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ABSTRACT 
Animal-vehicle collisions (AVCs) are common around the world and result in 
considerable loss of animal and human life, as well as significant property damage and 
regular insurance claims. Understanding their occurrence in relation to various 
contributing factors and being able to identify locations of high risk are valuable to AVC 
prevention, yielding economic, social and environmental cost savings. However, many 
challenges exist in the study of AVC datasets. These include seasonality of animal 
activity, unknown exposure (i.e., the number of animal crossings), very low AVC 
counts across most sections of extensive roadway networks, and computational burdens 
that come with discrete response analysis using large datasets. To overcome these 
challenges, a Bayesian hierarchical model is proposed where the exposure is modeled with 
nonparametric Dirichlet process, and the number of segment-level AVCs is assumed to 
follow a Binomial distribution. A Pólya-Gamma augmented Gibbs sampler is derived to 
estimate the proposed model. By using the AVC data of multiple years across about 
100,000 segments of state-controlled highways in Texas, U.S., it is 
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demonstrated that the model is scalable to large datasets, with a preponderance of zeros and 
clear monthly seasonality in counts, while identifying high-risk locations (for application of 
design treatments, like separated animal crossings with fencing) and key explanatory factors 
based on segment-specific factors (such as changes in speed limit) can be done within the 
modelling framework, which provide useful information for policy-making purposes.   

Keywords: Animal-vehicle collisions, count modelling, seasonality, Pólya-Gamma 
augmentation, hierarchical models. 

 

INTRODUCTION 
Animal-vehicle collisions (AVCs) are common around the world and result in considerable 
loss of animal and human life, as well as significant property damage and regular insurance 
claims (Al-Ghamdi and AlGadhi, 2004; Bruinderink and Hazebroek, 2003; Klöcker et al., 
2006; Mountrakis and Gunson, 2009; Mrtka and Borkovcová, 2013; Seiler, 2005; Sullivan, 
2011). For such reasons, there is continued research in AVC prediction and the effectiveness 
of various prevention measures (Gunson et al., 2011).  

Special attention has been paid to AVCs’ spatial and temporal attributes, due to clustering 
at certain times of year and times of day, with different species’ movements and breeding 
seasons (see, e.g., Wilkins et al. 2019). In the spatial dimension, the focus is on identifying 
the relationship between AVC locations and animal habitats (Dettki et al., 2011; Gkritza et 
al., 2010; Hurley et al., 2009) and nearby landscapes (Danks and Porter, 2010; Grilo et al., 
2009; Jensen et al., 2014; MALO et al., 2004). In the temporal dimension, within-day and 
seasonal activity patterns of both animals and humans vary, affecting vehicle presence and 
animal presence - and their collisions - on roadways (Dettki et al., 2011; Diaz-Varela et al., 
2011; Haikonen and Summala, 2001; Rowden et al., 2008). Across the year, migratory 
patterns, variations in sunrise and sundown, and climatic conditions also play a role (Garrett 
and Conway, 1999; Hothorn et al., 2015; Niemi et al., 2017; Rodríguez-Morales et al., 
2013). 

In terms of AVC prevention, the effectiveness of warning signs (Ujvari et al., 2007), light-
reflecting devices (Brieger et al., 2016), fencing and barriers (LEBLOND et al., 2007; 
Zuberogoitia et al., 2015), overpasses and underpasses (McCollister and van Manen, 2010; 
Rodriguez et al., 2010), modification of nearby landscapes (Jaeger et al., 2016), overhead 
lighting, and other treatments have been investigated. Some studies have emphasized the 
effects of roadway design details on AVCs, like speed limit choices (Found and Boyce, 
2011; Meisingset et al., 2014), road widths (Litvaitis and Tash, 2008), shoulder widths (Lao 
et al., 2011a), and the number of lanes used (Lao et al., 2011b). Most of these works have 
been studied at an aggregate level (zonal or corridor level) to avoid discrete counts and allow 
researchers to focus on general trends. 

