarios was found to be 14.4 miles with 

a standard deviation of ± 1.29 miles. The change in VMT was calculated relative to the VMT 

observed by all the trips on the network without the fleet. Surprisingly, the use of such fleets added 

VMT to the network from as little as 4% (by poorly performing fleets) to as much as 49% (by well 

performing fleets). On average, each SAV travels nearly 329 miles in one day and this intensive 

use explains the rise in VMT. SAVs can be expected to go through quick transitions from 

acquisition to being salvaged or sold. 
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FIGURE 5  DRS potential based on fleet sizes and service characteristics. 

High average trip-lengths for each SAV was observed for each scenario. To understand this, the 

trip-length distributions were visualized and as seen in Figure 6, Orlando has a heavy tail of high 

trip-lengths. This is consistent with the millions of tourists who make shopping and recreational 

trips in the region. 
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FIGURE 6  Trip-length distribution for the disaggregated data for one day. 

 

CONCLUSIONS 

This study anticipates the fraction of single-person trips that appear easily matched with one 

another, making them excellent candidates for dynamic ride-sharing across the Orlando 

metropolitan area. Several studies have simulated the operations of SAV fleets but without the 

comprehensive nature of this cellphone-based dataset (e.g., taxi datasets do not reflect other modes 

of travel) and/or without other key data (e.g., actual travel times). With such data in hand, and a 

new setting for simulation (a Florida city and major destination for many vacationers), the results 

obtained here may be relevant for many interested in encouraging SAV use and DRS, to keep 

travel costs, VMT, emissions, and congestion down, as self-driving vehicles start making travel 

easier. 

The trip-matching algorithm employed here suggests that nearly 60% of all single-person trips 

occurring each weekday in Orlando appear matchable to other trips taking place (for those 

traveling solo), with less than 5 minutes of added total travel time (including any wait time). Any 

added willingness to wait (up to 10 minutes or 15 minutes, maximum, for example) brings this 

percentage up (to 74.2% and 80.6%, respectively), suggesting substantial shared-fleet activities in 

many (and probably all) cities around the U.S. and presumably around the world.The second part 

of the paper used a fleet simulation algorithm to gauge the fleet size requirements to achieve the 

above predicted levels of ride-sharing. Results indicated that a fleet size of around 120,000 SAVs 

were needed to cater to less than 43% of Orlando’s 2.8 million single-traveler trip demands (i.e., 

not counting existing carpools by family, friends, and colleagues). On average, one SAV can 

replace a little more than 7 conventional vehicles or in the best demand-capture case, almost 4 

conventional vehicles. The practical fleet size required can be significantly reduced, if one uses 

more complex matching algorithms, thus increasing the replacement ratio. It also worthy to note 
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that Orlando’s unique trip patterns, shopping trip count and above-average person-trip lengths may 

be negatively biasing the results. 

One important limitation arising here is the assumed disaggregation of trips, over space and time. 

Uniform temporal and spatial disaggregation was used to spread AirSage cellphone trip ends over 

time and space. In reality, many trips may be more concentrated, increasing the likelihood of trip-

matching, especially during peak times of day. Real-world implementations may be even more 

successful. In other words, the vehicle-replacement ratio obtained in this study serves as a lower 

bound to practically observable values. Similar frameworks, with simulated data, have shown that 

replacement ratios between 6 and 9 (Burns et al., 2013), 10.8 (Fagnant and Kockelman, 2016), and 

between 3.75 and 11.5 (Loeb and Kockelman, 2017). 

In addition, average vehicle occupancies form an integral part of determining how effective the 

fleet is at matching and sharing trips. In this analysis, average AVO over all scenarios was found 

to be 1.21 with a maximum of 1.63. With the right policy being implemented, the rise in VMT can 

be countered by being able to remove every other SOV currently driven in Orlando. All it requires 

is travelers’ willingness to share rides with people they do not yet know. Hopefully, that will not 

pose a challenge long-term, so that our cities and nations can reduce fossil fuel reliance, emissions, 

congestion, and travel costs. 
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