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ABSTRACT 

A self-driving, fully automated, or “autonomous” vehicle (AV) revolution is imminent, with the 

potential to eliminate driver costs and driver error, while ushering in an era of shared mobility. 

Dynamic ride-sharing (or DRS, which refers to sharing rides with strangers en route) is growing, 

with top transportation network companies (TNCs) providing such services. This work uses an 

agent-based simulation tool called MATSim to simulate travel patterns in Austin, Texas in the 

presence of personal AVs, and shared AVs (SAVs), with DRS and advanced pricing policies in 

place. Fleet size, pricing, and fare level impacts are analyzed in depth to provide insight into how 

SAVs ought to be introduced in a city. Results indicate that the cost-effectiveness of traveling with 

strangers overcomes inconvenience and privacy issues at moderate-to-low fare levels, with high 

fares being more detrimental than the base case. A moderately-sized Austin, Texas fleet (1 SAV 

serving 25 people) serves nearly 30% of all trips made during the day. The average vehicle 

occupancy (AVO) of this fleet was around 1.48 (after including the 12.7% of SAV vehicle-miles 

traveled [VMT] that is empty/without passengers), with a 4.5% increase in VMT. This same fleet 

performs better when advanced pricing is enforced in the peak periods (4 hours a day), moderating 

VMT by 2%, increasing SAV demand and in turn fleet-manager revenue. SAVs are able to earn 

around $100 per SAV per day even after paying tolls, but only at low-fare levels. 

Keywords: Shared autonomous vehicles; dynamic ride-sharing, congestion pricing; agent-based 

simulation; Austin, Texas 41 
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INTRODUCTION  1 

Smartphone technology is widely available and used by people of all ages and income brackets. 2 

Internet-enabled smartphones are changing how we travel, shop and communicate in our daily 3 

lives (1). In particular, on-demand services by Transportation Network Companies (TNCs), like 4 

Lyft and Uber, are easily summoned and regularly arrive within 10 minutes. On-demand bikes are 5 

also available in the central business districts of many major cities (2), and many parking lots are 6 

becoming less relevant. A rather new service, in the form of en-route carpooling, or DRS, by TNCs 7 

enables travelers to share their rides with people they have not met before, thereby reducing travel 8 

costs further and making car ownership less attractive (3). 9 

When AV technology eventually eliminates the driver’s role, big changes in travel behavior can 10 

be expected. AVs will be expensive to own in the early years of implementation, and SAVs will 11 

be the first economical alternative. DRS-enabled and fuel-efficient SAV systems will further 12 

reduce operating and thus access costs, while lowering congestion, emissions, and other negative 13 

externalities of driving one’s own car. 14 

To reflect the details of car-sharing and ride-sharing, the multi-agent transport simulation 15 

(MATSim) framework (4) is used here, to track travelers and vehicles across the City of Austin, 16 

Texas (Figure 1) in 2035. MATSim uses a co-evolutionary algorithm to anticipate a convergent 17 

set of dynamic traveler choices (for departure times, modes and routes) and traffic assignment to 18 

the network. This analysis benefits from MATSim’s congestion feedback mechanism that uses 19 

queue-based links to employ microscopic dynamic traffic assignment, as compared to static 20 

assignment and aggregate zone-based and four-step demand modeling. MATSim’s agent-level 21 

utility scores are maximized to seek user equilibrium in all cases. A recent DRS + SAV 22 

contribution (5) to MATSim code allows for a base-case scenario consistent with that used in (6), 23 

for several congestion pricing scenarios. Policies like advanced travel-time pricing (variable tolls), 24 

along with different SAV+DRS fare assumptions, improve our understanding of how SAV fleets 25 

and travel demand management through road pricing will impact mode choices and traffic 26 

conditions, as well as traveler welfare. 27 

The remaining sections of the paper are structured as follows: a brief literature review discusses 28 

the benefits of simulation and DRS, the model framework is described, and key assumptions and 29 

algorithms are presented. Subsequently, travel demand and traffic congestion results across 30 

different policy, fleet-size and fare-level scenarios are presented, along with recommendations for 31 

transportation planning and policy futures.  32 
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 1 

