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ABSTRACT 

The Texas Triangle megaregion contains Texas’ largest cities and metropolitan areas, and thereby most 

of the state’s economic and social activities. This paper anticipates the impacts of self-driving, full 

automated or “autonomous” vehicles (AVs), shared AVs (SAVs), and “autonomous” trucks (Atrucks) on 

travel across this important megaregion using year 2040 land use (and network) forecasts. Various 

Statewide Analysis Model (SAM) data are leveraged to anticipate the impacts of AVs’, SAVs’ and 

Atrucks’ impacts on destination and mode choices. A travel demand model with feedback is implemented 

to forecast changes in vehicle-miles traveled (VMT), congestion, and travel patterns across the 

megaregion. Results suggest that people will shift to more distant destinations, on average (evidenced by 

the increase in the megaregion’s average travel distance: from 14 miles to 16 miles). Air travel will fall 

by more than 82%, with these long-distance travelers shifting to ground transport options. Without travel 

demand management (like credit-based congestion pricing and mandated tight headways between AVs), 

congestion issues will grow, thanks to an average VMT increase of 47%, which is more evident in the 

region’s major cities: Houston, Dallas-Fort Worth, San Antonio and Austin. Almost 9.6% of the 

megaregion’s link flows will suddenly exceed capacity, relative to a no-AV case  has 4.6% exceed 

capacity. Automobile travel will rise across all trip distance categories, with jumps most evident between 

suburban and urban zones. Six of the 15 commodity groups simulated are expected to see a >5% increase 

in their associated truck trips, due to the introduction of Atrucks, with rising truck trade largely between 

Houston and other major Texas employment centers. 
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BACKGROUND 1 

Fully-automated vehicles (AVs) and trucks (Atrucks), along with shared AVs (SAVs), may dramatically 2 
shift passenger and freight travel patterns across cities and regions over time. As the driving burden and 3 
heavy fixed costs of vehicle ownership disappear, more distant locations and ground-based travel become 4 
relatively more attractive. Atrucks not only free paid operators from the driving task, but allow them to 5 
work longer hours, resting en route. They will shift or eliminate driver responsibilities and should 6 
improve safety. Truck platooning through vehicle-to-vehicle communication also improves trucking 7 
efficiency. Atrucks may be equipped with other automated functions, like freight drop-offs and pick-ups.  8 

The Texas Triangle megaregion makes an interesting case study for such shifts. It is one of the 9 
nation’s 11 megaregions (America 2050 Project, 2014), and contains 18.2 million of Texas’ 25.1 million 10 
residents - or 6% of the U.S. population. Its businesses and workers, inside cities like Houston, San 11 
Antonio, Austin, Dallas, and Fort Worth, generated 7% of U.S. GDP in 2010 (Todorovich, 2007). Its 66 12 
counties (out of Texas’ 254 counties) cover 58,400 square-miles. This region’s future traffic patterns are 13 
analyzed here, using travel demand models.   14 

The current research is not only about the mode choice shift due to the AVs (Yong and 15 
Kockelman, 2018; Perrine at al., 2018; LaMondia et al., 2016), but also about the impacts on SAV fleet 16 
size, volume of travel and parking requirements through SAV simulation (Liu et al., 2017; International 17 
Transport Forum, 2015). The shared electric autonomous vehicles are also considered to investigate the 18 
environmental impact (Loeb and Kockelman, 2017; Loeb et al., 2018). Yong and Kockelman (2018) 19 
apply conventional four-step travel demand model to test the impact of connected AVs (CAVs) and SAVs 20 
on the network of Austin, Texas in year 2020. They found that 20% or more vehicle-kilometers traveled 21 
will be added to the roadway network, assuming operating costs of conventional vehicle, CAV, and SAV 22 
to be $0.12, $0.25, $0.62/km respectively. Moreover, a relatively low values of travel time (VOTT) for 23 
AV passengers and competitive pricing assumptions of SAV use result in longer distance travel and 24 
reduced transit system use. Liu et al. (2017) simulate conventional vehicles and SAVs in the Austin 25 
network using different possible fare levels of SAV, with an agent-based MATSim toolkit. SAV is shown 26 
to be not only preferred by longer distance travelers to conventional vehicles, but preferable for trips less 27 
than 10 miles by households without a conventional vehicle. Assuming that an SAV could serve 17-20 28 
person-trips per day, a higher rate of SAV results in a greater vehicle replacement, ranging from 5.6 to 7.7 29 
per SAV. Further, The International Transport Forum (2015) report the agent-based simulation results of 30 
the potential change in urban mobility in the city of Lisbon, due to the implementation of a shared and 31 
fully autonomous vehicle fleet. They anticipate that SAVs could deliver the same mobility with 10% of 32 
the fleet but result in a 6% increase in VKT, and the reduced parking needs would free significant public 33 
and private places.  34 

This paper is organized as follows: Texas’ Statewide Analysis Model (SAM) data are described 35 
first, since they provide key inputs, validation values, and several parameters for application of a four-step 36 
travel demand model. Model calibration is performed to establish a reasonable base case scenario, before 37 
introducing the scenarios offering the new passenger and freight modes. Model results and various 38 
sensitivity analyses are described, before providing the paper’s conclusions.  39 

