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ABSTRACT 

This study anticipates changes in U.S. highway and rail trade patterns following widespread 

availability of self-driving or autonomous trucks (Atrucks). It uses a random-utility-based 

multiregional input-output (RUBMRIO) model, driven by foreign export demands, to simulate 

changes in freight flows among 3109 U.S. counties and 117 export zones, via a nested-logit 

model for shipment or input origin and mode, including the shipper’s choice between 

autonomous trucks and conventional or human-driven trucks (Htrucks). Different value of 

travel time and cost scenarios are explored, to provide a sense of variation in the uncertain 

future of ground-based trade flows.  

29 
Using the current U.S. Freight Analysis Framework (FAF4) data for travel times and costs 30 

- and assuming that Atrucks lower trucking costs by 25% (per ton-mile delivered), truck flow31 
values in ton-miles are predicted to rise 11%, due to automation’s lowering of trucking costs,32 

while rail flow values fall 4.8%. Rail flows are predicted to rise 6.6% for trip distances between33 
1,000 and 1,500 miles, with truck volumes rising for other distances.  Introduction of Atrucks34 
favors longer truck trades, but rail’s low price remains competitive for trade distances over 3,00035 
miles. Htrucks continue to dominate in shorter-distance freight movements, while Atrucks36 

dominate at distances over 500 miles. Eleven and twelve commodity sectors see an increase in37 
trucking’s domestic flows and export flows, respectively. And total ton-miles across all 1338 
commodity groups rise slightly by 3.1%, as automation lowers overall shipping costs.39 

40 

Key words: autonomous trucks, spatial input-output model, nationwide trade flow patterns, 41 

integrated transportation-land use modeling 42 
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MOTIVATION1 
Self-driving, fully-automated or autonomous vehicles (AVs) are an emerging transportation 2 
technology that may transform both passenger and freight transport decisions. Semi-automated 3 
trucks may enable automated driving under supervision and limited circumstances, such as 4 

driving long distances on an interstate. Fully automated self-driving trucks or “Atrucks” are 5 
those that can leave the truck terminal and travel to a destination without human intervention or 6 
presence in the truck cab (Goodwill, 2017). Atrucks may be equipped with other automated 7 
functions, like drop-offs and pick-ups, but most experts expect an attendant on board, doing 8 
other types of work, sleeping as needed, and ensuring thoughtful deliveries and pickups. Such 9 

multi-tasking of vehicle attendants will allow for extended use of commercial trucks (e.g., every 10 
day, almost 24 hours a day) and greater labor productivity, resulting in lower per-mile and per-11 
ton-mile freight delivery costs. 12 

In year 2014, trucks carried 1,996 billion ton-miles of freight around the U.S., or 37.7% 13 

of the nation’s total ton-miles transported that year (BTS, 2017). Investment in and use of 14 
Atrucks will affect not only national and regional economies (Clements and Kockelman 2017), 15 

but trade patterns, production levels, and goods pricing. Commercial trucks consume about 20% 16 
of the nation’s transportation fuel, and self-driving technologies are predicted to reduce those 17 

diesel fuel bills by 4-7% (Liu and Kockelman 2017; Barth et al., 2004; Shladover et al., 2006).  18 
Atrucks can reduce some environmental impacts, lower crash rates, and increase 19 

efficiency in warehousing operations, line-haul transportation, and last-mile deliveries. Platooned 20 

convoys should enable following truck drivers to avoid certain restrictions on service hours, 21 
enabling longer driving distances. Uranga (2017) predicts greater use of Atrucks before 22 

passenger vehicle automation, thanks to the more obvious economic benefits of self-driving 23 
trucks (which start with higher price tags, making the automation investments less of a cost 24 
burden). Of course, driver job loss is also a concern, and the International Transport 25 

Forum (O’Brien, 2017) predicts that up to 70% of all U.S. truck-driving jobs could be lost by 26 

2030 (due to vehicle automation). But trucks may still require driver presence, due to loading 27 
dock restrictions, unusual problems on the road, and more complex operating systems. 28 

While there is active investigative interest on the travel and traffic effects of self-driving 29 

cars, research into the travel and traffic impacts of Atrucks is dearly lacking. This paper 30 
anticipates Atrucks’ trade pattern and production impacts across the U.S., and begins with a 31 

review of relevant works. It then discusses the random-utility-based multi-regional input-output 32 
(RUBMRIO) model methodology for tracking trade across zones or regions, describes a sub-33 

nested mode choice model for Atrucks (versus Htrucks), and the results of various trade-scenario 34 
simulations across U.S. regions, highways, railways, and industries. 35 

36 

RELEVANT LITERATURE 37 
Two papers currently investigate U.S. long-distance-passenger-travel shifts, due to AV use 38 

(LaMondia et al., 2016; Perrine et al., 2017). Related topics include fuel consumption, 39 
congestion impacts, shared-fleet operations, dynamic ride-sharing, energy use, emissions, and 40 

roadside investments (see, e.g., Fagnant and Kockelman, 2014; Chen et al., 2016; International 41 
Transport Forum 2015; Land Transport Authority, 2017; Kockelman et al., 2016. LaMondia et al. 42 
(2016) forecasted U.S. mode shares for person-trips over 50 miles (one-way) from the state of 43 
Michigan, following the introduction of AVs. They predicted that 25% demand of airline 44 
passenger trips under 500 miles will shift to autonomous vehicles. Perrine and Kockelman (2017) 45 
anticipated destination and mode-choice shifts in long-distance U.S. person-travel, including a 46 
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major loss (47%) of airline revenue, using 4,566 National Use Microdata Area zones (NUMAs). 1 

The anticipate, long-term effects of AV access on long-distance personal travel are striking. 2 
Some companies have written about the potential benefits of Atrucks. A DHL report 3 

(Kückelhaus, 2014) noted that Atrucks could lower their freight costs by 40% per vehicle- or 4 

ton-mile. Convoy systems would allow long-distance drives with large quantities of goods, 5 
through which Atrucks could reduce fuel use by 10 to 15% (Clements and Kockelman, 2017). 6 
Crash counts may fall by 50 percent or more (Kockelman and Li, 2016), along with various 7 
insurance costs. Atrucks cost-savings impacts on freight momement and industry siting and 8 
sizing decisions have been neglected. This new topic area of Atrucks is explored here. 9 