As with other crash types, hotspots are useful for assessing AVC clustering on segments in 
large networks. In order to deal with thousands of distinct locations and network links, two 
approaches are normally adopted. A computationally simple approach used by Kolowski 
and Nielsen (2008) relies on correlation coefficients to define the similarity between road 
segments with AVC occurrences, and judges hotspots according to correlation strengths. 
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Alternatively, kernel-based smoothing can be applied across all segments at once (Bíl et al., 
2016; Ramp et al., 2006; Snow et al., 2014). As noted by Snow et al. (2014), such hotspot 
identification methods normally require a large number of subjective inputs (like the spatial 
weights and kernel band-width used) in the implementation process, and can result in 
unreliable inference. More importantly, the relative importance of each attribute for 
identifying hotspots is generally unknown, and scenario evaluations based on specific 
attributes can be unreliable or impossible.  

This study improves upon such methods by using a Bayesian regression framework to model 
segment-level AVC, with explanatory variables, flexible error-term heterogeneity, and 
monthly effects. Special attention is paid to AVC seasonality and the preponderance of zero-
crash segments, while avoiding computational burdens that often accompany discrete 
response analysis for such a large data set obtained for Texas (roughly 100,000 reasonably 
homogeneous [in design attributes, like curvature, grade, number of lanes, speed limit, and 
median presence] segments, as distinguished in the Texas Department of Transportation’s 
state-maintained network). In particular, the exposure (i.e., segment-specific animal 
crossing) is modeled using nonparametric Dirichlet Process, and the number of segment-
level AVCs is assumed to follow a binomial distribution. The probability of AVC 
occurrence is a logistic function of time-varying parameters and segment-specific 
characteristics. And a Pólya-Gamma augmented Gibbs sampler is derived for 
computationally tractable estimation of the proposed model. 

This new modelling framework demonstrates how local hotspots can be identified and 
related to AVC seasonality, while inference and scenario evaluations can be made based on 
any segment-specific attribute (like speed limit), which can then provide valuable 
information for AVC prevention practices. 

ANIMAL-VEHICLE COLLISIONS IN TEXAS 
The dataset used here comes from two sources. First, AVC records are from the Crash 
Records Information System (CRIS) maintained by the Texas Department of Transportation 
(https://cris.dot.state.tx.us/public/Query/app/public/welcome). Second, segment-specific 
roadway design factors were obtained from the Texas Department of Transportation 
website, at https://www.txdot.gov/inside-txdot/division/transportation-planning/roadway-
inventory.html. 

Figure 1 and 2 show the 43,319 AVCs that were reported over the 2010-2016 seven-year 
period. Figure 1 shows a small increase in total AVCs in more recent years, perhaps as 
traffic has risen, with the Texas economy bouncing back from a global recession. More 
interestingly, the months of October through December demonstrate much higher counts. 
This seasonal pattern comes largely from the white-tailed deer’s rutting or breeding season 
(Bruinderink and Hazebroek, 2003; Niemi et al., 2017; Sullivan, 2011; TPWD, 2019). 

https://cris.dot.state.tx.us/public/Query/app/public/welcome
https://www.txdot.gov/inside-txdot/division/transportation-planning/roadway-inventory.html
https://www.txdot.gov/inside-txdot/division/transportation-planning/roadway-inventory.html
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Figure 1: AVC counts by year (left) and month (right), as reported between 2010 and 2016 (on 
Texas’ state-maintained highways) 

Figure 2 shows the locations of AVCs associated with the 120,726 segments of state-
maintained roadway network†. It is clear from the figure that a large portion of the AVCs 
are located on the east side of the state around several urbanized areas.  

Figure 3’s upper panel shows that AVCs rarely occur on most segments after disaggregating 
AVCs over all distinctive Texas highway segments. Further temporal disaggregation to the 
level of monthly data shows that reported AVC counts are very low along all Texas 
segments. Figure 3’s lower panel shows how just 0.4% (43,324 of 10,140,984) of the 
monthly segment-level AVC counts are non-zero. Among the non-zero monthly segment-
level AVCs (Figure 3’s bottom right), only 4.8% (2,085/43,324) have more than one AVC 
(with a maximum monthly count of 6 AVCs). Accordingly, two important challenges can 
                                                 
† A small percentage of AVC displayed didn’t occur on the network system. The total number of off-system AVCs 
is 5930, which account for 12 percent of the total AVCs recorded. 



5 
 

emerge for segment-level and monthly AVC counts: the computation involved increases 
dramatically due to the number of observations (120,726 segments × 12 months = 
1,448,712), counts are very sparse (typically zero) and highly variable. 