  40 
DATA SET 41 
The basis of this study is a travel demand modeling process using TransCAD software. The megaregion’s 42 
66 counties’ come from the regional boundary used by Zhang et al. (2007), and associated network and 43 
traffic analysis zone (TAZ) files were obtained from the Texas SAM. The megaregion contains 2,160 of 44 
the state’s 4,667 TAZs, as shown in Figures 1(a) and 1(c). The entire state transportation situation was 45 
simulated, with megaregion results pulled out afterwards, to avoid boundary effects (e.g., missing 46 
external-zone travel) at the edges of the region. 47 

The SAM network covers all of North America, with greater detail in and near Texas. Figure 1(b) 48 
shows the state’s highway, railway and airline networks, which contain 200,445 links and 168,507 nodes. 49 
Just 19,549 nodes and 27,976 of the SAM’s network lie partially or entirely within the megaregion, 50 
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including 26,556 roadway links. Some megaregion trips (with both origin and destination zones within 1 
the Texas Triangle) can lead to travel outside the region, especially with very heavy traffic conditions, so 2 
this paper’s extended-network and state-zone analysis allows for this kind of behavior. Figure 1(c) 3 
highlights the megaregion TAZs and the road links (in purple) and nodes that lie within it. As illustrated, 4 
dense networks exist within Houston, San Antonio, Austin, and the Dallas-Fort Worth metroplex. 5 

   
a. SAM TAZs b. SAM Networks c. Roadway Network 

FIGURE 1 Geographic data of SAM model. 6 

 7 
TRAVEL DEMAND MODEL METHODS  8 
A four-step travel demand modelling process with feedback loop is used here to model traffic patterns 9 
across the entire state of Texas (before pulling out megaregion results), including trip generation, trip 10 
distribution, mode choice and traffic assignment. For passenger travel’s four-step model, the traditional 11 
trip distribution procedure was replaced here by a destination choice model, and the PA matrix was then 12 
converted into an OD matrix. The model uses just one time of day to recognize that many trips, especially 13 
freight trips, are long in distance, spanning many times of day, and many different congestion settings. 14 
Computation time is another concern to limit one time of day simulation. For the freight model, a doubly-15 
constrained trip distribution procedure was used, based on the SAM’s Year 2040 freight-trip generation 16 
parameters. A mode choice model was then applied, reflecting Truck, Rail and Intermodal Transport (IM) 17 
alternatives. A base case scenario - without AV, SAV and Atruck modes – was run first, to compare 18 
against the self-driving scenarios. Various parameter settings were also tested, using sensitivity analysis, 19 
to provide a sense of prediction variability. As noted earlier, the megaregion was modeled within the U.S. 20 
network, and recognizing all Texas TAZs, so the results for just the megaregion’s links and zones were 21 
pulled out from of the results of the statewide analysis.  22 
 23 
Trip Generation 24 
Trip generation data were obtained from the SAM Year 2040 scenario results, based on underlying 25 
population and jobs forecasts by zone (Alliance Transportation Group, 2018), using 2009 National 26 
Household Travel Survey (NHTS) data. Standard trip types include home-based work, home-based other, 27 
home-based school, non-home based other, and non-home-based visitor. Long-distance, inter-city trips 28 
include infrequent business trips and other long-distance trips. Table 1’s 15 commodity groups are based 29 
on U.S. Standard Transportation Commodity Codes, and SAM freight transport attraction and production 30 
levels exist for for all Texas counties and non-Texas US states. 31 

This work assumes a 15% increase in Year 2040 trip generation rates (productions and 32 
attractions) due to AV technologies enabling new trip-making. This assumption is based largley on 33 
Harper et al.’s (2016) estimating a 14% increase in U.S. VMT due to non-driving Americans, elderly 34 
Americans, and people with travel-restrictive medical conditions being able to make regular use of AVs. 35 
More just-in-time freight deliveries, directly to customers, especially on local roads, within cities, may 36 
also emerge. 37 

 38 
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Trip Distribution 1 
For the nested logit modeling of destination and mode choices in passenger travel, each destination TAZs 2 
attraction depends on a logsum across mode options (also called a mode accessibility term) and 3 
destination’s population. Essentially, the systematic utility for trips going from zone i to zone j was 4 
specified as follows: 5 

𝑉𝑖𝑗=𝛾 × ln(pop
i
)+𝜆 × log(∑exp(𝑉𝑖𝑗

𝑚)

𝑚

) + 𝛼 × √𝐿𝑖𝑗 + 𝛽 × 𝑙𝑜𝑔(𝐷𝑖𝑗) 6 

where 𝑉𝑖𝑗
𝑚 is the utility of travel from zone i to zone j using mode m, and 𝐷𝑖𝑗 is travel distance from zone i 7 

to zone j.  Table 1’s model parameter values come from Zhao and Kockelman (2017) and Outwater et al. 8 
(2015). 9 

Freight trips are distributed by tons of each commodity, using a doubly-constrained gravity 10 
model, to keep values in strong alignment with current freight production and consumption levels across 11 
the state of Texas and beyond. The associated utility function is as follows: 12 

𝑉𝑖𝑗𝑐=exp(-1/(Dc*𝐷𝑖𝑗)+δ × ln(pop
i
)+τ × log(∑exp(𝑉𝑖𝑗

𝑚)