FIGURE 1 Map of the Region Modeled - Austin, Texas (Source: Google Maps) 2 

MOTIVATION 3 

Dynamic ride-sharing or real-time carpooling in conventional vehicles has been studied for nearly 4 

two decades now, but DRS benefits are not so widely known. The case study of U.S. cities (7) 5 

highlighted DRS’ operational and environmental benefits. Since then, numerous studies have 6 

analyzed DRS using different approaches and for cities with diverse land use patterns. More recent 7 

studies assume the use of SAVs. 8 

Optimization-based studies have emphasized the potential of DRS ((8), (9), (10),(11)). While they 9 

highlight the viability of a ride-sharing system, they do so without considering the endogenous 10 

effects of congestion and shifting mode choices. Recent survey-based research has examined mode 11 

choices and willingness to pay (WTP) for DRS services inside SAVs, to get a statistical insight 12 

into how the market may play out (see, (12),(13), (14), (15),(16)). These studies provide valuable 13 

insights on DRS adoption rates and profitability possibilities, giving operators a sense of future 14 

fleet sizes, but they lack the system perspective needed for managing the larger transport systems 15 

at play. Fortunately, several simulation studies have been pursued. Some of these use more realistic 16 

travel times (like (17), (18), (19), (20)), while others employ big datasets to understand travel on 17 

static networks ((21), (22)). Both sets provide some system perspective, but congestion feedbacks 18 

for SAV activities has been attempted only by (23), without DRS for Berlin, Germany. 19 
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Agatz et al. (8) studied an optimization-based approach to understanding the potential of DRS and 1 

optimization for Atlanta. They used data from a travel demand model and assessed wait-times that 2 

such fleets can operate under.  Two studies ((9), (10)) used the New York City taxicabs dataset 3 

and graph-based optimization approach to show that high trip-making density, like in New York 4 

City, significantly reduced fleet requirements by nearly 75%. However, they did not comment on 5 

the system-wide VMT benefits it may or may not have. More recently, (11) formulated an 6 

optimization problem to simultaneously assign incoming trip-requests as well as those waiting in 7 

queue. They used small fleet-sizes to capture half of the Chicago taxicabs dataset under fast 8 

computation times but had to rely on static networks. 9 

Alternatively, survey-based research has been used to study mode-choice and willingness to pay 10 

(WTP) to use DRS services. A stated preference survey (12) was used to study the market group 11 

which was most likely to adopt such a service. The authors remarked that young people and people 12 

with multimodal travel patterns were more like to take up DRS services. Other researchers (13) 13 

studied the mode-choice behavior by comparing conventional car-use to privately-owned AVs and 14 

SAVs and found that even freely available SAVs would only be used by 75% of the respondents. 15 

In addition, (14) found that travel times played a significant part in WTP for DRS and many long-16 

distance business trips were likely to be shared. On the contrary, (15) have data that suggests that 17 

only 10% of the people are actually interested in DRS but more may be willing to adopt if the price 18 

of such a service is at a 40% discount to owning and operating a personal AV. Such studies suggest 19 

that the perception on DRS is still evolving and simulation-based studies must be used to take 20 

advantage of experienced travel times and their role in decisions to adopt DRS. 21 

Simulation studies, on the other hand, have attempted to use experienced travel-times to get more 22 

realistic travel behaviors and its impact on certain fleet metrics but have not fully considered 23 

induced modal demand. DRS potentials in three cities with spatially differing travel patterns were 24 

studied (24), namely Ann Arbor, Michigan, Babcock Ranch, Florida and Manhattan, New York. 25 

The study focused on trip costs and empty vehicle-miles and concluded that DRS was 26 

economically viable under all three scenarios. (17) used travel demand data and static travel times 27 

generated by the model for the state of New Jersey and used a grid-based approach to study the 28 

efficiency of DRS over the entire state. A similar approach was taken by (18) but they used 29 

dynamic travel-times updated using MATSim to show more reliable operational benefits of DRS-30 

enabled SAVs in Austin, Texas. System-wide VMT was reduced for wait-times under 10 min. A 31 

cell-transmission network assignment approach was used by (19) to get accurate experienced 32 

travel times. Their study showed that DRS was needed to avoid the additional VMT that SAVs 33 

without DRS would bring to the system. (20) studied the economics of DRS-enabled fleets with 34 

the context of electric AVs and charging-location decisions. Their DRS results showed promise in 35 

curbing empty VMT as well as system-wide VMT, as battery ranges improved, but used 36 

experienced travel time as observed after one run of the simulation, similar to (25). (26) also 37 

studied electric AVs and assessed the benefits of DRS using a 100 mi x 100 mi grid and solved a 38 

capacitated vehicle routing problem with a time window. The results suggested a high vehicle-39 

replacement ratio of 13 conventional vehicles to 1 electric SAV and nearly 50% of all occupied 40 

