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Abstract 

Car-sharing offers travelers an alternative method of transport in or between cities with the 
transformative implementation of connected and autonomous vehicles (CAVs) likely further promote 
the sharing. To provide decision makers reasonable information about car-sharing strategies or shared 
CAVs, transportation planners and researchers are looking for advanced travel modeling approaches. 
Activity-based modeling (ABM) is one of the most promising approaches, modeling travel demand at 
person-level and offering great temporal and spatial details about individuals’ travel patterns. 
Currently, the four-step travel demand modeling process is the most commonly used approach which 
is trip-based, modeling travel demand at an aggregated level of Traffic Analysis Zones (TAZs). 
However, this approach is unable to track individuals’ travel patterns with great spatial details. ABM 
can be used to estimate the impacts of car-sharing in transportation systems and evaluate the policies/
strategies related to the CAV operations. ABM takes the individual’s daily activities chained by a 
series of travel trips, namely a tour, as the travel demand input. The input can be simply summarized 
into “4Ws”: Who this individual is, where this individual lives and works, what daily activities this 
individual person does, and when this individual plans to perform activities. This study delivers a 
methodological framework to prepare the “4W” inputs, taking advantage of existing travel model data 
(including the travel survey data) and open source data (e.g., OpenStreetMaps). This paper presents a 
programming-based tool composed of a series of algorithms that output synthetic population, 
synthetic locations for activities, travel tours (i.e., chained trips and activities), and travel schedules 
for performing activities, respectively. The tool is particularly useful for planning practitioners from 
state agencies and regional planning organizations who already have the data (e.g., regional travel 
models and travel survey data) and seek to convert their existing trip-based models to activity-based 
models that may be more suitable for simulating the individuals’ travel patterns.  

Keywords: Travel demand data, Activity-based modeling, Synthetic population, Travel tour, 
Open source 

INTRODUCTION 

Observation of travel patterns is evolving in many aspects including the new operational strategies 
using existing transportation tools (e.g., vehicle/ride sharing) and upcoming transportation 
innovations (e.g., connected and autonomous vehicles). The emerging travel patterns may require 
advanced modeling techniques for traffic forecasting and evaluations of transportation policies and 
projects.  

Car-sharing is transforming the way people travel, live and socialize (1). Including Uber, Car2go, 
Lyft, Zipcar, Hertz and Enterprise, there were more than 35 major car-sharing industrial 
participants/competitors in North America that managed or operated more than 25 thousand shared 
vehicles in July 2015 (2). Car-sharing offers mobility to travelers without the burden of owning a 
vehicle and the car-sharing services are more flexible than transit (3). Emerging transportation tools 
such as connected and autonomous vehicles (CAVs) will further facilitate the growth of the car-

54 

mailto:jun.liu@utexas.edu
mailto:kkockelm@mail.utexas.edu
maizyjeong
Highlight



Liu & Kockelman                                      2 

 

sharing market. CAVs are expected to significantly improve surface transportation systems from three 1 
aspects: safety (4), mobility (5-7) and sustainability (8, 9).  2 

Currently, most in-use state and regional travel models are “four-step” trip-based (10) and these 3 
models are aggregated at the level of traffic analysis zones (TAZs) with trip origins and destinations at 4 
TAZ centroids. New travel patterns require the modeling of individual trips (rather than aggregated 5 
trips between TAZs) at great spatial and temporal details. For example, the car-sharing system needs a 6 
model to capture how a service may connect two individual trips. If two trips are connected in the 7 
same TAZ, the four-step travel model is unable to capture such car-sharing patterns. Therefore, people 8 
are seeking advanced travel modeling approaches; and activity-based modeling (ABM) is considered 9 
one of the most promising approaches. ABM is based on the principle that travel demand/trips are 10 
derived from activities that people plan to perform daily (11). ABM approach is tour-based, ensuring 11 
spatial, temporal and modal consistency between trips made by the same person during the course of a 12 
day and within the same tour. A tour is a chain of trips made by the same person to conduct activities 13 
throughout the day. Individuals’ daily travel and activities can be tracked in ABM, capturing car-14 
sharing between individuals and answering questions regarding car-sharing operational strategies 15 
(e.g., evaluating car-sharing services or estimating the demand given one proposed car-sharing 16 
policies).  17 