 
Figure 2: Texas’ state-maintained roadway network with reported AVCs (from 2010 through 

2016) shown as black dots 

 
Figure 3: Texas AVC counts by year (top two) and by month (bottom two) 
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Figure 4 shows AVCs recorded on segments in a small section of Texas. In this figure, the 
AVCs are denoted as circles (one for each occurrence), whereas segments are shown as 
solid black lines with their endpoints indicated by crossbars. As evident in Figure 4, most 
segments have zero AVCs recorded, suggesting that spatial autocorrelation will show as 
near-zero at this highly disaggregated level although AVC clustering is evident at regional 
and state levels.  

 
Figure 4: Reported AVCs from 2010 through 2016 in a small area in Texas 

Moreover, Figure 4’s zero-count segments may indicate heterogeneity across segments. It 
is possible that many segments located in Figure 4’s bottom left (or its top left) are elevated 
bypasses or have lots of fencing or special underpasses to avoid animals crossing at grade. 
For this reason, the effect of a specific design factor may only impact AVC counts on the 
selected subgroup of segments in a large network. In this case, the need to identify the 
heterogeneity among a large number of segments further complicates the computation. 

In summary, the data analysis reveals several important aspects influencing AVC modelling 
and inference. These include AVC seasonality, the sparse and highly variable nature of AVC 
count data at the monthly and segment levels, and potential for observed and unobserved 
heterogeneity among segments. All these features are incorporated in this paper’s model, 
but spatial correlation is ignored due to computational intractability in estimation and 
difficulty in empirically identification due to a preponderance of zero-AVC segments. 

THE MODELLING FRAMEWORK 
To account for several important aspects of AVC modelling in a Bayesian hierarchical 
framework, the model specification begins with the use of a binomial distribution for the 
number of AVCs recorded at each segment 𝑠 in month 𝑡, so that the probability of having k 
reported AVCs for a segment-time pair (𝑠, 𝑡) is 

𝑃(𝑘𝑠,𝑡 | 𝑛𝑠,𝑡, 𝑝𝑠,𝑡) =  (
𝑛𝑠,𝑡

𝑘𝑠,𝑡
) 𝑝𝑠,𝑡

𝑘𝑠,𝑡(1 − 𝑝𝑠,𝑡)
𝑛𝑠,𝑡−𝑘𝑠,𝑡

, (1) 

where 𝑛𝑠,𝑡 is the number of animal road crossings depending on animal habitats and 
seasonality, and 𝑝𝑠,𝑡 is the probability of an AVC occurrence, both of which vary by location 
(𝑠) and month (𝑡).  Using the binomial distribution with two parameters 𝑛𝑠,𝑡 and 𝑝𝑠,𝑡, the 
number of AVCs, 𝑘𝑠,𝑡, can be interpreted as the result of repeated 𝑛𝑠,𝑡 Bernoulli trials. Each 
trial represents an animal road crossing with probability of 𝑝𝑠,𝑡 causing an AVC. For this 
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reason, the collision probability, 𝑝𝑠,𝑡 can be regarded as a quantity that is determined by 
segment-specific characteristics (like land-use and segment-design factors), and time-
varying natural factors (like rainfall) and is assumed to have a logistic functional form: 

𝑝𝑠,𝑡 =
1

1 + exp(−𝜓𝑠,𝑡)
 ,   (2) 

where 𝜓𝑠,𝑡 determines the probability of causing an AVC when an animal road crossing is 
made at segment 𝑠 and month t, and can be represented as a linear function of characteristics, 
namely segment-specific design factors like land use, and time-varying natural factors, such 
as rainfall (see Equation 3). In addition, there may be heterogeneity in collision probability 
due to the omission of important segment-specific factors. In order to accommodate this 
possibility, a two-component clustering is incorporated for the intercept: 

𝜓𝑠,𝑡 = 𝛼0,𝑡𝐼𝑠,𝑡 + 𝜷′𝒙𝒔 + 𝜸𝒕
′𝒚𝒔,𝒕 ,  (3) 

where 𝒙𝑠 is a column vector containing the time-invariant design factors of segment 𝑠, 𝜷 is 
the corresponding conformable parameter vector, 𝒚𝒔,𝒕 is a column vector containing time-
varying parameters, and 𝜸𝒕 is the corresponding conformable month-specific parameter 
vector.‡ More importantly, 𝐼𝑠,𝑡 is an indicator for the non-zero constant effect 𝛼0,𝑡 at 
segment 𝑠 and month t. In other words, the constant effect of each segment-time pair arising 
from this specification is either zero or 𝛼0,𝑡. Nonzero 𝛼0,𝑡 suggests that some network 
segments have their collision probabilities affected by some important but unknown factors. 