VMT by the fleet is shared. Another research (22) also used taxi booking data in Singapore to 41 

understand trip-matching and fleet-sizing using a simulation tool they developed. Among only the 42 

taxi trips, nearly 30% of VMT savings including a higher rate of incoming requests could be met, 43 

especially during the peak times. A study based on Orlando, Florida (21) used cellphone data and 44 

static travel times from the Metroplan Orlando travel demand model to simulate SAVs with DRS. 45 
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Empty VMT was maintained under 4% and nearly half of all 2.8 million trips were met with the 1 

SAV fleet with wait times under 15 min. Although these studies help garner support for DRS by 2 

depicting its numerous benefits (e.g., VMT reduction, low wait-times, minimal travel delay, high 3 

vehicle-replacement ratios), they do not wholly acknowledge induced demand for SAVs and DRS 4 

since they do not take into consideration congestion-feedback. 5 

Only a few studies have tried to fill the gaps mentioned above. For example, (27) used the San 6 

Francisco Bay Area's activity-based travel demand model to assess the benefits of DRS. With a 7 

focus on VMT, the authors examined how road-pricing scenarios compare to business-as-usual 8 

and transit-oriented scenarios, using existing trip patterns. Across scenarios, 10% to 30% VMT 9 

reductions were observed, thanks to moderate to high adoption of DRS. An agent-based model 10 

was used to study SAV and DRS use in Lisbon, Portugal (28) and predicted a reduction of nearly 11 

30% VMT, with the average SAV traveling about 155 mi per day. Their mode choice model was 12 

based on current, revealed-preference data, which can limit future-year mode splits across AV 13 

technologies, and they did not allow for changes in destination choice, which will come with 14 

making travel easier. 15 

As alluded to above, the existing DRS literature has some important gaps. This study seeks to 16 

address those by: (1) Using real-time trip-matching with the option to share rides, (2) Using 17 

congested-travel-time feedbacks within MATSim for mode choice flexibility, (3) Simulating SAV 18 

+ DRS fare sensitivities, and (4) Anticipating the impacts of congestion pricing, DRS, and variable 19 

SAV fleet sizes.  20 

MODEL FRAMEWORK 21 

MATSim’s general framework was developed by (4), to simulate individual travelers’ (or 22 

“agents”) movements across networks, with flexibility in mode choice, departure-time choice and 23 

route choices. An initial set of activity or travel plans is fed into the system for all simulated agents 24 

(e.g., 10 percent of a region’s population, to moderate computing demands), and a co-evolutionary 25 

algorithm seeks to maximize the utility of all agents based on user equilibrium. Since engagement 26 

in activities is a key objective for each agent, activity participation is given positive utility while 27 

travel and late arrivals are given a disutility.  Re-planning of activities is done, as needed, to 28 

(approximately) maximize the utility of each agent. Network assignment is done using a queue-29 

based approach, and the entire iterative framework is summarized as Figure 2’s MATSim loop. 30 

The authors recommend that readers look through (6) for an in-depth explanation of the MATSim 31 

loop within the context of shared mobility. 32 

 33 

FIGURE 2 MATSim Loop (Source: (4)) 34 

Here, travel plans for 45,000 people residing in Austin, Texas, are used as the initial demand (29). 35 

This 5% sample for the City of Austin with about 900,000 people (https://www.austintexas.gov/) 36 

https://www.austintexas.gov/
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was obtained by extracting city-specific trips dataset to limit computational burdens in tracking 1 

the shared use of large fleets of shared vehicles. The complete Austin roadway network was 2 

obtained from OpenStreetMap and consists of more than 148,000 links and 63,000 nodes. 3 