The properties of ABM present a challenge to transportation planning practitioners. ABM is a 18 
data-hungry approach that requires detailed input information about individuals instead of TAZs in 19 
trip-based model. In order to prepare the ABM travel demand input data, one may think of conducting 20 
a comprehensive travel survey that asks every person in a modeling region about their activity diary 21 
(key information should include the times, locations and types of activities). However, it sounds 22 
financially infeasible. This study delivers a methodology of preparing travel demand data for ABM, 23 
utilizing available data sources including the existing household travel surveys, well-established trip-24 
based models, and open-source data. This study is particularly useful for transportation planners who 25 
develop and apply trip-based travel models in their jurisdiction since the input data used in this study 26 
are commonly available for transportation planning researchers and practitioners. The methodology 27 
offers insights in preparing the data for ABM that help simulate and understand the individuals’ travel 28 
patterns, and evaluate the transportation policies/strategies under the environment of shared economy 29 
and new travel modes, e.g., shared connected and autonomous vehicles. This study presents an 30 
example of using data that are easily accessible by the public. Other data sources, such as 31 
transportation’s Big Data platforms like Streetlights (www.streetlightdata.com) and AirSage 32 
(www.airsage.com), which may be private but provide great travel data can also be used in preparing 33 
activity-based model input data.  34 

 35 

METHODOLOGICAL FRAMEWORK  36 

This study proposes a methodology of preparing the input data for ABM. The input data may be 37 
summarized as “4Ws” for each traveler’s choices, as shown in Figure 1. The core of the framework 38 
consists of a series of algorithms that output “4Ws” by inputting the aggregated data at zone level. 39 
The framework starts with generating synthetic population and households based on land use and 40 
socioeconomic data. The output at this step provides information of “Who,” defining travelers 41 
individually based on age, gender, employment, car ownership, and household characteristics. The 42 
next step is locating of households and employments, the information of “Where”, taking advantage 43 
of the Open Street Map (OSM) data that contains the layout of buildings in a region. These locations 44 
are designated areas for conducting activities. The following two steps together output the information 45 
of “What,” a chain of daily activities that form a travel tour. Zone level travel demand is converted to 46 
person-level travel demand by chaining the trips between zones and assigning locations for trips’ 47 
origins and destinations (that are also the activity locations). The last step is to prepare the information 48 
of “When,” a tentative schedule for traveling or performing activities.  49 
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 1 

FIGURE 1 Methodological framework of outputting personal level travel demand at person 2 
level from zone-level travel demand 3 

 4 

DATA PREPARATION 5 

Three data types were suggested for synthesizing a region’s population and generating their travel 6 
tours or itineraries: 1) travel demand data from trip-based or four-step travel models, 2) model 7 
equations’ parameter values, and 3) open-source map data. Table 1 lists the specific data sets used 8 
here, for method illustration.  9 

  10 
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TABLE 1 Data Sources for Preparing AMB Inputs 1 

Source Data Key variables Data source 

Travel 

demand 

data 

TAZ land use data and 

its shape file  

 Population 

 Household size 

 Employment 

 Car ownership 

 Income level 

Regional travel demand models: 

https://www.campotexas.org/  

Trip distribution table 

(i.e., OD matrix) 

 Trip purpose  

 Number of trips 

Parameter 

data 

Population age 

distribution 

 Age 

 Percent 

Census: 

https://factfinder.census.gov/faces/nav/jsf/pages/index.xht

ml  

Trip departure time 

distribution  

 Trip purpose  

 Time of day 

 Percent  

NCHRP Report 716: 

http://www.trb.org/Publications/Blurbs/167055.aspx  

Trip patterns  

 Number of trips 

in a daily tour 

 Percent 

NHTS datasets: 

http://nhts.ornl.gov/download.shtml  

Map data OpenStreetMap data 

 Road network  

 Building/housing 

footprint 

OpenStreetMap data: 

http://www.openstreetmap.org/  

 2 

Travel Demand Data 3 

Travel demand data were extracted from Austin’s (CAMPO’s) regional travel demand model. The 4 
region covers over 5,000 square miles, including Bastrop, Burnet, Caldwell, Hays, Travis, and 5 
Williamson Counties in Texas. CAMPO’s 2010 Planning Model is a largely traditional four-step 6 
macroscopic travel demand model (12). This study used data from the 2020 scenario.   7 