𝑚

)) 13 

where Dc is the average travel distance for commodity group c and 𝐷𝑖𝑗 is the distance from zone 14 

i to zone j.  15 

 16 
Mode Choice 17 
Four passenger modes exit in the base-case (Year 2040) scenario: conventional automobile –labeled as 18 
“HV” for human-driven vehicle below, bus, rail and air. Three freight modes exist: Truck, Rail, and 19 
Intermodal (IM). These choice models were expanded to accommodate AV, SAV and Atruck modes, as 20 
shown in Figure 2. Trips costs, fares, and in-vehicle travel times of bus, rail and air all come from SAM 21 
model outputs. Rail’s values are the average of all of SAM’s rail modes for each OD pair (including 22 
urban rail, intercity rail, and high-speed rail alternatives in many OD cases). When AVs and SAVs are 23 
added to the set of alternatives, HVs, AVs and SAVs are nested under the Auto mode (Figure 2(b)). There 24 
is no parking cost for SAV use (much like a taxi), and privately-owned AVs are assumed to face the same 25 
parking cost that HVs pay (since AVs are not expected to be allowed to drive empty, creating additional 26 
congestion for cities and regions).   27 
 28 

 
a. Passenger mode choice structure without AVs 

 
b. Passenger mode choice structure with AVs 

 
c. Freight mode choice structure without Atrucks 
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d. Freight mode choice structure with Atrucks 

 1 
FIGURE 2 Mode choice structures, for passenger and freight transport, before and after 2 

AVs  3 
 4 
Operating costs of bus, rail and air modes come directly from SAM model outputs, while several 5 
assumptions are used for Auto costs. Litman (2018) anticipates AV operating costs to be $0.80-$1.20 per 6 
mile in early years of AV availability, before declining to $0.60-$1.00 per mile, compared to $0.40-$0.60 7 
per mile for Human-driven vehicles (HVs). Johnston and Walker (2017) expect SAVs to debut in some 8 
cities in year 2018 at $0.86 per mile, or $0.84 per mile for Shared Autonomous Electric Vehicles 9 
(SAEVs), compared to personal HVs costing $0.4 per mile. They expect traditional Transportation 10 
Network Company (TNC) vehicles (like today’s Lyft and Uber rides) to cost $2.04 per mile, and SAEV 11 
fees to fall to $0.51 per mile in 2025, $0.36 in 2030, and $0.33 in 2035. Bösch et al. (2017) predict that 12 
SAVs may cost $0.44 per mile to cover operating costs and deliver a very healthy 30% profit margin, 13 
while a dynamic ride-sharing (en route carpooling) service may cost between $0.20 and $0.30 per 14 
passenger mile. They also suggest that purpose-built SAVs for use as pooled taxis may lower fares to just 15 
$0.16 per mile, long-term.  16 

Perrine et al.’s (2018) model of long-distance U.S. travel assumed AV costs to range from $0.10 17 
to $1.65 per mile and VOTT to be $3.00- $9.00 per hour for AV occupants, with the base case scenario of 18 
$0.2 per mile operating cost and VOTT of $6.00 across 6 distinct scenarios. Fagnant and Kockelman 19 
(2016) estimated that SAV pricing at $1.00 per mile could generate a 19% annual return on investment if 20 
each AV’s purchase price is $70,000. This return varied from 12.3% to 38.8% for operating costs of $0.50 21 
and $0.25 per mile, respectively. Arbib and Seba (2017) envision internal-combustion SAVs to cost 22 
roughly $0.38 per mile, while SAEVs may be much cheaper, at $0.16 per mile in 2021 and $0.10 per mile 23 
in 2030. They posit that government subsidies or advertising may one day make SAEVs free to most or 24 
all riders.  25 

Based on all these estimates, this work assumes that both AVs and HVs carry operating costs of 26 
$0.60 per mile, and SAVs cost either $1.50, $1, or $0.50 per mile (across scenarios). Combined with 27 
parameter assumptions from Zhao and Kockelman (2017), mode choice parameters used here are shown 28 
in Table 1, with several of these varied later in the paper, during sensitivity analyses. The ASCs 29 
(alternative specific constants) for AVs and SAVs are set to be negative, at -0.05 and -0.2, respectively, to 30 
reflect some consumer hesitation. This is based on surveys and other work by Casley et al. (2013), 31 
Schoettle and Sivak (2014) and Bansal and Kockelman (2016), suggesting that AVs and SAVs will 32 
improve travelers’ safety and mobility, but may generate some acquisition cost, privacy and 33 
controllability concerns (especially when the vehicle is not privately owned).  34 

 35 
TABLE 1. Passenger and Freight Model Parameters. 36 

 37 
(a) Passenger Model 

Destination 

Choice 

Mode Choice Logsum Log of Dist. Square root of Dist. Log of Population 

1.855  = -1.25  = 0.01  = 0.8 

Mode Choice 
Base Case Automobile Bus Rail Air 

Constant 0 -2.8 -2.8 -2.8 
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Operating Cost Coefficient -0.072 -0.14 -0.14 -0.14 

In-vehicle Time 

Coefficient 
-0.019 -0.019 -0.019 -0.019 

Operating Cost ($/mile) 0.6 N/A N/A N/A 

Parking Cost ✓ N/A N/A N/A 

VOTT 15.83 8.14 8.14 8.14 

AV Case HV AV SAV Bus Rail Air 

Nesting Coefficient  = 0.6* N/A N/A N/A 

Constant 0 -0.05 -0.2 -2.8 -2.8 -2.8 

Operating Cost Coefficient -0.072 -0.072 -0.072 -0.14 -0.14 -0.14 

In-vehicle Time 

Coefficient 
-0.019 -0.015* -0.015* -0.019 -0.019 -0.019 

Operating Cost ($/mile) 0.6 0.8* 1* N/A N/A N/A 

Parking cost ✓ ✓  N/A N/A N/A 

VOTT ($/hr) 15.83 11.08* 11.08* 8.14 8.14 8.14 

(b) Freight Model (Adapted from Texas SAM) 

Trip 

Distribution 

Mode Choice Logsum Log of Population 

 = 0.5  = 0.1 

Mode Choice 
Rail 

Constant 
IM constant Cost Coefficient Time Coefficient 

Average Travel 

Distance (mi.) 