MATSim runs were done on the Texas Advanced Computing Center’s (TACC’s) Wrangler 4 

supercomputer, to enable 24-hour completion of most scenarios. 5 

SAVs and Dynamic Ride-Sharing 6 

In futuristic scenarios, it is important to recognize that AVs may be privately owned, by at least a 7 

small percent of the population - even with very high purchase prices. To address this, AV 8 

ownership was assumed for 10% of the simulated population, as suggested by (15) for early stages 9 

of U.S. adoption. A higher or lower penetration rate for AVs can impact the outcome of this study 10 

but emphasis is placed here on SAVs. The benefits of AV and SAV use are realized from higher 11 

value of travel time associated with travel in these modes. This is taken into account in the travel 12 

disutility associated with each modes and is discussed later. 13 

SAVs are expected to be common modes of transport in urban settings in the long term, but DRS 14 

may not be popular if travelers are largely unwilling to share rides with strangers (14). Code 15 

developed by (5) is used and improves our understanding of how many trips can be shared, based 16 

on travelers’ utility scores in MATSim. Fares assessed for SAV users are dependent of whether or 17 

not trips are shared, distance traveled and time taken to cover the distance. Trips that are not shared 18 

will cost more than shared rides, but there may be a lower willingness to share rides the longer the 19 

trip’s duration (as found in (14)’s extensive survey work). Here, to facilitate trip-matching, all 20 

SAV trip requests are evaluated as candidates for DRS. A least-cost-path algorithm in MATSim 21 

identifies a subset of these trip requests to form an aggregated trip for a nearby SAV (i.e., an SAV 22 

available to the first user within a 30-min radius). An unmet trip request is assigned a high negative 23 

score so that in the convergent solution, each agent has learned whether using an SAV is a viable 24 

option for their trip. 25 

Table 1 provides travel disutility parameter assumptions (from (6)), with 𝛽𝑚𝑜𝑑𝑒 serving as each 26 

model’s alternative-specific constant and 𝛽𝑡𝑖𝑚𝑒 serving as mode-specific marginal disutility of 27 

travel time (in minutes). Parking costs and transit fares are inherently modeled into the 𝛽𝑚𝑜𝑑𝑒 28 

parameter. SAV fares are assessed separately and personal AVs are expected to travel empty 29 

(hypothetically) and not incur significant parking costs. The disutility for using SAVs (where rides 30 

may be shared) is maintained the same as that for solo travel in one’s own AV. However, the 31 

opportunity cost of spending time in a shared ride is expected to reflect lower disutility in sharing. 32 

Operating costs are captured for personal vehicles, whereas, fares are assessed for the shared fleet. 33 

Personal conventional vehicles have a nominal operating cost of 30¢/mi (30) for fuel and 34 

maintenance averaged for different car-types. Personal AVs, on the other hand, are expected to 35 

run more efficiently and is unlikely to require frequent maintenance. To capture this, personal AVs 36 

have an operating cost of 20¢/mi (33% discount). SAV fares have a fixed-cost, a distance-37 

dependent cost and a time-dependent cost, as shown in Table 2. The reference fare level is based 38 

on (6)’s study for 10% AV penetration: Solo travel in an SAV is assumed to be priced at 50¢ per 39 

trip, 40¢/mi, and 10¢/min. A shared ride in an SAV is expected to cost less and is assumed to cost 40 

approximately half as much as a solo trip in an SAV, i.e., 25¢, 20¢/mi and 5¢/min. As mentioned 41 

previously, shared rides will accrue higher mileage (and, consequently, time), lowering the 42 

willingness to use DRS. These rates are lower than what popular TNC companies like Uber or Lyft 43 

charge for their DRS option (less $1/mi, on average, for shared rides and, about, $2/mi for single-44 
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occupant rides), but with driver costs eliminated and high value of travel time (31), fares are 1 

expected to be lower in the future. The impact of such lowered fares is captured in stages. Transit 2 

and the non-motorized modes are not charged monetary values but the travel disutility from the 3 

opportunity cost of time captures the transit fares and unavailability of a vehicle for future legs. In 4 

addition, the transit network for Austin is replicated here with access thresholds of a quarter mile. 5 

TABLE 1 Mode Choice Parameters (adjusted from (6)) 6 

Travel Mode 𝜷𝒎𝒐𝒅𝒆 𝜷𝒕𝒊𝒎𝒆 

Conventional 

Vehicle 
-0.1 0 

Public Transit -1.7 -0.36 

Walk or Bike -0.2 0 

AV 0 +0.48 

SAV (with DRS) 0 +0.48 

 7 

TABLE 2 SAV Fare Level Assumptions for Shared Rides 8 

Levels 
Fixed Cost 

($) 

Distance-based 

Travel Cost 

($/mi) 

Time-based 

Travel Cost 

($/min) 