Two model data sets were used: TAZ land use data (for jobs and population counts, by type, 8 
across zones) and trip distribution data (between zones for each trip purpose). The TAZ land use data 9 
is important for synthesizing population. The trip distribution data is also called the origin-destination 10 
matrix (OD matrix), offering a picture of possible trips between/within TAZs. Six types of trip 11 
purposes were considered in the tour generation process: Home-based work (HBW), Home-based 12 
school (HBSc), Home-based retail (HBR), Home-based other (HBO), Non-home-based work 13 
(NHBW), and Non-home-based other (NHBO) trips.   14 

 15 

Parameter Data 16 

The age distribution parameter is used to control population age structure in a model region. The trip 17 
pattern parameter tells the tour generation process how many trips a person may make in a day. 18 
According to the U.S.’s 2009 National Household Travel Survey (NHTS), the average number of 19 
daily trips for Texans is 3.76 trips (or 3.78 trips-per-day nationally). Figure 2 (a) presents the 20 
distribution of daily trips per person, with 15.7% of Texans making zero trips on any given day, and 21 
22.6% making exactly two trips in one day.  22 

 23 

https://www.campotexas.org/
https://factfinder.census.gov/faces/nav/jsf/pages/index.xhtml
https://factfinder.census.gov/faces/nav/jsf/pages/index.xhtml
http://www.trb.org/Publications/Blurbs/167055.aspx
http://nhts.ornl.gov/download.shtml
http://www.openstreetmap.org/
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 1 

FIGURE 2 Parameter data: (a) trip count in daily travel tours and (b) time-of-day distributions 2 
by trip purpose 3 

 4 
The trip departure time tells when a trip may start. This parameter is important for observing the 5 

time-of-day variation of travel patterns. NCHRP Report 716 provides a list of parameters for trip 6 
departure times by trip purpose (10). The parameters show percentages of trips starting within one 7 
hour in a day, as shown in Figure 2(b). 8 

 9 

Map Data 10 

Great spatial details come from the map data. This study extracted the road network data and the 11 
house/building footprints from an open source map data – OpenStreetMap (www.openstreetmap.org). 12 
The map data provide not only how people get place to place, i.e., routes, but also the information 13 
about the locations for homes and employments.  14 

 15 

PROGRAMMING 16 

This section presents key programming algorithms for preparing disaggregated travel data. The 17 
algorithm codes are available from authors, and will be released as open source whenever ready.  18 

 19 

Generating Synthetic Population and Household  20 

The publicly available survey data (e.g., household travel surveys and Census data) offer insights in 21 
the socio-economy or land use at an aggregated level, for instance, tracts for census data, and Traffic 22 
Analysis Zones in travel surveys. The socio-economy or land use information is closely related to the 23 
generation and attraction of travel trips. Four-step regional travel demand modeling often starts with 24 
the socio-economic data as the inputs in the models. A complete travel model is supposed to have a 25 
database containing TAZs’ socio-economic or land use information which may be a synthesis from 26 

http://www.openstreetmap.org/
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various data sources including household travel surveys and census data. For modeling of future 1 
years, the projected socio-economic data is also provided in travel models by coupling with experts’ 2 
opinions, general population growth rates and regional land use plans . This study used the CAMPO 3 
Model’s forecasted socio-economic data for year 2020 to generate information for individual travelers 4 
in the model region, including their personal information (age, gender, employment, car ownership) 5 
and their household’s information (household size and income level). Note, car ownership is a 6 
household property in input data, and assigned to specific household members in this program 7 
according a person’s age and employment status.  8 

 9 

Allocating Locations for Households and Employments 10 

Activities are expected to happen in either homes or employment locations, which are also the trip 11 
origins and destinations. Daily activities include home, work, school, shopping and other activities. 12 
Home activities are performed at homes, and work-related activities occur at employment locations. 13 
School, shopping and other activities (e.g., eating, exercise, etc.) are also likely to occur at certain 14 
locations that are associated with employments (e.g., teacher, salesman, chief or servant, or physical 15 
couch).  16 