Agriculture -1.343 -5.224 -0.018 - 1539  

Mining -2.291 -6.111 -0.033 - 888 

Coal 3.316 - -0.007 - 1175 

Nonmetallic 

Minerals 
-1.441 -8.469 -0.031 - 670 

Food -2.237 -6.430 -0.016 - 1715 

Consumer 

Manufacturing 
-6.742 -4.233 -0.012 - 2174 

Non-Durable 

Manufacturing 
-5.941 -5.345 -0.019 - 1837 

Lumber -2.253 -6.053 -0.029 -0.021 1437 

Durable 

Manufacturing 
2.407 -2.771 -0.008 -0.064 1828 

Paper -1.772 -4.420 -0.013 - 1463 

Chemicals -0.874 -6.644 -0.011 - 1322 

Petroleum -2.529 -8.443 -0.030 - 935 

Clay, 

Concrete, 

Glass 

-2.668 -6.520 -0.019 - 1414 

Primary Metal -0.609 -7.263 -0.010 - 1661 

Secondary & 

Misc. Mixed 
-4.143 -4.457 -0.016 - 1902 

Note: Numbers marked with * are modified during sensitivity analysis. 1 
 2 

As shown in Figures 2(c) and 2(d), the Htruck and Atruck alternatives are nested under the truck 3 
mode, after AVs are introduced to the market. The Air and Water modes are ignored here, since they are 4 
considered fixed in the SAM model. (In reality, some air-freight and water-born freight trips will 5 
probably be replaced by Atruck trips, due to its convenience, cost and speed.) An Atruck is assumed to 6 
cost 1.5 times that of an Htruck at a per mile basis because of the cost of automation equipment and 7 
training expense for the drivers who attend the truck, but assumed to save some connecting (uploading or 8 
downloading) times at origins and destinations. The nesting coefficient is set to 0.7, recognizing that 9 
Htrucks and Atrucks have more relative substitutability as their costs and times are similar. Travel time 10 
and travel cost of IM (intermodal rail) mode are obtained from SAM (Alliance Transportation Group, 11 
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2018). Travel cost from SAM considers fixed cost and variable cost, based on Surface Transportation 1 
Board 2003 rates and travel time is assumed to be determined intermodal rail time of 24 hours plus 2 2 
hours intermodal dray and travel time for rail at a speed of 24.75 miles per hour (Alliance Transportation 3 
Group, 2018).  4 

 5 
Traffic Assignment and Feedback Loop 6 
Mode and destination choice results are transformed into trip tables or OD matrices, and round-trip tours 7 
are split in two for the final traffic assignment. Based on 2009 NHTS data (Santos et al., 2011), HV, AV 8 
and SAV occupancies are set to 1.5 persons. The freight trip table (in tons by commodity) are converted 9 
to trucks and rail cars, based on SAM weights. Feedback loops are performed to provide consistent results 10 
between travel time and cost skims and network assignment flows, feeding congested travel times back 11 
for subsequent iterations, using the method of successive averages.  12 

A multi-modal, multi-class assignment was conducted in each scenario, to reflect large 13 
differences in VOTT between human-drivers and self-driving vehicles. The feedback loop was set to 14 
perform 20 iterations, with a stopping criterion of relative gap below 10-4, to try and achieve a stable, 15 
convergent equilibrium.  16 
 17 
MODEL CALIBRATION 18 
To appreciate how parameter and model-specification changes affect predictions, the revised model’s 19 
results (for the before-AVs base case) were compared to the original SAM model’s outputs, with 20 
histograms of trip distances shown in Figure 3. The base case predictions deliver quite a few more trips 21 
under 5 miles and somewhat fewer trips between 6 and 15 miles, but otherwise track the SAM predictions 22 
closely (with a correlation coefficient of 0.99 across the binned distances, and 0.82 across flows between 23 
all >21M OD pairs). This distinction is probably due to the destination choice model’s enabling more 24 
attraction within and between TAZs.  25 

 
a. Passenger Trip Distance Predictions across Texas (< 50 mi.) 
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b. Freight Trip Distance Predictions across U.S. 