While finding appropriate specification of 𝑛𝑠,𝑡, it is worth noting that the total number of 
animal crossings for each segment differs across segments and depends on the seasonality 
of average animal activity levels as seen in Figure 1. To achieve this flexibility, while 
simultaneously reflecting very low AVC counts on most segments, a nonparametric 
Dirichlet process (DP) prior is used for the number of animal road crossing at all segments 
(𝑠) and at all months (𝑡) of a year:  𝑛𝑠,𝑡. This specification creates clusters of segments in a 
data-driven manner and segments in same cluster can share the information about the 
number of crossings. With a DP prior specification, a large number of segments are expected 
to form a cluster representing zero animal crossings. In summary, the proposed modelling 
framework for AVCs is presented below: 

𝑃 ∼ 𝐃𝐏(𝜗𝑃0), 
(𝜇𝑠,𝑡  , 𝜎𝑠,𝑡) ∼ 𝑃, 

𝑛𝑠,𝑡
∗ ∼ 𝐍𝐨𝐫𝐦𝐚𝐥(−0.5,∞) (𝜇𝑠,𝑡, 𝜎𝑠,𝑡

2 ), 
𝑛𝑠,𝑡 = ⌊𝑛𝑠,𝑡

∗  ⌉, 

𝑞𝑡 ∼ 𝐁𝐞𝐭𝐚(𝑎0, 𝑏0), 
𝐼𝑠,𝑡 ∼ 𝐁𝐞𝐫𝐧𝐨𝐮𝐥𝐥𝐢(𝑞𝑡), 

𝛼0,𝑡, 𝜷, 𝜸𝒕 ∼ 𝐌𝐕𝐍(𝟎, 𝜮𝟎,𝒕), 
𝑝𝑠,𝑡 = 1/(1 + 𝑒𝑥𝑝(−𝜓𝑠,𝑡) ), 

𝜓𝑠,𝑡 = 𝛼0,𝑡𝐼𝑠,𝑡 + 𝜷′𝒙𝒔 + 𝜸𝒕
′𝒚𝒔,𝒕, 

(4) 
 

𝑘𝑠,𝑡 ∼ 𝐁𝐢𝐧𝐨𝐦𝐢𝐚𝐥(𝑛𝑠,𝑡 , 𝑝𝑠,𝑡). 
 

                                                 
‡ Time-varying parameters on time-invariant attributes can be easily incorporated in the proposed model, but are not 
specified here to avoid explosion of the parameter space. We could afford time-varying coefficients on time-varying 
attributes since there is just one attribute (rainfall) with monthly variation in this data set.    
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The number of animal road crossings, 𝑛𝑠,𝑡 and the collision probability, 𝑝𝑠,𝑡, on segment 𝑠 
in month 𝑡 are obtained from the left and the right blocks of Equation 4, respectively. The 
number of observed AVCs on segment 𝑠 in month 𝑡, 𝑘𝑠,𝑡 , is a realization of the binomial 
distribution with the parameters 𝑛𝑠,𝑡 and 𝑝𝑠,𝑡, as shown in the last part of Equation 4. 

More specifically, in the top-left block of the equations, a discrete distribution 𝑃 is drawn 
from DP with scalar precision parameter 𝜗 and base distribution 𝑃0. Then the cluster 
locations 𝜇𝑠,𝑡 and scales 𝜎𝑠,𝑡 are generated from the discrete distribution 𝑃 for each segment 
𝑠 and month 𝑡. Conditional on the cluster locations and scales, a real-valued latent quantity 
𝑛𝑠,𝑡

∗  is drawn. Then, the total number of animal crossings, 𝑛𝑠,𝑡, at site 𝑠 and month 𝑡 is set 
equal to the nearest integer, ⌊𝑛𝑠,𝑡

∗ ⌉. The truncated normal distribution on 𝑛𝑠,𝑡
∗  ensures the 

non-negativity of 𝑛𝑠,𝑡.  