This study extracted the polygon information from the OSM’s building layer. A centroid 17 
(longitude and latitude) was obtained as the physical location of each building polygon, and the site 18 
area of each polygon was also calculated. Besides the physical location and site area, other 19 
information (such as the floor area) is also valuable, but not available from data used in this study. 20 
According to the site area, the physical locations obtained from OSM data are grouped into: 1) small 21 
size, < 5000 sq ft, 2) medium size, 5000 ~ 10000 sq ft, and 3) large size, > 10000 sq ft. Small sized 22 
buildings are assumed to be single-family homes, medium sized ones are apartments, and large sized 23 
buildings are places of employment. The household income is regarded as a key factor in the 24 
building/location allocation. Single-family homes are likely to be medium and high income 25 
households; and apartments are for lower to medium household incomes levels. All assumptions are 26 
not strict but just represent the most likely situations. Randomness is involved in algorithms.  27 

Since this study uses the future year’s travel demand model data and the OSM data contains the 28 
information about existing houses and buildings, it is fairly reasonable to generate new employment 29 
locations to handle additional employments (which represent the future land use development). The 30 
type of employments is also considered, which tells what a location is for in terms of activity type or 31 
travel trip purpose, including basic work, shopping/retail, education and other. A location may be only 32 
for basic work, such as office buildings. A location can also have multiple functions, such as schools 33 
where faculty work and students attend for educational activities. 34 

In general, a higher income level household is associated with a bigger house. The households 35 
with lower level incomes are likely to be limited to apartment buildings. Unlike houses, the apartment 36 
buildings can house multiple households. Assuming most apartment buildings are 2 ~ 3 floors and 37 
each unit is about 1000 sq ft, the apartment buildings are split into multiple pieces by dividing the site 38 
area over 500; and these units from the same building share the identical location. Projected 39 
households are included in the future year’s demand model; therefore, additional houses may be 40 
generated in some TAZs.  41 

 42 

Chaining Trips between TAZs 43 

Trips made by one traveler in one day form a trip chain, called a tour. Based on the OD matrices from 44 
four-step travel models, this study develops algorithms to chain the trips to generate tours for 45 
individual travelers. The tour pattern, i.e., number of trips in a tour, is defined according to 2009 46 
National Household Travel Survey (NHTS), as shown in Figure 2. Zero-trip makers are likely to be 47 
either too young or too old to make a travel on a daily basis, i.e., younger than 5 years old or older 48 
than 85 years old. In addition, the individuals who do not have a car and are unemployed have an 49 
increased likelihood of making zero trips daily than those who have a car and a job. The number of 50 
trips for travelers who own a vehicle is generally more than that for those who do not have a vehicle. 51 

The OD matrices specify trips by purposes, including home-based work (HBW), home-based 52 
school (HBSc), home-based retail (HBR), home-based other (HBO), non-home-based work (NHBW), 53 
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and non-home-based other (NHBO). The trip purposes tell the origin and destination characteristics. 1 
For example, a HBW trip links a home and an employment location; an HBSc trip connects a home 2 
and an educational facility; and a NHBW trip starts from non-home and non-work place to a work 3 
place. In general, a traveler is assumed to have one home, one place for work, one place for 4 
educational activities, and may have multiple places for other activities.  5 

 6 

Allocating Locations for Trip Origins and Destinations 7 

The previous step chains trips between TAZs, while the locations of trips’ origin and destination are 8 
not specified yet. The activity-based models require specific locations for trips’ origins and 9 
destinations. Based on the output from the previous step, this step allocates locations for trips within 10 
particular TAZs. The allocation process is according to the trip-associated activity type. For example, 11 
a HBW trip connects one home and one work location, requiring a search for the associated traveler’s 12 
home location (which is pre-specified in the synthetic households after home location assignment) and 13 
his or her work place from all possible employment locations within a specific TAZ. All work-related 14 
trips for one person are linked with the same work place. For other types of trips including HBR or 15 
HBO, a location is needed for shopping or other activities within the target TAZ. Different trips for 16 
shopping or other activities may be connected with different places as long as the location’s type is 17 
correct and it is in the corresponding TAZ. 18 

With the exception of home locations, the number of trips received by a facility or building is 19 
proportional to the number of employments generated in an early step (it can also be obtained from 20 
land use surveys if available). For example, a shopping facility has ten salesmen; therefore it may 21 
receive more (not exactly twice) trips than one facility which has five salespersons.  22 

The travel mode is also determined in this process, according to the vehicle ownership. 23 
Assumptions include: if a person owns a vehicle, he or she drives; if a person does not own a vehicle 24 
but his or her family owns at least one, he or she may carpool; and if the entire household owns no 25 
vehicle, he or she has to choose other modes.  26 