FIGURE 3 Comparing Predicted Trip Distance to SAM Model Results 1 
 2 
In terms of freight predictions, the correlations are 0.997 for 25-mile distance bins (Figure 3(b)) 3 

and 0.81 for trip counts between every all U.S. OD pairs. Truck and Rail volumes exhibit relatively high 4 
correlations in each of the 15 commodity classes, while IM results (for intermodal assignments) are 5 
relatively uncorrelated. Fortunately, the IM mode accounts for a relatively small amount of Texas trade, 6 
so its misprediction is not a serious issue. In reality, freight transport is tricky to predict (since every 7 
shipment is unique in various ways), and the SAM model delivers slightly higher mode shares in Rail and 8 
IM, while the modified model’s base case delivers slightly higher truck shares in most commodity 9 
classes. 10 
 11 

RESULTS 12 
The following discussion looks at mode split shifts before and after AVs are introduced in passenger and 13 
freight transport markets across Texas and its megaregion. Trip length distributions and travel patterns 14 
across zone pairs are examined, along with VMT values and congestion metrics. Finally, several 15 
sensitivity tests provide even better anticipation of the traffic and economic impacts that AVs, SAVs and 16 
Atrucks can bring regions and megaregions like the Texas Triangle. 17 
 18 
Mode Share 19 
Table 2 and Figure 4 shows passenger-mode splits before and after AVs. Figure 4 shows the trip 20 
distribution by length (one mile interval) for both short-distance and long-distance trips. The Automobile 21 
mode is the sum of HV, AV and SAV trips. With AVs available, Automobile shares rise for short and 22 
long-distance trips across the megaregion, shifting markedly away from Texas air travel (with most air 23 
travel distances between 100 miles and 280 miles). Existing and future travel between DFW, Houston, 24 
San Antonio and Austin is expected to favor AVs and SAVs. Trips by bus less than 50 miles appear to 25 
fall, since bus routes are normally no more than 50 miles. Rail trips also fall, for both distances up to 120 26 
miles. 27 
 28 
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a. Change in Trip Counts for Short-Distance (<50 mi) Passenger Trips 

 
b. Change in Trip Counts for Long-Distance (>50 mi) Passenger Trips 

FIGURE 4 Changes in Texas Triangle trip counts by mode (after AVs minus before AVs), 1 

versus trip distance 2 
 3 
As shown in Table 2, AVs and SAVs see less impact on shorter distances, in which automobile mode 4 
increases by 16.1% while bus and rail are reduced by 66.1% and 71.1% respectively. Air trips less than 50 5 
miles are not discussed here because distances less than 50 miles between two airports in Texas is not 6 
considered to be a normal trip. However, in distances greater than 50 miles, Automobile and Bus modes 7 
show the same trend but with relatively large change. However, Rail was relatively less affected in the 8 
longer distances, decreasing by 61.4%. Air remains to be the mode that affected most by the AV and SAV 9 
introduction while rail is least affected in long-distance trips. Air travel across Texas decreases by 61.8% 10 
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while decreasing by 82.5% across the megaregion. Internal trips starting or ending from airports in the 1 
megaregion are shifting to other places instead of staying in the megaregion, while losing to AVs at the 2 
same time. San Antonio International Airport, Dallas/Fort Worth International Airport, Love Field 3 
Airport, Hobby Airport, Houston International Airport and Austin–Bergstrom International Airport 4 
enplanements or deplanements across the U.S. will probably remain after Triangle traffic is lost to AVs. 5 

TABLE 2 Person-Trip Count Changes by Mode for Short and Long-Distance Trips 6 
(Internal trips, Thousand Person-Trips per Day) 7 

 8 

Mode 

Automobile 

(HVs, AVs, & 

SAVs) 

Bus Rail Air 

Trips before < 50 miles 

(short-

distance) 

64,678 k/day 1,837 k/day 2,219 k/day N/A 

Trips after 75,088 k/day 623.8 k/day 642.3 k/day N/A 

Change +16.1% -66.1% -71.1% N/A 

Trips before > 50 miles 

(long-

distance) 

2,946 k/day 33.64 k/day 988.2 k/day 14.27 k/day 

Trips after 6171 k/day 2.416 k/day 595.7 k/day 2.497 k/day 

Change 109.5% -92.8% -39.7% -82.5% 

Total change +20.2% -66.5% -61.4% -82.5% 

 9 
Based on the SAM’s mode choice specification, mode share in freight by different industry sectors can be 10 
obtained (Table 3). All modeled 15 industries would witness trips increase in truck and decrease in rail 11 
and IM, after Atrucks are introduced. The increase of truck travel varies by mode but most of Rail and IM 12 
mode decrease by 30%. Coal commodity truck trips see a massive increase (51.3%), which is mainly 13 
shifted from rail models that dominated coal transportation prior to Atruck implementation, followed by 14 
chemicals (11.3%), but consumer manufacturing, non-durable manufacturing and secondary and 15 
miscellaneous mixed goods have slight increase of less than 1%. 16 
 17 

TABLE 3 Mode Splits in Freight Ton-Miles Moved within the Texas Triangle (Internal 18 
Trips) 19 

 20 

Commodity 
Mode Share After Atrucks Introduced Change from Base Case 

Atruck Htruck Truck Rail IM Truck Rail IM 

Agriculture 30.4% 52.6% 83.0% 16.9% 0.18% +7.2% -25.3% -25.3% 

Mining 37.1% 58.0% 95.1% 4.9% 0.04% +2.4% -30.9% -31.0% 

Coal 2.5% 3.5% 6.0% 91.0% 3.08% +50.0% -2.0% -2.0% 

Nonmetallic 

Minerals 
26.6% 56.1% 82.7% 17.3% 0.01% +5.6% -21.8% -21.9% 

Food 34.5% 58.0% 92.4% 7.5% 0.06% +3.1% -28.8% -28.8% 

Consumer 

Manufacturing 
38.6% 60.7% 99.2% 0.1% 0.68% +1.1% -31.7% -31.7% 

Non-Durable 

Manufacturing 
35.9% 63.7% 99.6% 0.2% 0.19% +0.2% -29.6% -29.7% 

Lumber 36.3% 61.2% 97.5% 2.4% 0.04% +1.2% -26.4% -26.5% 

Durable 

Manufacturing 
48.1% 38.4% 86.5% 13.0% 0.53% +9.6% -35.1% -35.1% 

Paper 33.8% 54.5% 88.3% 11.2% 0.49% +5.2% -28.3% -28.4% 

Chemicals 30.6% 46.6% 77.2% 22.7% 0.05% +11.1% -25.6% -25.6% 
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Petroleum 30.6% 62.9% 93.5% 6.5% 0.01% +2.2% -24.5% -24.7% 