For the collision probability, 𝑝𝑠,𝑡, specification in the top-right block of Equation 4, the 
indicator probability, 𝑞𝑡, is first drawn from a Beta distribution with prior parameters 𝑎0 
and 𝑏0 for each month 𝑡. Then the indicator variable, 𝐼𝑠,𝑡, for all segments and months is 
generated from a Bernoulli distribution using this indicator probability, 𝑞𝑡. The non-zero 
constant effect, the effect of segment-specific design factors, and time-varying natural 
factors, [𝛼0,𝑡, 𝜷′, 𝜸𝒕′] are drawn from a uninformative multivariate normal (MVN) 
distribution with prior mean zero (𝟎) and diagonal covariance, 𝜮0,𝑡. Then 𝜓𝑠,𝑡 is determined 
by the dot product of attributes[𝐼𝑠,𝑡, 𝒙𝒔

′ , 𝒚𝒔,𝒕′] and parameters [𝛼0,𝑡, 𝜷′, 𝜸𝒕′], which is further 
transformed to the collision probability, 𝑝𝑠,𝑡, after passing through a logistic function. 

The proposed hierarchical model was estimated using a Markov Chain Monte Carlo 
simulation. Algorithm 1 shows the step-by-step sampling from the conditional posterior 
distributions. Key features to note are the Pólya-Gamma data augmentation step to address 
the non-conjugacy of the logistic probability function (Polson et al., 2013) and the use of a 
stick-breaking construction to obtain the DP prior (Canale and Dunson, 2011). The complete 
derivation of the Gibbs sampler is provided in the Appendix. 
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Initialize parameters – clusters {1, ⋯ , 𝐶}, latent variables, and hyper-parameters 

Step 1: Draw 𝒏𝒔,𝒕 using a Metropolis-Hastings (MH) step 

 Step 1a: Assign cluster ID to each segment-month (𝑠, 𝑡) pair. 

 Step 1b: Update segment-specific parameters for each time period (𝜇𝑠,𝑡 ,  𝜎𝑠,𝑡
2 ) from multinomial 

distribution using cluster parameters 𝜇𝑙
∗, 𝜎𝑙

∗2 as 
𝑝(𝜇𝑠,𝑡 = 𝜇𝑐

∗ 𝑎𝑛𝑑 𝜎𝑠,𝑡
2 = 𝜎𝑐

∗2| ⋅) =
𝑤𝑐𝑝(𝑛𝑠,𝑡|𝜇𝑐

∗ ,𝜎𝑐
∗2)

∑ 𝑤𝑙𝑝(𝑛𝑠,𝑡|𝜇𝑙
∗,𝜎𝑙

∗2)𝐶
𝑙=1

 , 

                   where 𝑝(𝑛𝑠,𝑡|𝜇𝑙
∗, 𝜎𝑙

∗) =
Φ(𝑛𝑠,𝑡+1/2|𝜇𝑙

∗,𝜎𝑙
∗2)−Φ(𝑛𝑠,𝑡−1/2|𝜇𝑙

∗,𝜎𝑙
∗2)

1−Φ(−1/2|𝜇𝑙
∗,𝜎𝑙

∗2)
, and Φ(. ) is a normal cumulative 

distribution function.  

 Step 1c: Update cluster weights 𝑤𝑙  using a stick-breaking construction with Beta-distributed  𝑉𝑙  
where 𝑉𝑙|. ∼ 𝐁𝐞𝐭𝐚(1 + 𝑛𝑙 , 𝜗 + ∑ 𝑛𝑖

𝐶
𝑖=𝑙+1 ),  𝑤1 = 𝑉1 , 𝑤𝑙 = 𝑉𝑙 ∏ (1 − 𝑉𝑖)𝑖<𝑙  for 𝑙 = 2, … , 𝐶, 

and 𝑛𝑙  is the number of 𝜇𝑠,𝑡 that is equal to 𝜇𝑙
∗. (see Appendix for more details on 𝑉𝑙)  