  10 

Trade Modeling 11 
Input-Output (IO) analysis, originally proposed by Leontief (1941), uses matrix algebra to 12 
characterize inter-industry interactions within a single region, as households and government 13 

agencies spend money on goods, which are produced by mixing inputs from other industries, and 14 
so on. Demand is met by production adjustments, based on expenditure linkages across 15 

industries. Isard’s (1960) spatial IO model allows for spatial disaggregation using fixed 16 
shares.More recent extensions exploit random utility theory and entropy-maximization properties, 17 

as evident in the MEPLAN (Echenique et al., 1990), DELTA (Simmonds and Still, 1998), 18 
TRANUS (De la Barra et al., 1984), PECAS (Hunt and Abraham, 2003) and KIM models (Kim 19 
et al., 2002). These models also allow a land-use transportation feedback cycle, with freight and 20 

person (labor and consumer) flows responding to changes in network routes and travel costs. 21 
The open-source RUBMRIO model is a similar extension, with applications to the state 22 

of Texas and U.S. counties. Kockelman et al. (2005) described the RUBMRIO’s application to 23 
Texas’s 254 counties, across 18 social-economic sectors and two modes of transport, meeting 24 
foreign export demands at 31 key ports. Huang and Kockelman (2010) developed a dynamic 25 

RUBMRIO model to equilibrate production and trade, labor markets and transportation networks 26 

simultaneously for Texas’ counties over time (better recognizing starting distributions of labor 27 
and employment). Kim et al. (2002) used such a model for estimating interregional commodity 28 
flows and transportation network flows to evaluate the indirect impacts of an unexpected event 29 

(an earthquake) on nine U.S. states, represented by 36 zones. 30 
Guzman and Vassallo (2013) used a RUBMRIO-style approach to evaluate the 31 

application of a distance-based charge to heavy-goods vehicles across Spain’s motorways. Maoh 32 
et al. (2008) used the RUBMRIO model to simulate weather impacts on Canada’s transportation 33 

system and economy. Du and Kockelman (2012) calibrated the RUBMRIO model to simulate 34 
U.S. trade patterns of 13 commodities among 3,109 counties, with its nested-logit model for 35 
input origin and truck-versus-rail mode choices. They noted how transportation cost changes 36 
(from generically more efficient or less efficient travel technologies, for example) were 37 
important, especially for central U.S. counties.   38 

This study builds off of the Du and Kockelman’s (2012) work by adding the Atruck 39 
option into a sub-nest for mode choice, allowing for strong correlation in the Atruck vs. Htruck 40 

choice (since these are two very similar modes). 13 aggregate “industries” or socio-economic 41 
sectors are used here, since all nested logit model parameters are calibrated from FAF4 data, 42 
which rely on SCTG commodity classes. Corresponding NAICS and IMPLAN codes are shown 43 
in Table 1, which is adapted from Du and Kockelman’s (2012) work. The application’s 13 44 
sectors, technology costs, and other assumptions are described below. 45 

 46 
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TABLE 1 Description of Economic Sectors in RUBMRIO Model 1 
  2 

Sector Description 
IMPLAN 

Code 

NAICS 

Code 
SCTG Code 

1 Agriculture, Forestry, Fishing and Hunting 1~19 11 1 

2 Mining 20~30 21 10~15 

3 Construction 34~40 23 -- 

4 
Food, Beverage and Tobacco Product 

Manufacturing 
41~74 311, 312 2~9 

5 Petroleum and Coal Product Manufacturing 115~119 324 16~19 

6 
Chemicals, Plastics and Rubber Product 

Manufacturing 
120~152 325, 326 20~24 

7 Primary Metal Manufacturing 170~180 331 32 

8 Fabricated Metal Manufacturing 181~202 332 33 

9 Machinery Manufacturing 203~233 333 34 

10 
Computer, Electronic Product and Electrical 

Equipment Manufacturing 
234~275 334, 335 35, 38 

11 Transportation Equipment Manufacturing 276~294 336 36, 37 

12 Other Durable & Non-Durable Manufacturing 

75~114, 

153~169, 

295~304 

313~316, 

321~323, 

327, 337 

25~31, 39 

13 Miscellaneous Manufacturing 305~318 339 40, 41, 43 

 3 

DATA SETS 4 
Data sets used here include the disaggregated freight zonal data from the U.S. Commodity Flow 5 

Survey (CFS), trade flow data from the U.S. DOT’s Freight Analysis Framework (FAF) version 6 
4, industry-by-industry transaction tables and regional purchase coefficients (in year 2008) from 7 
IMPLAN, and railway and highway network data from Caliper’s TransCAD 7.0. 8 

  9 

Freight Data 10 
FAF4 integrates trade data from a variety of industry sources, with emphasis on the Census 11 
Bureau’s 2012 CFS and international trade data (Fullenbaum and Grillo, 2016). It provides 12 
estimates of U.S. trade flows (in tons, ton-miles, and dollar value) by industry, across 7 modes 13 

(truck, rail, water, air, pipeline, and others), and between FAF4’s 132 aggregate zones. FAF4’s 14 
origin-destination-commodity-mode annual freight flows matrices were used to predict domestic 15 
and export trade flows by zone FAF4 data show foreign export flows exiting the U.S. from 117 16 
of these 132 zones, as shown in gray in Figure 1(a).So these same 117 zones serve as both 17 
production and export zones in this paper’s trade modeling system. 18 

FAF4 zones were then disaggregated into county-level matrices using the 2012 19 
CFSboundary data (which identify the counties belonging to each FAF4 zone). Ten metro areas 20 
were also added to the CFS data in year 2012, and 3109 contiguous counties (as shown in Figure 21 
1(b)) remain, after excluding the distant states of Hawaii and Alaska. Interzonal travel times and 22 

costs by rail, Atruck and Htruck were all computed using TransCAD software, for the 23 
3109×3109 county matrix based using shortest highway and railway paths in terms of free flow 24 
travel time. All intra-county travel distances were assumed to be the radii of circles having that 25 
county’s same area.  26 
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 1 

(a) Continental United States’ FAF4 132 Zones, with 117 Export Zones (shown in grey) 2 

 3 

(b) Continental United States’ 3109 Domestic Freight Counties 4 

FIGURE 1 U.S. domestic and export zones for trade modeling 5 
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 1 