Clay, Concrete, 

Glass 
34.3% 60.5% 94.8% 5.2% 0.06% +2.1% -28.4% -28.4% 

Primary Metal 34.2% 47.7% 81.9% 18.0% 0.02% +9.0% -27.8% -27.8% 

Secondary & 

Misc. Mixed 
36.6% 61.7% 98.3% 1.2% 0.49% +0.5% -30.5% -30.6% 

 1 
Trip Distribution 2 
Figure 5 shows the trip distribution of a thousand trips per day by automobile before and after AV 3 
introduction. Air and rail travel is assumed to have straight line travel distance, while bus has the same as 4 
automobile in the road network. After AVs and SAVs are introduced, trips of all distances increase, while 5 
trips between 4 miles to 120 miles see greater increases in trip distances before and after AV introduction, 6 
at 14 miles before AVs, compared to 16 miles after the AV scenario. Travelers are shifting to longer 7 
distances due to the potential benefits that AVs would bring. As shown in Figure 5(a) and 5(b), AVs have 8 
slightly less share than the HV mode less than 6 miles, but there are more trips longer than 6 miles and 9 
the share of AV increase when the trip distance increases. SAV shows a similar trend, but few SAV trips 10 
greater than 80 miles are observed.  11 
 12 

 
(a) Passenger Trip Distribution Before and After AV (< 50 miles)  

 
(b) Passenger Trip Distribution Before and After AV (> 50 miles) 
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(c) Freight Trip Distribution Before and After AVs 

FIGURE 5 Trip distributions before and after AVs (across modes, by distance, for 1 
passenger and freight travel) 2 

 3 
Figure 5(c) presents the trip distribution of trucks before and after Atrucks become available. Since the 4 
freight mode choice is doubly-constrained, truck share after AV shows the same trend as “before” 5 
scenario. There is a slight increase in truck trips of all trip distances, with the conventional Htruck 6 
retaining a greater share of tons at all distances than the Atruck does in this megaregion, since the Atruck 7 
costs more, especially for these intermediate travel times (all under 5 hours). In the future, as the cost of 8 
Atrucks decreases, a greater market share of Atrucks would be expected. The jump of 170 miles and 230 9 
miles can be seen as the distance between Dallas-Fort Worth and Houston, and San Antonio to Houston 10 
or Austin to Houston. It is evident that Houston is a main freight center in the megaregion. 11 
  12 
Freight Spatial Analysis 13 
Figure 6 maps the major commodity movements (and their changes) between OD pairs in the Triangle. It 14 
does not show the smallest flow volumes, which sum to the first 10% of tons moved. Therefore, Figure 15 
6(a) shows 90% of the freight movement (in tons) that happens in the megaregion. Trade happens mostly 16 
between the megaregion’s four key sub-regions: Houston, Dallas-Fort Worth, San Antonio and Austin, as 17 
well as counties near Dallas-Fort Worth and Houston (Texas’ most populous regions). After Atrucks’ 18 
introduction, trade rises mostly between Houston and the other three regions. 19 
 20 
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(a) Truck Trip before Atruck (b) Truck Trip Increase After Atruck 
FIGURE 6 Major freight movements across the Texas Triangle. 1 

 2 
The spatial increase of the commodities can also be analyzed. Figure 7 shows the commodities that have 3 
an increase in truck trips greater than 5%. The lines that show growth less than 10% of the total increase 4 
of the corresponding commodity have been hidden. For agriculture, chemical and primary metal, most 5 
connections are seen between Houston and Dallas-Fort Worth/San Antonio/Austin. For coal, increased 6 
trips happen across central megaregion and the south. For nonmetallic minerals and paper, there is an 7 
increased connection between Houston and Dallas-Fort Worth, but also west of the megaregion.  8 
 9 

  
(a) Agriculture (b) Coal 
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(c) Nonmetallic Minerals (d) Paper 

  
(e) Chemicals (f) Primary Metal 

FIGURE 7 Top truck trip Increases by commodity (based on Figure 6 flows, if more than a 1 
5% change) 2 