 Step 1d: Set 𝑛𝑠,𝑡
∗ = Φ−1(𝑢𝑠,𝑡  | 𝜇𝑠,𝑡 ,  𝜎𝑠,𝑡

2 ) , 

where 𝑢𝑠,𝑡  ~ 𝐔𝐧𝐢𝐟𝐨𝐫𝐦 (Φ (𝑛𝑠,𝑡 −
1

2
|𝜇𝑠,𝑡 , 𝜎𝑠,𝑡

2 ) , Φ (𝑛𝑠,𝑡 +
1

2
|𝜇𝑠,𝑡 , 𝜎𝑠,𝑡

2 )) 

 Step 1e: Update cluster (𝜇𝑙
∗, 𝜎𝑙

∗2) from the Normal-Gamma distribution as  

 (𝜎𝑙
∗)−2|. ∼ 𝐆𝐚𝐦𝐦𝐚 (𝑎0 +

𝑛𝑙

2
, 𝑏0 +

1

2
∑ ((𝑛𝑠,𝑡

∗ − 𝜂) +
𝑛𝑙

1+𝑛𝑙
η2){(𝑠,𝑡):𝜇𝑠,𝑡=𝜇𝑙

∗} ), and 

 𝜇𝑙
∗|. ∼ 𝐼

[−
1

2
,∞)

𝐍𝐨𝐫𝐦𝐚𝐥 (
∑ 𝑛𝑠,𝑡

∗
{(𝑠,𝑡):𝜇𝑠,𝑡=𝜇𝑙

∗}

1+𝑛𝑙
,

𝜎𝑙
∗2

1+𝑛𝑙
). 

 Step 1f: Metropolis-Hastings step with 

                   P(𝑛𝑠,𝑡|. ) ∝  [∑ 𝑤𝑙

Φ(𝑛𝑠,𝑡 +
1

2
|𝜇𝑙

∗, 𝜎𝑙
∗2

)−Φ(𝑛𝑠,𝑡 −
1

2
|𝜇𝑙

∗, 𝜎𝑙
∗2

)

1−Φ(−
1

2
|𝜇𝑙

∗, 𝜎𝑙
∗2

)

𝐶
𝑙=1 ] × 𝐁𝐢𝐧𝐨𝐦𝐢𝐚𝐥(𝑘𝑠,𝑡| 𝑛𝑠,𝑡 ,  𝑝𝑠,𝑡). 

Step 2: Draw 𝒑𝒔,𝒕  

 Step 2a: Draw auxiliary variable  𝜔𝑠,𝑡|.  ~ 𝐏ó𝐥𝐲𝐚𝐆𝐚𝐦𝐦𝐚(𝑛𝑠,𝑡 ,   𝛼0,𝑡𝐼𝑠,𝑡 + 𝜷′𝒙𝒔 + 𝜸𝒕
′ 𝒚𝒔,𝒕). 

 Step 2b: Draw 𝜷|.  ~ 𝐌𝐕𝐍(𝒎𝜷 , 𝑽𝜷), 
                   where,  𝑽𝛽 = (∑ ∑ (𝜔𝑠,𝑡𝒙𝒔𝒙𝒔

′ )𝑠𝑡 + 𝑩0
−1)

−1
 and 

    𝒎𝛽 = 𝑽𝛽(∑ ∑ 𝒙𝒔(𝜅𝑠,𝑡 −  𝜔𝑠,𝑡𝜸𝒕
′ 𝒚𝒔,𝒕 −  𝜔𝑠,𝑡𝛼0,𝑡𝐼𝑠,𝑡)𝑠𝑡 ). 

 Step 2c: Draw 𝛼0,𝑡 ,  𝜸𝒕|. ~ 𝐌𝐕𝐍(𝒎𝒕. 𝑽𝒕),  
                   where, 𝑽𝑡 = (∑ (𝜔𝑠,𝑡𝒛𝒔,𝒕𝒛𝒔,𝒕

′ )𝑠 + 𝑫0
−1)

−1
 and 𝒎𝑡 = 𝑽𝑡(∑ 𝒛𝒔𝒕(𝜅𝑠,𝑡 − 𝜔𝑠,𝑡𝜷′𝒙𝒔)𝑠 ). 