Reference Fare 0.25 0.20 0.05 

50% Discount 0.15 0.10 0.03 

75% Discount 0.10 0.05 0.02 

FLEET-SIZING AND CONGESTION PRICING 9 

Most past studies replace all conventional-vehicle trips with shared-fleet trips to assess the benefits 10 

of SAVs. In the early adoption stages, however, conventional vehicles will continue to exist, along 11 

with public transit and non-motorized modes (biking and walking). Making motorized travel easier 12 

(through AV, SAV and DRS options) can result in a lot of extra VMT and congestion, so 13 

congestion pricing policies are tested here, along with changes in fleet sizes and SAV fare 14 

assumptions. 15 

The no-toll scenario tested here is self-explanatory and provides insight into the viability of DRS, 16 

with different fleet sizes and fares. The pricing scenario is straightforward: All major network links 17 

(functional class of arterial or higher) carry a toll based on travel time on the link for all road users 18 

during the morning and evening peak periods (7-9 am and 5-7 pm), at $0.05/min. This advanced 19 

travel-time based pricing policy was simulated and tested for welfare viability in a future with AVs 20 

and single-occupant SAVs (6).  21 

RESULTS 22 

In order to compare future travel behaviors to current travel trends, the 5% population sample for 23 

the City of Austin is simulated using parameters for current travel, along with existing transit 24 

schedule loaded in the Austin network, to better understand system performance. In the base case, 25 
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mode shares reflect current patterns with cars dominating the streets as observed today (88.7% car 1 

users, 4.1% public transit users, and 7.2% for walking and biking (32)). The pricing and fleet 2 

scenarios examined here can be compared based on various performance metrics. These include 3 

total vehicle-miles traveled (VMT), empty VMT (by SAVs without occupants), and average 4 

vehicle occupancy (AVO) of the SAV fleet. The daily net income of the fleet is also calculated as 5 

the difference between the revenue accumulated from fares and the toll paid by the operator. 6 

Figure 3 shows the impact of fares, SAV availability and pricing on mode shares that are likely to 7 

be observed, and resulting changes to VMT. The reference level for SAV fares does not attract 8 

strong SAV use, even when the advanced pricing strategy is applied. SAVs are simply too 9 

expensive per mile, as compared to owning and operating a conventional vehicle for daily travel. 10 

Even when SAVs are widely available (1 for every 10 persons), the high fare only attracts about 11 

3% mode share, with the shift from transit users and non-motorized modes. Mode share for travel 12 

in a personal AV remains nearly constant for all scenarios tested, and this is not surprising given 13 

the lower maintenance costs and lower travel disutility associated with AVs. Moderate-to-low fare 14 

levels does show a significant change in mode shares. Moderate fleet size (1 SAV for every 25 15 

persons) shows the most promise capturing nearly 30% of all trips made in one day. At low-fare-16 

levels, having SAVs available in abundance (1 SAV for every 10 persons) accounts for nearly half 17 

the trips made in the day, but is found to be detrimental to system VMT. This is expected as trips 18 

will likely be served without the need to ride-share and this will add a lot of empty VMT. 19 
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 1 

FIGURE 3 Mode Shares & Change in Vehicle-Miles Traveled (Note: * corresponds to results 2 

for the pricing scenario) 3 
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Regional VMT is predicted to increase by about 5% with the introduction of SAVs, largely arising 1 

from empty VMT when SAVs are operating with little-to-no demand. It is also unlikely that a 2 

pricing strategy will mitigate this increase. When the SAV service is priced 50% lower than the 3 

reference, more SAV trips are made, as expected, but the demand still seems to be insufficient for 4 

effective ride-sharing. Serving more trips also resulted in 6-7% increase in VMT. At a 75% 5 

discount, the competitive fares nearly tripled the SAV mode share. The effectiveness of pricing 6 

travel is seen when SAVs form a significant mode share.  The rate of increase of VMT is reduced 7 

by about 2%. However, if SAVs are in abundance (1 for every 10 people), VMT is not effectively 8 

contained since more people are performing single-occupant trips.  9 

The operational viability of the SAV fleet is also important to discuss and is illustrated in Figures 10 

4 and 5. Small fleet sizes increase response times considerably, thus, limiting the number of people 11 

that are served within an acceptable response time. High response times drive the demand for 12 