 3 

Vehicle-Miles Traveled 4 
Table 4 shows passenger-VMT changes for all passenger modes after introducing AVs. The VMT is 5 
approximated for rail, bus and air. Based on the trip distribution results, VMT is obtained by multiplying 6 
average trip distances with trip counts for each corresponding distance band. Rail, bus, and air modes 7 
show a decrease in VMT, with rail travel decreasing by 77.1%, air travel by 84.6% and bus VMT 8 
shrinking by 49.8%. Overall automobile modes show a 46.7% increase in VMT after AVs’ introduction. 9 
Passenger airline travel is the mode most affected by the arrival of AVs. The 15% of this VMT increase is 10 
probably due immediately to the assumption that trip generation and attraction values all rise by 15% in 11 
all zones.  12 
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  1 
TABLE 4 Texas Triangle VMT Changes by Passenger Modes Before and After AVs (for 2 

internal trips only) 3 
 4 

VMT 

(1M mi per day) 
Automobile Rail Bus Air 

Before 955.2M mi/day 19.4M mi/day 114.1M mi/day 2.0M mi/day 

After 1400.9 4.5 57.3 0.3 

Change 46.7% -77.1% -49.8% -84.6% 

 5 
Table 5 details the VMT changes in major cities in megaregion area. Dallas-Fort Worth, San 6 

Antonio, Houston and Austin all show a VMT increase of almost more than 30%. Houston presents the 7 
smallest increase among them at 36.0%, while Austin gains a VMT increase of 56.9%. On average, VMT 8 
increases by 47.0% across the megaregion area. The considerable increase in VMT due to the advent of 9 
AVs and SAVs could probably raise burden for the infrastructure of the major cities in the megaregion, 10 
especially in the Austin area.  11 
 12 
TABLE 5 VMT Changes (for Passenger + Freight) in Texas Triangle’s Main Cities Before 13 

and After AVs 14 
 15 

 VMT before AV 

(1M per day) 

VMT after AV 

(1M per day) 
Change 

Dallas-Fort Worth 453M miles 669M miles +47.7% 

San Antonio Region 118 171 +45.8% 

Austin Region 119 186 +56.9% 

Houston Region 432 587 +36.0% 

Total Megaregion 1,367 2012 +47.2% 

Note: Dallas-Fort Worth Counties are Denton, Collin, Hunt, Parker, Tarrant, Dallas, Rockwall, Kaufman, Ellis, 16 
Johnson, Henderson and Hood; San Antonio Counties are Bexar, Comal, Guadalupe and Wilson; Austin Counties 17 
are: Williamson, Travis, Bastrop, Caldwell and Hays; Houston Counties are Harris, Montgomery, Liberty, 18 
Chambers, Brazoria, Galveston and Fort Bend. 19 
 20 
Roadway Network Performance 21 
Figures 8(a) and 8(b) illustrate traffic flows (by line thickness) and congestion levels (volume-to-capacity 22 
ratios, by color) on all of the region’s road links in before- and after-AV cases. Figure 8(c) illustrates the 23 
changes across regional links, with added flows heaviest within the Dallas-Ft Worth and Houston regions, 24 
and many V/C ratios suddenly exceeding 1.5 once AVs are introduced, notably along the IH-35 corridor.  25 
 26 
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FIGURE 8 Flows and congestion 1 

 2 
4.9% of the megaregion’s 27,976 links are simulated to have V/C values above 1 before AVs are 3 

introduced (with a maximum ratio of 3.2), and this more than doubles, to 9.9% (with a max value of 4.1), 4 
after AVs are widely available to travelers. 92.3% of the links experience higher flows in both directions, 5 
1.6% have decreased flow in both directions, and 2.0% have higher flow in just one direction and lower 6 
flow in the other. 7 

   
(a) Base Case Before AV (b) After AV (c) Changes after AVs 
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TABLE 6 Sensitivity Analysis Results 

Scenario Base 1 2 3* 4 5 6 7* 8 9 10 11* 12 13 14 15 

Scenario Settings 

 

AV and SAV VOTT ($/hr) Operating Cost ($/mile) Nesting Coefficients 

N/A 14.25 12.67 11.08 9.50 7.92 AV AV AV AV 

0.5 0.6 0.7 0.8 0.9 1 
Reduced VOTT Percentage 0.6 0.8 1 1 

0 0.1 0.2 0.3 0.4 0.5 
SAV SAV SAV SAV 

0.6 1 1 1.5 

Total VMT  

(Passenger + Freight) 

(Billion per day) 

1.367 1.997 2.012 2.030 2.051 2.086 2.088 2.012 1.991 1.990 2.152 2.012 1.894 1.793 1.707 1.632 

HV VMT (Billion 

per day) 

0.955 0.576 0.509 0.449 0.397 0.340 0.398 0.509 0.505 0.540 0.512 0.509 0.499 0.484 0.466 0.448 

AV VMT (Billion 

per day) 

N/A 0.672 0.744 0.810 0.871 0.944 0.576 0.744 0.735 0.777 0.846 0.744 0.667 0.607 0.559 0.520 

SAV VMT (Billion 

per day) 

N/A 0.129 0.136 0.142 0.148 0.155 0.458 0.136 0.135 0.057 0.111 0.136 0.157 0.174 0.188 0.198 

HV market 

penetration 

93.0% 40.1% 37.6% 35.3% 33.1% 30.45% 31.9% 37.6% 37.7% 40.6% 37.4% 37.6% 37.6% 37.5% 37.3% 37.0% 

AV market 

penetration 

N/A 41.4% 43.5% 45.6% 47.5% 49.84% 36.5% 43.5% 43.4% 46.7% 45.5% 43.5% 42.0% 40.8% 39.9% 39.1% 

SAV market 

penetration 

N/A 16.2% 16.6% 17.0% 17.4% 17.81% 29.4% 16.6% 16.7% 10.5% 14.4% 16.6% 18.5% 20.1% 21.4% 22.6% 

Link Percentage, 

V/C > 1 

4.60% 9.60% 9.78% 9.94% 10.20% 10.60% 10.63% 9.78% 9.56% 9.55% 11.47% 9.78% 8.56% 7.83% 7.19% 6.64% 