 Step 2d: Draw 𝐼𝑠,𝑡 with 

𝑃(𝐼𝑠,𝑡 = 1| ⋅) =
𝑃𝑠,𝑡

1 𝑞𝑡

𝑃𝑠,𝑡
0 (1−𝑞𝑡)+𝑃𝑠,𝑡

1 𝑞𝑡
 ,where  

𝑃𝑠
0 = exp (𝜅s,t𝜓𝑠,𝑡 −

1

2
𝜔𝑠,𝑡𝜓𝑠,𝑡

2 )  | 𝜓𝑠,𝑡 =  𝜷′𝒙𝑠 + 𝜸′
𝒕𝒚𝒔,𝒕 and  

𝑃𝑠
1 = exp (𝜅s,t𝜓𝑠,𝑡 −

1

2
𝜔𝑠,𝑡𝜓𝑠,𝑡

2 )  | 𝜓𝑠,𝑡 =  𝛼0,t𝐼𝑠,𝑡 + 𝜷′𝒙𝑠 + 𝜸𝒕
′ 𝒚𝒔,𝒕 .  

 Step 2e: Draw 𝑞𝑡|. ~ 𝐁𝐞𝐭𝐚(1 + ∑ 𝐼𝑠,𝑡𝑠 ,  1 + ∑ (1 − 𝐼𝑠,𝑡)𝑠 ). 

Algorithm 1: Blocked Gibbs Sampler for Detecting Animal-Vehicle Crossings and Collisions 
(Note: All draws are for each segment, 𝑠, and month, t, as applicable.) 
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RESULTS 
The model described above was estimated using the Texas AVC dataset of the year 2016. 
Table 1 provides a summary of the segment-level design and environmental features that 
were used as explanatory variables.  

Table 1: Summary statistics for segment-specific factors considered in the model 
Variable Name Min. Mean Max. 
Segment Length (miles) 0.001 0.66 30.11 
Average Daily Traffic, ADT (1000 vehs/day) 0.01 11.20 341.30 
# Lanes 1 2.77 14 
Roadbed Width (ft) 10 47.11 318 
Median Width (ft) 0 7.45 710 
Inside Shoulder Width (ft) 0 5.49 60 
Outside Shoulder Width (ft) 0 6.53 53 
Surface Width (ft) 10 33.82 236 
% K Factor (for traffic peaking) 4.20 10.75 19.90 
Controlled Access? 0 0.18 1 
Posted Speed Limit (mph) 5 56.15 85 
Urban Area? 0 0.29 1 
Median Present? 0 0.04 1 

 

Algorithm 1 was used to draw 20,000 MCMC samples from the conditional posterior 
distributions of the model parameters, of which first 10,000 burn-in samples were discarded. 
The estimation took about 24 hours on a high-performance computer with six Intel Xeon 
cores operating at 3.4 GHz and having 128 GB of RAM. MCMC chains converged with an 
average Gelman & Rubin R-hat diagnostic of 1.011. Figure 5 shows the posterior expected 
AVCs compared against observed AVCs by month for the year 2016. The relative 
magnitude of the aggregated quantities resembles the seasonal pattern in the observed data. 
Such resemblance illustrates good predictive performance of the proposed model.§ 

Table 2 shows the estimates and statistics associated with parameters (𝛼0,𝑡, 𝐼𝑠,𝑡 and 𝜸𝒕), 
which form the time-varying component of the collision probability link function. Three 
main insights are drawn from these estimates. First, around 53% of the segments have non-
zero 𝐼𝑠,𝑡, i.e. they carry an inherent non-zero constant effect (unexplained by the observed 
covariates) on the AVC probability. The posterior mean of this non-zero constant effect 
(𝛼0,𝑡) is negative and the magnitude ranges between 0.2 and 0.5 for most months. Second, 
Table 2 also shows that around 0.8% to 1.5% of segments have non-zero animal crossings 
(𝑛𝑠,𝑡) in each month, which is consistent with small proportion of segments with non-zero 
AVCs in the data. This result implies the DP process could properly cluster segments with 
no exposure. Third, rainfall effect on collision probability (𝜸𝒕) is generally positive and is 
statistically significant in March-April and September-November.   

                                                 
§ Figure 5’s absolute magnitudes are generally smaller than those shown in Figure 1 since Figure 5 estimates the 
sums over all segments for a given year, whereas Figure 1 aggregates AVCs across segments and over seven years. 
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Figure 5: Posterior Expected Versus Observed Number of Animal-Vehicle Collisions by Month. 