 27 

Generating Initial Travel Plans 28 

This step generates information about when a traveler may start a trip. NCHRP Report 716 provides 29 
the patterns of trip departure times, showing in general when a trip may begin. In addition, the activity 30 
durations and trip durations are also important, as they are major time consumers. Time may be 31 
regarded as the resource of making travel plans; and 24 hours is the total resource for an individual to 32 
make his or her travel plan in one day. Typical activity durations and start times are assumed in this 33 
study. For example, most work activities may start around 8 AM in the morning and last about 8 34 
hours. The activity durations are also dependent upon the number of activities planned by a traveler. 35 
The more activities planned for one day, the shorter the average activity duration is. The trip durations 36 
are determined by the trip distance and average trip speed. In this program, the bee line distance was 37 
quickly calculated according to a trip’s origin and destination, and 35 mph is assumed to be the 38 
average trip speed. The average speed may also be obtained from the skims in 4-step travel models. 39 
Initial travel plans only tell when a traveler is likely to make a trip. Travelers may modify their travel 40 
plans (like changing trip departure times, or re-scheduling the activities) in order to avoid the 41 
excessive time spent on roads, reaching the user-equilibrium situation, which is discussed in the 42 
section of Cast Study in this paper.  43 

 44 

PROGRAM OUTPUTS 45 

Synthetic Population 46 

The program was designed to use the surveyed data and projected demographics used in travel models 47 
(summarized at TAZ level) to generate a synthetic population, though the randomness is included in 48 
the generation process. The data outputted from the program is supposed to match the statistics of 49 
input data at a large extent. Minor differences (<1%) are found between the outputted synthetic 50 
population and the inputs (socio-demographic data of CAMPO travel model). The differences are 51 
mainly due to the randomness and number rounding. Using the CAMPO’s 2020 travel model inputs, 52 
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the program generated a synthetic population of 2,325,116 individuals from 895,082 households in the 1 
model region. For each individual, generated information includes age, gender, employment and car 2 
ownership. In addition, individuals are also linked with their household characteristics including 3 
household size, household income level, number of employed members, number of vehicles and 4 
household locations (longitude and latitude). All these factors are important in activity-based travel 5 
modeling process. Figure 3 (a) and (b) presents the example data of synthetic population at household 6 
and person level. From the spatial perspective, the synthetic population is also expected to mirror the 7 
aggregated input data. Figure 3 also presents (c) the input data of population and households 8 
aggregated at TAZ level from the CAMPO’s 2020 Travel Model, (d) the spatial distribution of 9 
synthetic households, and (e) the density map of synthetic population.  10 

 11 

 12 

FIGURE 3 Synthetic population and households 13 

 16 

Activities and Synthetic Locations 17 

Synthetic locations are needed to house these activities in the model region. The household locations 18 
are for home activities. For the other types of activities, the program generated employment-based 19 
locations to house them, though people may not go there for work but for other purposes such as 20 
shopping or taking classes. Figure 4 presents the example data of generated facilities for activities and 21 
Figure 5 also shows the locations for four types of activities. Compared with the household locations 22 
(as shown in Figure 4), the school and shopping locations are more likely to concentrate to the urban 23 
centers; locations for other activities are close to how households are spatially distributed in space.   24 
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 1 

FIGURE 4 Example data of synthetic facilities and spatial distributions of facilities for different 2 
types of activities (except home activity) 3 



Liu & Kockelman                                      10 

 

Trip Chains 1 

The core procedures of tour generation involved chaining the trips between TAZs (estimated in 2 
CAMPO’s model) to form a tour for an individual, according to this traveler’s demographics and 3 
NHTS’s survey about the daily tour-making patterns (i.e., the number of trips made by a person, as 4 
shown in Figure 2). The program generated in total 1.96M tours that chain 8.7M trips for 1.96M 5 
individuals who actually travel on a daily basis (which leaves 0.36M persons who do not travel during 6 
24 hours and are assumed staying at home for the whole day). The output resulted in about 3.9 trips 7 
per traveler in model region. Figure 5 presents the example data of synthetic trip chains, and two 8 
example tours in space: a four-trip tour with HBO  NHBO  NHBO  HBO trips, and a five-trip 9 
tour with HBW  NHBO  NHBW  NHBO  HBR trips.  10 