Maximum V/C 3.215 4.046 4.067 4.072 4.092 4.117 4.126 4.061 4.025 4.036 4.213 4.061 3.883 3.730 3.606 3.491 

Notes: * is the AV scenario discussed in previous section, and the base case is the scenario without AV/SAV; Total VMT is VMT within 

megaregion area, including trips travel through megaregion; HV, AV and SAV VMT consider inter-megaregion trips only.
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Sensitivity Analysis 1 
Table 6 shows results of sensitivity analysis from varying VOTT, operating costs, and nesting parameters. 2 
As the VOTT for those using AVs falls, regional VMT rises, with higher AV and SAV market shares and 3 
more congestion. Such behaviors also emerge when VOTT is fixed but AVs and HVs are more correlated, 4 
thanks to a lowered nesting coefficient (implying that AVs and HVs are closer substitutes/have more in 5 
common). Also as expected, lowered AV and SAV operating costs deliver higher VMT, congestion and 6 
AV market share. With the development of the automation technology, AVs and SAVs will become less 7 
costly in the further, so it is reasonable to believe AVs and SAVs will be more widely used as time goes 8 
by. SAV is also increasingly popular as the market shared of SAV almost double, when the same 9 
operating cost of AV and SAV decrease from $1/mile to $0.6/mile, which may probably happen with 10 
automation technology becoming mature. The operating cost for AV and SAV may be much lower than 11 
an HV in the future. Further, with improved technology of AV, through which people could perform task 12 
much more easily like working and sleeping, the VOTT would be smaller and eventually be similar with 13 
the value of time working at office or sleeping at home. The nesting coefficient in the future could vary 14 
based on the nest structure, for example: SAV could be nested in a public transportation mode instead of 15 
the auto mode, and if the HVs are completely replaced by AV, there is no need for a nesting coefficient.   16 
 17 
  18 
CONCLUSION 19 
This work uses a four-step model structure with nested logit models to reflect future widespread 20 
availability of AVs, SAVs, and Atrucks across a statewide area. It starts with Texas’ SAM data and relies 21 
on TransCAD 7.0 software to equilibrate (with travel time and cost feedbacks) the passenger and freight 22 
flow volumes across shortest paths via preferred modes, to preferred destinations. Changes in mode 23 
choices, trip distances, and congestion levels across the Texas Triangle region are examined, comparing 24 
before vs. after conditions, and assuming that trip generation rates also rise (by those presently unable to 25 
drive, for example).  26 

As expected, the average travel distance for passenger travel across the megaregion rises, from 14 27 
to 16 miles. Air travel between Triangle airports is expected to fall dramatically, by over 80%, which 28 
could account for roughly 4.3% of all air trips in Texas. Without road pricing or other forms of demand 29 
management, VMT is predicted to rise 39.1%, along with many links’ V/C ratios, especially in the 30 
megaregion’s top sub-regions (Houston, Dallas-Fort Worth, San Antonio and Austin). The number of 31 
links having demand exceed capacity is predicted to more than double (to nearly 10% of links). In terms 32 
of freight transport, movements in 7 of the 15 commodity classes are predicted to rise over 5%, with coal 33 
the most (50%), followed by chemicals (11.1%), durable manufacturing (9.6%), primary metal (9.0%), 34 
agriculture (7.2%), nonmetallic mineral (5.6%) and paper (5.2%), and such movements increase mostly 35 
between Houston and other key population hubs, like Dallas-Fort Worth, San Antonio and Austin. Added 36 
travel can easily mean greater energy use and air pollution, human health issues, climate change issues, 37 
reductions in active transport, and higher rates of obesity, diabetes, and other issues. 38 

Predictions of much-lowered local air travel and rising demand for highway infrastructure should 39 
help state and city departments of transport, planning organizations, manufacturers, transit providers, and 40 
airport authorities think about the kinds of policies and practices they should be putting into law and their 41 
budgets now. These may be a doubling or tripling of fuel taxes (which have not risen in Texas in 25 42 
years), credit-based congestion pricing (so that everyone “owns” a piece of the limited road network), 43 
limits on size and fuel use of privately owned AV (to avoid vehicles getting bigger [to include beds, for 44 
example] and less efficient), and very clear limits on empty-AV use (so that SAV fleet managers cannot 45 
add more than 15% VMT from empty travel and private AV owners cannot send their vehicles out empty 46 
on public roadways [only in private parking lots, for example]).  47 

In terms of modeling improvements, the dynamics of congestion and use of SAVs between drop-48 
offs and pickups are not reflected here. Microsimulation models like MATSim and POLARIS can track 49 
vehicles and travelers, while simulating traffic dynamics over 24 hours, but are challenging to learn and 50 
apply at such scale. Trips across the Mexico border are also neglected here, as well as the details of 51 
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dynamic ride-sharing (between strangers using SAVs, saving on trip costs). Of course, SAVs can also 1 
serve as first-mile and last-mile modes supporting longer-distance trains, planes, and (self-driving) buses. 2 
And only time will tell how quickly (and affordably) manufacturers and fleet operators bring such 3 
technologies to market, how quickly businesses and individuals can afford and adopt the new modes, and 4 
how thoughtfully regions, states and nations will govern themselves, to pursue healthier and more 5 
sustainable futures. 6 
 7 
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