Economic Interaction Data 2 
The model’s embedded IO matrices’ technical coefficients and regional purchase coefficients 3 
(RPCs) were obtained through IMPLAN’s transaction tables, as derived from U.S. inter-industry 4 

accounts. Technical coefficients reflect production technology or opportunities (i.e., how dollars 5 
of input in one industry sector are used to create dollars of product in another sector) and are core 6 
parameters in any IO model. RPCs represent the share of local demand that is supplied by 7 
domestic producers. RPC values across U.S. counties are assumed constant here, since variations 8 
are unknown. However, counties closer to international borders are more likely to “leak” sales 9 

(as exports) than those located centrally, everything else constant. And production processes or 10 
technologies can vary across counties (and within industries, across specific manufacturers and 11 
product types, of course). This application assumes that all U.S. counties have access to the same 12 
production technologies, or technical coefficients table.  13 

IMPLAN’s 440-sector transaction table was collapsed into 13 industry sectors, plus 14 
Household and Government sectors to represent the U.S. economy in this trade-modeling 15 

exercise. Since FAF4 uses the same 43 two-digit Standard Classification of Transported Goods 16 
(SCTG) classes (BTS, 2017) as the 2007 U.S. Commodity Flow Survey (CFS), IMPLAN’s 440 17 

sectors were bridged to a corresponding SCTG code based on the 2007 North American Industry 18 
Classification System or NAICS (Census Bureau, 2017). SCTG code 99 (for other good types) is 19 
not tracked here. See economic sectors for RUBMRIO model application table from Du and 20 

Kockelman (2012). 21 

METHODOLOGY 22 
In random utility choice theory, error terms enable unobserved heterogeneity in the decision-23 
making process. Here, the RUBMRIO multinomial logit model has three branches, for origin 24 
choice, rail versus truck mode choice, and autonomous vs human-driven truck choice, as shown 25 

in Figure 2.  26 

 27 

FIGURE 2 Random utility structure for shipment origin, mode, and truck-type choices. 28 

Choice of origin 

Choice of mode 

Choice of truck 

rail truck 

Atruck Htruck 

1 2 3 4 … 

Level 3 

Level 1 

Level 2 



7 

Huang, Kockelman 

 1 
Equation (1) provides the three mode-choice utilities, conditioned on knowing a shipment’s 2 

origin (i), destination (j), and industry or commodity type (m): 3 

Uij, rail
m =Ṽij, rail

m
+Ṽij

m
+εij, rail

m +εij
m

Uij, truck, Atruck
m =Ṽij, truck, Atruck

m
+Ṽij, truck

m
+Ṽij

m
+εij, truck,Atruck

m +εij, truck
m +εij

m

Uij, truck, Htruck
m =Ṽij, truck, Htruck

m
+Ṽij, truck

m
+Ṽij

m
+εij, truck,Htruck

m +εij, truck
m +εij

m

                                          (1) 4 

where 5 

Ṽij

m
 = systematic utility of selecting origin i for acquisition of commodity m, 6 

Ṽij, rail

m
, Ṽij, truck

m
 = systematic utilities associated with selecting origin i and rail mode/any truck 7 

type for movement of commodity m, 8 

Ṽij, truck, Atruck

m
,Ṽij, truck, Htruck

m
 = systematic utilities associated with selecting origin i and 9 

Atruck/Htruck for movement of commodity m, and 10 

εij
m, εij, rail

m , εij, truck
m , εij, truck,Htruck

m , εij, truck,Atruck
m  = random error terms associated with shipment origin, 11 

rail mode, truck mode, human-driven truck and self-driving truck choice, respectively.   12 

Origin Choice (Level 3) 13 
Relying on nested logit formulae provided in Ben-Akiva and Lerman (1978), the probability of 14 
commodity-type m inputs coming to zone j from zone i (i.e., the choice likelihood [or input share] 15 
of zone i as an origin for this good’s demand in zone j) is given by: 16 

Pij
m=

exp(Vij
m

)

∑ exp(Vij
m

)
i

                                                                                                                         (2) 17 

where 18 

Vij
m=-p

i
m+γmln(pop

i
)+λ

m
θij,mode

m
Γij,mode

m                                                                                            (3) 19 

is the system utility using origin i for commodity m, and 20 

Γij,mode
m =ln(exp (

Vij, rail
m

θij,mode
m )+exp (

Vij,truck
m

θij,mode
m ))                                                                                            21 

(4) 22 

is the logsum of mode choice, with scale parameter θij,mode
m

=1.2.   23 

 24 

Mode Choice (Level 2) 25 
Since the mode choice nested logit’s random error terms are assumed to follow an iid Gumbel 26 
distribution, and setting the initial dispersion to scaling factor to 1, the probability of commodity 27 
m being transported by each of the two major modes (rail and truck), between any given ij pair, 28 

are as follows: 29 

Prail|ij
m =

exp(
Vij, rail

m

θij,mode
m )

exp(
Vij, rail

m

θij,mode
m ) + exp(

Vij,truck
m

θij,mode
m )

Ptruck|ij
m =

exp(
Vij,truck

m

θij,mode
m )

exp(
Vij, rail

m

θij,mode
m ) + exp(

Vij,truck
m

θij,mode
m )

                                                                                                       (5) 30 

where 31 
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Vij, rail
m =β

0, rail

m
+βr,time

m
×timeij, rail+βr,cost

m
×costij, rail

and Vij, truck
m

=0+θij,truck
m

Γij,truck
m                                      

                                                                        (6) 1 

are the general modes’ systematic utilities and 2 

Γtruck
m =ln(exp (

Vij, truck,Atruck
m

θij,truck
m )+exp (

Vij, truck,Htruck
m

θij,truck
m ))                                                                            (7) 3 

is the logsum for the truck-mode choice, with scale parameter θij,truck
m

 = 1.4 for base case. Travel 4 

time is a common component for the Atruck and Htruck utilities, since this work does not 5 
assume one is faster. In fact, Atrucks may complete long trips faster than Htrucks, since Atruck 6 
operators can sleep while the vehicle is en route. Here, the truck mode serves as the base mode, 7 

so only the rail mode has an alternative specific constant (ASC).  8 

Truck Choice (Level 1) 9 
The probability of freight flow commodity m from zone i to zone j using mode Atruck and 10 

Htruck respectively in nest truck is given by: 11 

PAtruck|ij,truck
m =Ptruck|ij

m ×PAtruck|truck
m =

exp(
Vij,truck

m

θij,mode
m )

exp(
Vij, rail

m

θij,mode
m ) + exp(

Vij,truck
m

θij,mode
m )

×
exp(

Vij, truck,Atruck
m

θij,truck
m )

exp(
Vij, truck,Atruck

m

θij,truck
m )+exp(

Vij, truck,Htruck
m

θij,truck
m )