 11 

FIGURE 5 Example of Synthetic Tours or Trip Chains  12 

 14 

Travel Plans  15 

The outputted travel plan contains information about the person’s age, employment status, and a chain 16 
of activities with a tentative schedule. Figure 6 shows two example travel plans. The travel plan is the 17 
core input of ABM. The travel plan reveals a typical schedule for travel and activities. During the 18 
modeling process, the travel plan may be modified given constraints of one-day time and space in 19 
roadway network. Late arrival, early departure, or cancelling an activity will cause loss of utility, 20 
while being stuck in traffic will also negate the production of values. More details are presented in the 21 
cast study in this paper.  22 
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 1 

FIGURE 6 Example travel plans 2 

 3 

Spatial Details 4 

This program generates specific physical locations for individuals to perform activities and these 5 
locations are the origins and destinations of trips (rather than TAZ centroids in 4-step travel models). 6 
These locations are scattered in TAZs, as shown in Figure 7 (a). There are two types of scatter 7 
patterns. One type has quite clear patterns, shown in Figure 7 (b), along the road links, as these 8 
locations are known places for households and employments according to used open-source data. The 9 
other type seems to be irregular patterns, shown in Figure 7 (c). These locations were generated 10 
according to the road link/node locations and the number of households and employments in a TAZ. 11 
The irregularity is due to the limitations in open source data (e.g., incomplete records) and the need 12 
for understanding future travel patterns.  13 
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 1 

FIGURE 7 Spatial Details for Activity Locations  2 

 3 

CASE STUDY 4 

This section briefly presents a case study, to construct an activity-based model using the synthetic 5 
activity data generated by the program in this study. The model was built on the platform MATSim, an 6 
open-source agent-based simulation tool for large-scale activity-based microsimulations. MATSim is 7 
based on the co-evolutionary principle. Every agent (i.e., traveler) repeatedly optimizes his or her 8 
travel solutions based on their initial travel plans while competing for limited space-time slots with all 9 
other agents in the transportation network (citation, MATSim book). A MATSim run starts with initial 10 
travel plans, i.e., the chains of trips or activities a person plan to make on a daily basis. During 11 
iterations, the initial travel plans are then optimized individually. Every agent possesses a memory 12 
containing a number of day travel solutions, where each solution is composed of a daily trip chain and 13 
an associated score. The MATSim scoring function is based on the econometric utility of time. Unlike 14 
studies or programs where the utility is calculated for travel only (the mode or route choice), the 15 
utility function in MATSim accounts for both the travel and the activities an agent performs one a 16 
daily basis: 17 

 𝑈 = ∑ 𝑈𝑡𝑟𝑎𝑣𝑒𝑙,𝑖𝑡𝑡𝑟𝑎𝑣𝑒𝑙,𝑖 
𝑞
𝑖=1 + ∑ 𝑈𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦,𝑗𝑡𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦,𝑗 

𝑞+1
𝑗=1    18 

where 𝑈 = Total utility of a travel solution composed of a daily trip chain; 𝑈𝑡𝑟𝑎𝑣𝑒𝑙,𝑖 = Utility of 19 

travel for ith trip in a day; i = 1, 2, 3, …, q trips; 𝑡𝑡𝑟𝑎𝑣𝑒𝑙,𝑖  = Travel time for ith trip; 𝑈𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦,𝑗 = 20 

Utility of performing the jth activity in a day; j = 1, 2, 3, …, q+1 activities; and 𝑡𝑡𝑟𝑎𝑣𝑒𝑙,𝑖  = Duration of 21 
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jth activity. Moreover, ∑ 𝑡𝑡𝑟𝑎𝑣𝑒𝑙,𝑖 
𝑞
𝑖=1 + ∑ 𝑡𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦,𝑗 

𝑞+1
𝑗=1 = 24 hours.  1 

Monetary payments (e.g., tolls and fares) and the value of travel time (VOTT) are included in 2 
the 𝑈𝑡𝑟𝑎𝑣𝑒𝑙,𝑖.  The utility of performing an activity, 𝑈𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦,𝑗 is related to value of activity time 3 
(e.g., hourly wage). The travel utility is generally negative while the activity utility is positive. The 4 
travel solution optimization is to maximize the total utility of a chain of trips an agent may take to 5 
perform his or her planned activities. More details about the MATSim scoring function are available 6 
in the MATSim Book. The MATSim’s iterative process is to improve the utility by re-planning the 7 
travel trips i.e., modifying time choice, mode choice, or destination choice, and finally to reach 8 
dynamic user equilibrium (DUE). After reaching DUE, the MATsim outputs a most executable travel 9 
solution for each agent. As MATSim simulations are to mimic the process of travelers looking for the 10 
best travel solutions for their daily activities in real-world, the MATSim simulation results have been 11 
revealed to match the real-world travel patterns very well (13, 14).  12 