SAVs down. Consequently, when 1 SAV is required to serve 100 travelers, even competitive fares 13 

do not capture the market well. The increase in ridership at low fares does mean that a higher AVO 14 

can be achieved, as travelers are more willing to ride longer as a tradeoff to paying lower. A 15 

maximum AVO of 1.56 is observed for a moderate fleet (with 1 SAV serving 25 people) when 16 

pricing is implemented and fares are provided at a 75% discount as compared to the reference fare 17 

level. Low mode shares arising from high fares, as well as reduced availability, greatly reduce fleet 18 

revenue. Operators are estimated to make $67 per SAV per day. Although reduced fare levels may 19 

imply lower revenue, the high mode shares and ride-sharing greatly improves operator revenue. 20 

Operators can make as much as $113 per SAV per day with moderate SAV availability (1 SAV 21 

every 25 persons) and after paying the tolls. Increased availability of SAVs beyond this threshold 22 

reduces revenue from lowered AVO. Empty VMT as a percentage of the fleet’s VMT is 23 

exceptionally high for small fleets (arising from low demand), and very low for large fleets (arising 24 

from SAVs staying idle). A balance is struck for moderate fleet sizes (1 SAV for every 25 persons) 25 

charging competitive fares achieving a relatively low empty VMT, as well as maintaining low idle 26 

hours per SAV. 27 
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 1 

FIGURE 4 Empty VMT, Average SAV Idle Hours in a Day, and Average Vehicle Occupancy 2 

(AVO) [Note: * corresponds to results for the pricing scenario] 3 
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 1 

FIGURE 5 Revenue, Tolls and Average Trips Served (Note: * corresponds to results for the 2 

pricing scenario) 3 
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CONCLUSION 1 

AVs and SAVs are imminent, according to several experts and auto manufacturers. Smartphone 2 

technology is ushering in an era of easy-to-use shared mobility, making it important to understand 3 

well. DRS is picking up steam and this study utilizes agent-based tools to address some key gaps. 4 

The study reveals that the use of SAVs with DRS is beneficial to the system when available 5 

reasonably and priced competitively, especially with pricing schemes applied. Pricing improves 6 

shared-use uptake and helps moderate rising congestion by reducing added VMT as compared to 7 

not pricing. The service was analyzed for three fare levels for DRS, and it was seen that lowering 8 

the fares thoughtfully increases the fleet’s revenue and demand. Even though SAVs are tolled, the 9 

fleet continues to generate more than $100 a day per SAV in the best setting. This revenue is 10 

comparable to how much existing fleets with human drivers make minus driver-related costs. 11 

Lower prices increases riders’ willingness to share rides and produces a higher AVO. However, 12 

large fleets promote single-use and diminishes the value of DRS. The revenue generated by these 13 

large fleets also fall per SAV. 14 

In the future, there is a good chance that transport is replaced by SAVs with rides more likely to 15 

be shared. Future fleet operators must set fares such that the number of people served is high, but 16 

maintain a moderate fleet of SAVs (on the order of 1 SAV for every 25 persons) to ensure a high 17 

rate of DRS. This in turn provides system-wide benefits such as moderating the rising congestion 18 

and shrinks the U.S. car fleet size. Congestion pricing will help resolve travel delays further, but 19 

it must be set in accordance with SAV fleets in use. Federal dollars reserved for an underutilized 20 

transit service can be used to provide an end-to-end service with SAVs ensuring that mobility is 21 

affordable, convenient, and delay-free. By introducing private fleet operators, it is then also 22 

possible to redirect accumulated tolls from fleets to individual drivers, thereby maintaining a 23 

revenue-neutral pricing policy. 24 

There are some minor drawbacks in this study. One of them is not modeling induced demand by 25 

the elderly, children, and those without drivers’ licenses. Computational limitations restricted 26 

simulations to a 5% population sample. Even if not explicitly considered, the results of this study 27 

will hold true for induced demand as well. Higher reliance on fully-automated modes will increase 28 

the viability of the service as demand served is key to a profitable service. Another aspect to note 29 

is that popular TNCs charge about $2/mi for single-occupant trips and about $1/mi for shared rides. 30 

Contrary to mode shares observed for SAVs here, TNCs enjoy nearly 5% mode share even at these 31 

high prices in places like Seattle. This stems primarily from modelers’ assumption that an average 32 

conventional vehicles cost 30¢/mi, whereas, the majority of conventional vehicles cost upwards of 33 

60¢/mi nowadays. They would then be readily willing to let go of their vehicles and share rides, 34 

thus, reinforcing the benefits SAVs and DRS have to offer. 35 
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