PHtruck|ij,truck
m =Ptruck|ij

m ×PAtruck|truck
m =

exp(
Vij,truck

m

θij,mode
m )

exp(
Vij, rail

m

θij,mode
m ) + exp(

Vij,truck
m

θij,mode
m )

×
exp(

Vij, truck,Htruck
m

θij,truck
m )

exp(
Vij, truck,Atruck

m

θij,truck
m )+exp(

Vij, truck,Htruck
m

θij,truck
m )

                (8) 12 

where 13 

Vij, truck,Atruck
m =β

0, Atruck

m
+β

t,time
m

×timeij,truck+βt,cost
m

×costij,Atruck

Vij, truck, Htruck
m =0+β

t,time
m

×timeij,truck+β
t,cost

m
×costij,Htruck

                                                         (9)  14 

are the system utilities of moving commodity m from zone i to zone j using Atruck and/or Htruck 15 

modes (in the truck nest).  16 

 17 

RUBMRIO Model Specification 18 
An equilibrium trade-flow solution (where all producers obtain the inputs they need, and all 19 
export demands are met) can be achieved in RUBMRIO via Figure 3’s iterative equation 20 

sequence. Zhao and Kockelman (2004) proved this solution’s uniqueness. Flow-weighted 21 
averages of shipments’ travel costs create input costs, which merge together to create output 22 

costs, as commodities (and labor) flow through the production and trade system. Once the 23 
solutions have stabilities (with domestic flow value changing by less than 1% between iterations), 24 
final disutilities of travel and trade provide mode shares by OD pair and commodity or industry 25 
sector.  26 

This iterative process’ calculations required about 2.25 hours using an Atruck-modified 27 

version of Kockelman et al.’s C++ open-source program (available at 28 
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http://www.caee.utexas.edu/prof/kockelman/RUBMRIO_Website/homepage.htm). 1 

 2 

Utility of purchasing commodity m from zone i and transporting to zone j and k 

𝑉𝑖𝑗
𝑚 , 𝑉𝑖𝑘

𝑚 

Export trade flow of commodity m from zone i to export zone k 

𝑌𝑖𝑘
𝑚 = 𝑌𝑘

𝑚
expሺ𝑉𝑖𝑘

𝑚ሻ

σ expሺ𝑉𝑖𝑘
𝑚ሻ𝑖

 

Production of commodity m in zone i 

𝑥𝑖
𝑚 =𝑋𝑖𝑗

𝑚

𝑗

+𝑌𝑖𝑘
𝑚

𝑘

 

Consumption of commodity m in zone j supplied by domestic providers 

𝐶𝑗
𝑚 =൫𝑎𝑗

𝑚𝑛 ∙ 𝑥𝑗
𝑛൯

𝑛

 

Domestic trade flow of commodity m from zone i to zone j 

𝑋𝑖𝑗
𝑚 = 𝐶𝑗

𝑚
exp൫𝑉𝑖𝑗

𝑚൯

σ exp൫𝑉𝑖𝑗
𝑚൯𝑖

 

Trade equilibrium? 

Average input cost of commodity m in zone j 

𝑐𝑗
𝑚 =

σ ൣ𝑋𝑖𝑗
𝑚 ∙ ൫−𝑉𝑖𝑗

𝑚൯൧𝑖

σ 𝑋𝑖𝑗
𝑚

𝑖

 

Sales price of commodity n in zone j 

𝑝𝑗
𝑛 =൫𝑎0𝑗

𝑚𝑛 ∙ 𝑐𝑗
𝑚൯

𝑚

 

Equilibrium Trade 

Flows, Sales Prices & 

Mode Shares 

Yes 

No 

Initialize commodity sales prices & domestic trade flows 

𝑝𝑖
𝑚 = 0, 𝑋𝑖𝑗

𝑚 = 0 

Input Export Demands, Travel Times & Transport Costs 

http://www.caee.utexas.edu/prof/kockelman/RUBMRIO_Website/homepage.htm).
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FIGURE 3 RUBMRIO solution algorithm (Adapted from Du & Kockelman [2012], Figure 1 

2). 2 
 3 
RUBMRIO’s utility functions for domestic and export trade-flow splits (across shipment origin 4 

alternatives) depend on the cost of acquiring input type m from zone i, as well as zone i's “size” 5 
(measured as population here). Since there are three mode alternatives for these shipments, with 6 
the two truck modes sub-nested, the competing travel costs can be shown as logsums (which 7 
reflect the expected maximum utility or minimum cost of acquiring that input from different 8 
origin zones). After substituting those logsums into Figure 3’s trade-flow equations, one has 9 

equations (10) and (11), where Vij
m and Vik

m are the utilities of purchasing one unit of industrial 10 

m’s goods from region i for use as inputs to zone j’s production process, or for export via zone k, 11 
respectively. 12 

Vij
m=-p

i
m+γmln(pop

i
)+λ

m
×θij,mode

m
×ln

(

 
 
 
 

exp (
β

0, rail
m

+βr,time
m

×timeij, rail+βr,cost
m

×costij, rail

θij,mode
m )

+exp

(

 
 θij,truckm

θij,mode
m ×ln(

exp (
β

0, Atruck
m

+βt,time
m

×timeij,truck+βt,cost
m

×costij,Atruck

θij,truck
m )

+exp (
βt,time

m
×timeij,truck+βt,cost

m
×costij,Htruck

θij,truck
m )

)

)

 
 

)

 
 
 
 

 (10) 13 

Vik
m=-p

i
m+γmln(pop

i
)+λ

m
×θik,mode

m
×ln

(

 
 
 
 
 

exp (
β

0, rail
m

+βr,time
m

×timeik, rail+βr,cost
m

×costik, rail

θik,mode
m )

+exp

(

  
 θik,truckm

θik,mode
m ×ln

(

 
 

exp(
β

0, Atruck
m

+βt,time
m

×timeik,truck+β
t,cost

m
×costik,Atruck

θik,truck
m )

+exp(
βt,time

m
×timeik,truck+β

t,cost

m
×costik,Htruck

θik,truck
m )

)

 
 

)

  
 

)

 
 
 
 
 