The outputs of MATSim simulations include an optimal travel plan for each agent. Through a 13 
closer look at the plan, researchers or modelers can track each agent in the network. In other words, at 14 
any time of a day, where an agent is and what this agent is doing can be presented. The animation of 15 
simulated activities and travel trips is available at https://www.youtube.com/watch?v=kqHI3xc3nC0.  16 

 17 

LIMITATIONS 18 

The accuracy of synthetic data generated in this study is heavily dependent upon the accuracy of 19 
inputs including the travel demand data, parameter data and map data. In addition, the program 20 
presented in this study generates synthetic activity and travel data according to limited data sources 21 
with a number of assumptions. The validity of these assumptions remains unknown, and surveys are 22 
needed to validate these assumptions in the future. If using a desktop level computer or laptop, the 23 
generation of synthetic data using the current program may be a computational burden for large-scale 24 
travel model regions (population > 1 M), due to the massive searching cases (e.g., assigning a location 25 
for an activity), and matching requirements (the disaggregated synthetic data are required to match the 26 
aggregated data at TAZ level from various prospects, e.g., the total population, household, vehicle 27 
ownership, employments, etc.). The use of workstation level computers may facilitate the run of the 28 
program.  29 

 30 

SUMMARY  31 

New travel patterns, e.g., car-sharing behavior, present an opportunity and also a challenge for 32 
transportation planners and researchers to explore the disaggregated travel demand at person level, in 33 
addition to the aggregated demand at zone level which has been well modeled using trip-based 34 
approach. This opportunity allows planners and researchers to confront the new questions regarding 35 
the new travel patterns and emerging transportation modes (e.g., autonomous vehicles), while the 36 
challenge may hold them back due to difficulty of obtaining disaggregated input data for advanced 37 
travel demand modeling at person level. This study offers a methodological framework to prepare 38 
input data for activity-based modeling (ABM), one of the most promising modeling approaches for 39 
person-level travel demand. The core of this framework is composed of a series of algorithms that 40 
take advantage of publicly available data sources (that are often aggregated at zone level) and produce 41 
the disaggregated data at person-level for ABM. The data sources used in this study include land use 42 
and socio-economic data, household travel surveys, Open Street Maps and regional trip-based travel 43 
models.     44 

This study summarized ABM data into “4Ws” regarding an individual’s daily travel: who this 45 
person is, where this person lives and works, what daily activities this person does, and when this 46 
person plans to perform activities. A program, consisting of a series of algorithms, was designed to 47 
generate the data that provide information about the “4Ws”. First, the program generated synthetic 48 
population based on the zone-level land use and socioeconomic data. Every individual in the 49 
modeling region is included in synthetic population; generated attributes include age, gender, 50 
employment, car ownership, and household characteristics. Second, places for households and 51 
employments were generated to answer where a person lives and works. Open Street Map (OSM) data 52 

https://www.youtube.com/watch?v=kqHI3xc3nC0
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provide the information about possible locations/places for households and employments. Then the 1 
program converted the zone-level travel demand (i.e., trips between zones) to person-level demand 2 
(i.e., a unique chain of activities, forming a travel tour which connects specific physical locations 3 
instead of zone centroids in trip-based models). The program gave answers to what activities a person 4 
does. Last but not least, a schedule for traveling or performing activities was generated by the 5 
program to tentatively answer when a person plans to perform activities. Example outputs are showed 6 
in this paper. The outputs present great temporal and spatial details about the individuals’ travel 7 
patterns.  8 

This study offers both methodological and practical contributions. The framework proposed in 9 
this study offers theoretical insights about the “4Ws” as the input components for constructing 10 
activity-based travel models and from what public data sources can be used to prepare the “4W” 11 
information. This study delivers a practical tool that can help transportation planners and researchers 12 
to prepare the “4W” information for ABM. The tool is a computer-based program developed in R 13 
environment, composed of a series of algorithms that take advantages of the publicly available data 14 
sources and produce person-level information for ABM.  15 
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