(11) 14 

Parameter assumptions for γm, λ
m

 and βm are based on Du and Kockelman’s (2012) work, 15 

which has two levels of random utility structure: for origin and mode choices. Here, the rail’s 16 
ASCs were set equal to the negative of the ASCs used for truck in their research, since a second 17 
type of truck mode was added as Atrucks. Moreover, the Atruck ASCs were assumed to be -0.1, 18 

because Atrucks should be somewhat preferred, after travel-cost and time considerations, thanks 19 
to safety and communications benefits. After assembling all these inputs, shown in Table 2, a 20 

series of different network and Atruck cost scenarios can be examined, using the RUBMRIO 21 
solution algorithms.  22 

TABLE 2 Parameter Estimates for Origin, Mode and Truck Choice Equations 23 

Sector 

Origin Choice 

Parameters 
Mode Choice Parameters Truck Choice Parameter 

VOTT 

($/hr) θij
m

=1 θij,mode
m

=1.2 θij,truck
m

=1.4 

γm λ
m

 β
0, rail

m
 βr,time

m
 βr,cost

m
 β

0, Atruck

m
 βt,time

m
 βt,cost

m
 

1 0.05 0.90 -3.38 -4.81 -4.85 -5.61 -5.66 -0.10 24.18 

2 0.41 7.66 -1.11 -1.03 -2.01 -1.20 -2.34 -0.10 2.12 

4 0.86 -2.86 -3.36 2.17 0.56 2.53 0.65 -0.10 6.15 

5 0.10 2.02 -1.00 -1.87 -4.09 -2.18 -4.77 -0.10 52.46 

6 0.79 1.60 -0.85 -1.21 -1.34 -1.41 -1.57 -0.10 26.61 

7 0.75 3.38 -0.86 -0.99 -1.54 -1.15 -1.79 -0.10 37.31 

8 0.90 0.35 -1.91 -0.57 -0.89 -0.67 -1.04 -0.10 37.17 

9 0.78 0.68 2.17 -10.20 -8.38 -11.90 -9.77 -0.10 19.71 

10 1.00 0.19 0.95 -7.20 -4.99 -8.40 -5.82 -0.10 16.64 
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11 1.02 -1.68 2.08 -7.31 -6.32 -8.53 -7.38 -0.10 20.77 

12 0.89 2.18 -3.32 1.85 0.69 2.16 0.81 -0.10 8.96 

13 0.92 1.61 -1.70 -2.28 -2.35 -2.66 -2.74 -0.10 24.76 

 1 

SIMULATION RESULTS 2 
Figure 3’s RUBMRIO equations were used to estimate U.S. trade flows between the nation’s 3 
3109 contiguous counties, as well as to 117 FAF4 export zones, across 13 industries and 3 travel 4 
modes. $8.3trillion in trade flows were generated to meet the year 2015 export demand of $1.04 5 

trillion, as obtained from FAF4 (with 24%, 18%, 17%, and 16% of those exports headed to 6 
Canada, Mexico, Europe and East Asia, respectively). The model’s total flow predictions 7 
account for 91.3% of FAF4’s total $15.0 trillion trade flow. It is not 100% because the nation has 8 
another $2.5 trillion in import flows (according to FAF4, coming from other countries), which 9 
are not tracked here.  10 

The base-case scenario assumes travel costs of $1.85 per Htruck-mile and railcar costs of 11 
$0.6 per container-mile (with different commodities filling containers differently, in terms of 12 

dollars per container). Table 3 compares RUBMRIO trade flow results to those in the FAF4 13 
database, after aggregating the model’s 3109 trade zones into the nation’s 129 FAF zones, and 14 

counting the number of OD pairs that deliver the first 10 percent of trade flows (in dollar terms, 15 
rather than ton-miles or dollar-miles, for example), then the next set of OD pairs, and so forth 16 
(summing to 129 x 129 [domestic flows] zones pairs or 129 x 117 [export flows] zone pairs 17 

each). For example, the model’s smallest-value domestic shipments come from 13,896 FAF-zone 18 
pairs, for $0.85 trillion, or the first 10% of the total ($8.5 trillion) in domestic flows. FAF4-based 19 

values (for highly aggregate regions/zones) suggest something similar: over 12,000 FAF-zone 20 
pairs are involved in that first 10% (smallest-shipment-size) set of flows.  21 

Table 3’s comparison suggests that the base case RUBMRIO model equations and 22 

assumptions deliver reasonable trade-flow estimates of FAF4 volumes. However, RUBMRIO 23 

tends to “spread out” the trades across more OD pairs (with fewer small-size shipments) than 24 
FAF4 data suggest. In other words, RUBMRIO predictions suggest less concentration of trade 25 
dollars or shipment sizes in the biggest OD trading patterns, for both domestic and export flows. 26 

There is obviously much more to U.S. trade than an origin’s population and its relative location 27 
on railways and highways, versus competing shipment sources. It is interesting how close 28 

RUBMRIO can come to replicating many trade patterns with a concise and transparent set of 29 

equations (Figure 3 plus equations 10 and 11). 30 

TABLE 3 Cumulative Distribution of RUBMRIO and FAF4 Trade Flows 31 
 32 

 

Domestic Flows Export Flows 

RUBMRIO FAF4 RUBMRIO FAF4 

0%-10% 13,896 12,646 14,217 13,971 

10%-20% 1,354 2064 617 552 

20%-30% 621 935 267 257 

30%-40% 324 479 149 146 

40%-50% 183 262 97 81 

50%-60% 118 134 65 40 

60%-70% 82 64 37 26 

70%-80% 49 36 19 14 
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80%-90% 12 16 9 4 

90%-100% 2 5 3 2 

 1 

Figure 4 shows RUBMBRIO’s base case trip distribution by trade values and ton-miles, and 2 

appears reasonable compared to FAF statistics (Strocko et al., 2014). However, truck trade-value 3 
flows are much greater than rail’s values across all distances. In ton-mile trading, truck 4 
dominates among lower-distance flows, while rail dominates at longer distances.  5 
 6 
 7 

 8 

 
(a) Trade flow distribution in value before Atrucks Implementation 

 
(b) Trade flow distribution in ton-mile before Atrucks Implementation 
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FIGURE 4 Trade distributions (by $ value & ton-miles) for base case (Business as Usual) 1 

scenario  2 

 3 
For a spatial perspective of these results, Figure 5 shows domestic trade flows and export trade 4 

flows pattern, without showing lines for value less than 5%. Many major domestic flows exist 5 
between western states, like California and Washington, to various eastern regions/FAF zones. In 6 
some contrast, major export flows (within the continental U.S., to access a port) also exist 7 
between coastal cities and their adjacent regions (often adjacent states). Moreover, exports from 8 
California ports appear to come largely from the Great Lakes region instead of from the Eastern 9 

Seaboard, thanks to a heavy export of Michigan-manufactured automobiles and trucks. Truck 10 
flows show more intra-state trips with shortest distances, like trips within Texas, Florida and 11 
New York, while more longer rail flows tend to cross the nation. 12 

  
(a) Domestic Flows (Million $) (b)Export Flows (Million $) 

  
(c) Truck Flows (Million $) (d) Rail Flows (Million $) 

FIGURE 5 Base case domestic and export trade flows (per year), between FAF4 zones. 13 
 14 

Sensitivity Analysis 15 
Since great uncertainty still exists about the relative costs of acquiring and deploying Atrucks, 16 
multiple scenarios were tested here, with different parameter assumptions. Atruck operating 17 
costs are expected to be much lower than Htruck costs, overall, thanks to a reduction in 18 

operator/attendant burden from the driving task and Atrucks’ greater utilization, as their 19 
attendants rest/sleep or perform other duties (and are not subject to strict hours of service 20 
regulations, since they cannot cause a fatal crash, for example). Wages and benefits may fall, or 21 
simply shift from administrative and service workers that used to be officed (e.g., those 22 
managing carrier logistics, customer service calls, or shipper billing) to workers that now travel 23 
between states on-board a moving office (and help with pickups and deliveries, as those arise).  24 
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Scenario 1 serves as a reference, high-technology (Atrucks in operation) case for the 1 

following discussion of nine different Atruck scenarios. Base case is the mode share before 2 
Atrucks implementation. After the introduction of Atrucks, the mode share of trucks increases 3 
compared to rail, but the total ton-mile and dollar mile decreases. Compared to Scenarios 1 4 

through 3, the cost of Htruck use is assumed to be 20% higher (in Scenarios 4 through 6) or 5 
lower (Scenarios 7 through 9), while Atruck costs are assumed to be 75%, 50%, and 25% of 6 
Htruck costs (per ton-mile, container-mile or commodity-mile), respectively, resulting in 9 (3 x 3) 7 
separate scenarios. Table 4 presents basic mode split results for FAF4 and these 9 scenarios. 8 
Interestingly, Atruck splits (either by dollar-miles carried or ton-miles transported) are very 9 

stable across the 9 scenarios, regardless of the relative price variation.  10 
Sensitivity analysis is also applied for Atruck ASCs and scaling parameters for the nested 11 

logit model. With slight changes, the more attractive that one makes Atrucks, relative to Htrucks, 12 
the more dollar-miles and ton-miles will be carried by trucks. For the test of scaling parameter, if 13 

increased substitution is assumed between alternatives in the truck nest or the mode nest, the 14 
truck split will increase. 15 

 16 

TABLE 4 Sensitivity Analysis 17 
(a) Operation Cost Test Results 18 

Scen

ario 

Cost of 

Htruck 

Cost of 

Atruck 

$ Trillion Billion dollar-miles Billion ton-miles 

Rail % Truck % Rail % Truck % Rail % Truck % 

Base - - 0.33 15.3 1.83 84.7 631 43.5 820 56.5 399 49.0 416 51.0 

1* 100% 75% 0.21 9.6 1.95 90.4 417 28.4 1,051 71.6 371 44.9 455 55.1 

2 100% 50% 0.24 11.2 1.91 88.8 505 33.7 995 66.3 380 45.2 461 54.8 

3 100% 25% 0.22 10.4 1.91 89.6 432 27.9 1,114 72.1 374 43.1 494 56.9 

4 80% 75% 0.24 10.9 1.92 89.1 494 33.0 1,003 67.0 383 43.8 493 56.2 

5 80% 50% 0.25 11.5 1.90 88.5 518 33.6 1,022 66.4 387 43.2 509 56.8 

6 80% 25% 0.22 10.1 1.92 89.9 425 26.9 1,154 73.1 379 41.1 543 58.9 

7 120% 75% 0.26 11.9 1.90 88.1 595 41.2 848 58.8 384 48.8 402 51.2 

8 120% 50% 0.23 10.9 1.91 89.1 459 30.2 1,059 69.8 373 45.0 455 55.0 

9 120% 25% 0.23 10.9 1.91 89.1 489 29.7 1,159 70.3 393 44.7 485 55.3 

 19 
(b) Atruck ASCs Test 20 

Scen

ario 

ASC 

for 

Atruck 

$ Trillion 
 

Billion Dollar-miles 
Billion Ton- miles 

Rail % Truck % Rail % Truck % Rail % Truck % 

1* -0.1 0.24 11.2 1.91 88.8 505 33.7 995 66.3 380 45.2 461 54.8 

2 -0.3 0.24 11.4 1.91 88.6 505 33.7 994 66.3 380 45.2 461 54.8 

3 0.1 0.24 11.3 1.91 88.7 505 33.7 995 66.3 380 45.1 462 54.9 

 21 
(c) Scaling Parameters Test 22 

Scen

ario 
θij,mode

m
 θij,truck

m
 

$ Trillion Billion Dollar-miles Billion Ton-miles 

Rail % Truck % Rail % Truck % Rail % Truck % 

1* 1.2 1.4 0.24 11.2 1.91 88.8 505 33.7 995 66.3 380 45.2 461 54.8 



15 

Huang, Kockelman 

2 1.2 1.3 0.21 9.9 1.92 90.1 426 26.4 1,187 73.6 385 39.0 603 61.0 

3 1.1 1.4 0.22 10.3 1.92 89.7 459 29.8 1,081 70.2 379 41.5 535 58.5 

 1 
Figure 6 illustrates estimated changes in flow patterns for trucks and railroads before and after 2 
the introduction of Atrucks (where truck flows are the sum of Atruck and Htruck flows), with 3 
spider maps of rising versus falling flows shown separately. The measurement scale is adjusted 4 
to reflect only major flow values (million dollars between OD pairs greater than 5% of total flow 5 

value) since much more value is carried by truck [than by rail] in the U.S. and for domestic 6 
[rather than export] purposes). Results suggest that increases in domestic flow types occur most 7 
heavily along the nation’s western coast (through California) and between California and New 8 
York. Export flows have their greatest increases between the Great Lakes region (including 9 
Michigan and Illinois) and California. Both domestic and export flows are estimated to fall from 10 

trucking automation options along the nation’s northeastern areas and between Florida and 11 

Washington.  12 

As shown in Figure 6, truck flows are also predicted to lose many interactions between the 13 
western U.S. and Florida and northeastern states, while experiencing greater interactions between 14 
Northwestern (Washington and Oregon) and Eastern (Georgia and South Carolina), and also 15 

between the Great Lakes region (including Michigan and Illinois) and California. This is 16 
probably due to Atrucks being better able to meet freight demand in Florida and northeastern 17 

areas by obtaining more inputs from the nation’s northwestern areas. Rail flows are estimate to 18 
rise only in and around New Mexico, while noticeably elsewhere (e.g., in Texas and from San 19 
Francisco and Arizona to the Great Lakes and northeastern areas, respectively).   20 

  
(a) Increase in Domestic Flow (Million $) (b) Decrease in Domestic Flow (Million $) 

  

(c) Increase in Export Flow (Million $) (d) Decrease in Export Flow (Million $) 
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(e) Increase in Truck Flow (Million $) (f) Decrease in Truck Flow (Million $) 

  
(g) Increase in Rail Flow (Million $) (f) Decrease in Rail Flow (Million $) 

FIGURE 6 Principal U.S. trade flow patterns before and after Atrucks ($ Million per year). 1 
 2 
Table 5 shows estimates of flow changes across major U.S. cities. Most (like Sacramento, 3 

Washington DC, Indianapolis, and Nashville) experience increases in trucking flows, both into 4 
and out of the city. However, Miami, Detroit, Salt Lake City and Houston are estimated to 5 

experience roughly a 10% decrease in their current outbound truck flows (with the exception of 6 
El Paso, Texas), alongside increases in their pass-through trucking volumes (due to the travel-7 

cost benefits that automation brings the trucking mode). All major cities are predicted to see 8 
lower rail flows (inbound and outbound), with San Jose CA and Washington DC experiencing 9 
more than 70% reductions in outbound rail flows, and a similar situation happens for rail flows 10 

into Jacksonville FL and Washington DC.  11 

TABLE 5 Automated Trucking’s Impact on Trade Flows Originating from or Destined for 12 
Major U.S. Cities 13 

State City 
Truck Flow (change in $) Rail Flow (change in $) 

Out In Out In 

AZ Phoenix 0% -3% -35% -42% 

CA Los Angeles 4% -1% -37% -45% 

CA Sacramento 22% 15% -40% -35% 

CA San Diego 10% 5% -25% -26% 

CA San Jose 19% 2% -72% -42% 

CO Denver 14% 9% -6% -15% 

DC Washington 38% 34% -77% -74% 

FL Miami -21% -3% -67% -53% 
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FL Orlando 5% 5% -43% -39% 

FL Jacksonville 5% 19% -44% -73% 

GA Atlanta 11% 10% -40% -44% 

IL Chicago 7% 5% -46% -41% 

IN Indianapolis 18% 16% -42% -34% 

KY Louisville 15% 9% -40% -49% 

MA Boston 5% 10% -48% -38% 

MD Baltimore 8% 9% -41% -52% 

MI Detroit -12% 6% -43% -50% 

MN Minneapolis 17% 13% -44% -36% 

MO Kansas City 17% 17% -50% -42% 

NC Charlotte 14% 13% -42% -36% 

NJ New York 1% 4% -39% -37% 

NJ Philadelphia 8% 9% -40% -34% 

NV Las Vegas 8% 4% -34% -39% 

OH Columbus 14% 13% -41% -34% 

OK Oklahoma City 12% 9% -43% -39% 

OR Portland 17% 4% -53% -39% 

TN Memphis 16% 7% -45% -50% 

TN Nashville 22% 19% -41% -34% 

TX Austin 0% -7% -39% -38% 

TX Dallas -2% -3% -41% -41% 

TX Houston -11% -1% -42% -44% 

TX San Antonio -6% -8% -40% -41% 

TX El Paso 9% 5% -44% -41% 

UT Salt Lake City -11% -1% -46% -50% 

WA Seattle 3% -4% -52% -39% 

 1 
Trip-length distributions are another meaningful way to view Atrucks’ effects on travel patterns. 2 

Figure 7 shows such distributions for total rail shipments, total truck shipments, and Atruck 3 
versus Htruck shipments. Figures 7(a) and 6(b) illustrate mode splits between Atrucks and 4 
Htrucks, across domestic trade-flow distances. Htrucks appear to still dominate up to about 250 5 

miles of distance, while Atrucks appear to clearly dominate after about 500 miles of travel 6 
distance. Htruck flows fall as distance increases, while Atruck flows are quite robust across all 7 
distances. Atruck trade volumes appear to peak at 1000 to 1500 miles, which is approximately 8 
the distance from Seattle, Washington to Los Angeles, California, or from Dallas, Texas to San 9 
Francisco, or from New York to Miami. These are major OD pairs for many commodities (like 10 

finance, insurance and service goods).  11 
Figures 7(c) and 7(d) show how ton-mile truck flows are predicted to rise for all trip 12 

distances, excepting those over 3,000 miles. Trade increments by truck peaks at 100-249 miles, 13 
indicating that trade flows are also predicted to transport more within counties. It is interesting to 14 
see that the trade value decreases for both truck and rail at smaller distance, showing that trade 15 
flows are moving towards longer distances. Rail flow values appear to drop at distances up to 16 
3,000 mi, with a slight increase for very long rail distances - over 3,000 miles. This is likely 17 
because Atrucks are quite competitive for mid- and long-distance trade. However, when input 18 
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access distances exceed 3000 miles, railway’s lower costs prove very competitive, for many 1 

commodities (e.g., those that are less time-sensitive, low value per ton, and/or perishable). There 2 
is also a 6.6% increase of rail flow of ton-mile at 1,000 to 1,499 miles. This is probably due to 3 
the specific demand of a certain commodity for some interstate OD pairs.   4 

 5 

 
(a) Trade Flows in Ton-miles vs. Trade Distance  

 
(b) Trade Flow in Value by Distances by HTrucks & Atrucks  
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(c) Trade Flow Change in Ton-mile by Distances Before & After Atrucks  

 
 (d) Trade Flow Change in Value by Distances Before & After Atrucks 

FIGURE 7 Trip length distributions for U.S. rail and trucks flows, before and after 1 
Atrucks. 2 

 3 

Table 6 shows commodity flow changes by mode, following the introduction of Atrucks, under 4 

the Base Case vs. reference Scenario 2. Introduction of automated trucking or “Atrucks” is 5 
expected to increase both total domestic flows and total export ton-mile and value flows, by 2% 6 

to 4% respectively. Domestic truck flows (in ton-miles) are forecast to rise 11% (versus a 7 
BAU/no-new-technology scenario) and rail flow values fall by 24%. Transportation equipment 8 
manufacturing and durable and non-durable manufacturing trade flows (between U.S. counties) 9 

are predicted to fall, while construction, food, beverage, tobacco products, primary and 10 
fabricated metal manufacturing are all predicted to see a small increase in their trade flows, as a 11 

result of automated trucking. Agriculture, forestry, fishing, hunting, chemicals, plastics, 12 
petroleum and coal products show some of the biggest relative increases (greater than 10%), 13 

presumably because Atrucks making trucking relative more useful in these domains. As expected, 14 
railway becomes a relatively less effective or efficient way to transport such commodities. Ten 15 
sectors see a decrease in total (domestic) value shipped by rail while only three sectors are 16 

predicted to rise. Although machinery manufacturing, computers, other electronic products and 17 
electrical equipment manufacturing transported by rail rise by more than 500% following 18 

automated trucking’s introduction, this increment is still much less than the increases transported 19 
by truck. 20 

Finally, export truck flows are estimated to rise, from range of 5% to 47%, excepting 21 

only durable and non-durable manufacturing trades, which are forecast to shift almost all to rail. 22 
Total rail flows of 328 billion ton-miles/year headed for U.S. export zones remains stable, while 23 

total truck flows are expected to rise by 11%. Total ton-miles (sum of Truck and Rail or sum of 24 
Domestic and Export) increase by 3.1%. As readers can see, RUBMRIO’s system of trading 25 

equations (Figure 3) deliver a wide array of meaningful predictions, the complexity of which 26 
would not be quantifiable without such programs. 27 

Table 6 Change in U.S. Trade Flow Ton-miles Before and After Atrucks 28 
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Sector Before After % Before After % Before After % Before After % 

1 4,103 5,004 22 7 3 -54 4,203 5,126 22 4,110 5,007 22 

2 64,544 76,257 18 14,530 10,442 -28 71,482 84,572 18 79,075 86,699 10 

3 149,723 155,453 4 32,655 30,037 -8 156,662 162,741 4 182,379 185,490 2 

4 3,382 3,956 17 1,944 1,518 -22 35,715 42,644 19 5,326 5,474 3 

5 3,273 4,243 30 554 330 -40 9,170 11,937 30 3,827 4,573 19 

6 6,423 8,013 25 1,583 987 -38 18,189 23,070 27 8,006 9,000 12 

7 5,511 6,228 13 1,618 1,298 -20 8,157 9,255 13 7,129 7,526 6 

8 39,130 50,775 30 10,716 1,006 -91 47,617 61,961 30 49,846 51,781 4 

9 2,980 3,825 28 7 47 582 5,403 7,103 31 2,986 3,872 30 

10 2,372 2,855 20 15 91 512 6,770 8,454 25 2,387 2,946 23 

11 7,581 3,457 -54 3,392 5,630 66 30,145 36,587 21 10,973 9,087 -17 

12 203 0.01 -100 425 183 -57 16,701 0.02 -100 628 183 -71 

13 1,926 2,346 22 94 75 -19 6,470 8,088 25 2,019 2,422 20 

SUM 291,150 322,412 11 67,540 51,647 -24 416,683 461,539 11 358,691 374,059 4 

Million 

ton-

miles 

Export Truck Export Rail Rail Export 

Sector Before After % Before After % Before After % Before After % 

1 100 122 22 0.18 0.08 -55 7 3 -54 100 122 22 

2 6,937 8,316 20 1,739 1,257 -28 16,269 11,700 -28 8,676 9,573 10 

3 6,939 7,288 5 1,745 1,619 -7 34,400 31,656 -8 8,684 8,907 3 

4 32,333 38,688 20 18,153 14,542 -20 20,097 16,060 -20 50,486 53,230 5 

5 5,897 7,695 30 1,013 607 -40 1,567 937 -40 6,910 8,302 20 

6 11,766 15,058 28 3,029 1,769 -42 4,613 2,757 -40 14,796 16,827 14 

7 2,645 3,027 14 807 646 -20 2,425 1,943 -20 3,453 3,672 6 

8 8,488 11,186 32 2,396 163 -93 13,113 1,170 -91 10,884 11,350 4 

9 2,424 3,278 35 4.72 0.61 -87 12 47 309 2,429 3,279 35 

10 4,398 5,599 27 29 0.46 -98 44 92 110 4,427 5,599 26 

11 22,563 33,129 47 17,816 6,256 -65 21,208 11,886 -44 40,379 39,385 -2 

12 16,498 0.01 -100 284,834 301,447 6 285,259 301,629 6 301,332 301,447 0 

13 4,544 5,742 26 226 96 -58 319 171 -46 4,769 5,838 22 

SUM 125,533 139,127 11 331,793 328,404 -1 399,333 380,051 -5 457,326 467,531 2 

 1 

CONCLUSIONS 2 
This study uses the RUBMIO trade model to anticipate the shifts in U.S. trade patterns due to the 3 

introduction of Atrucks. Lower-cost trucking operations will impact choice of mode and input 4 

origins, affecting production and flow decisions for domestic and export trades across states, 5 
nations, and continents. Here, 13 commodity types were tracked using the 2012 CFS and FAF4 6 
data sets. Sensitivity analysis allows for variations in predictions, given the great uncertainty that 7 
accompanies shippers’ future cost-assessments, adoption rates, and use of Atrucks. Such 8 
predictions should prove helpful to counties and regions, buyers and suppliers, investors and 9 

carriers, as they prepare for advanced automation in our transportation systems.  10 
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This early attempt to reflect self-driving trucks in long-distance freight systems relies on 1 

U.S. highway and railway networks as well as FAF4 trade data. Extensions of this work may 2 
wish to reflect other modes, like airlines, waterways, and pipelines, as well as multi-modal and 3 
inter-modal flows, local supply-chains, urban logistics, and local production capabilities and port 4 

capacities.  In terms of the RUBMRIO model’s specification, reflecting the dynamic evolution of 5 
population and employment patterns (as in Huang and Kockelman [2010]), commuting and 6 
shopping trips, with intra-regional and inter-regional congestion, as well as seasonal variations in 7 
certain shipments (like agriculture and coal) may prove very helpful. Further extensions on 8 
random utility models employed here can come through different nesting structures, as well as 9 

operator awake hours, routing, and delivery scheduling.  10 
 11 
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