Table 2: Time-Varying Quantities and Parameter Estimates 

Month 
Percent of 
Non-Zero 

𝑛𝑠,𝑡 

Percent of 
Non-Zero 

𝐼𝑠,𝑡 

Posterior mean 
of constant 
effect (𝛼0,𝑡) 

 

Posterior mean of 
Rainfall (inches) 

effect (𝜸𝒕) 

January 0.839% 52.9% -0.296** 0.113 

February 1.297% 53.0% -0.429** 0.123 

March 1.525% 52.9% -0.374** 0.135* 

April 1.115% 52.7% -0.392** 0.214** 

May 0.839% 52.7% -0.387** 0.124 

June 1.297% 53.2% -0.381** 0.021 

July 1.525% 53.0% -0.431** -0.028 

August 1.115% 52.6% -0.538** 0.042 

September 0.839% 52.7% -0.336** 0.256** 

October 1.297% 53.6% 0.266** 0.328** 

November 1.525% 54.0% 0.417** 0.129** 

December 1.115% 54.0% 0.090 0.014 

** indicates statistical significance, i.e. zero does not lie in 95% credible interval.  
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Table 3 shows the posterior mean estimates and 95% credible intervals for homogeneous 
probability parameter (𝜷). The estimated effects for several design factors are also 
insightful. Namely, speed limit is positively associated with higher probability of causing 
an AVC by an animal road crossing. Segments in urban areas tend to have lower 
probabilities of observing an AVC by animal-road crossings. A median barrier tends to 
decrease the probability of an AVC, perhaps because animals are unable to see the other 
side of the segment and may not cross at such locations. Large median widths correspond 
to a higher likelihood of an AVC, which can correspond to a correlated increase in roadbed 
width. Outside shoulder widths also show a similar trend, but the inside shoulder width 
negatively impacts AVC probability. The negative posterior estimate may be due to driving 
behavioral differences, especially the ability to swerve out of the main lanes and stop at the 
shoulder leading to lower AVCs, on average. Busy segments or those with a continuous 
peak traffic flow have a lower likelihood of AVCs, and an increase in average daily traffic 
corresponds to an increase in AVCs when controlling for several opposing trends (like peak 
factor and urban areas, for example). Controlled access highways like freeways have a 
significantly lower likelihood of an AVC, as expected. Land use characteristics also have a 
significant effect on AVC probability. Segments located near open areas, adjacent to water 
bodies, or surrounded by trees are more likely to observe an AVC compared to segments 
near buildings. Interestingly, population density is positively correlated with the likelihood 
of an AVC while other urban parameters suggest the opposite. An interaction of this variable 
with urban areas may provide more clarity on the direction of this effect, with population 
density likely key in co-locating AVCs outside of an urban area. 

Table 3: Posterior summary of the homogeneous probability parameters (𝜷) 

Quantity or Variable Mean 95% Credible 
Interval 

Segment Length (mi) 37.504 (34.137, 40.958) 
Average Daily Traffic (in 1000 vpd)  0.003 (3.59E-4, 0.007) 
Median Width (ft) 0.009 (0.005, 0.013) 
Inside Shoulder Width (ft) -0.017 (-0.034, 0.001) 
Outside Shoulder Width (ft) 0.076 (0.058, 0.093) 
Surface Width (ft) 0.015 (0.011, 0.020) 
Peak Period (%) -0.075 (-0.096, -0.053) 
Controlled Access? -1.495 (-1.767, -1.219) 
Speed Limit (mph) 0.028 (0.022, 0.033) 
Urban Area? -0.623 (-0.76, -0.485) 
Barrier Median Present -0.455 (-0.749, -0.166) 
Terrain Composition:  % Water 0.012 (0.007, 0.017) 
                                    % Trees 0.017 (0.013, 0.021) 
                                    % Open Land 0.008 (0.005, 0.012) 
Pop. Density (persons/sq.mi.) 0.035 (-0.001, 0.072) 

 

Using the posterior draws from conditional distribution of probability parameters, the 
probability of observing an AVC from an animal road crossing on each segment can be 
evaluated. Figure 6 shows the probability distribution for January and October to observe 
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the difference in crash probabilities by month. The variation in collision probability for both 
months across segments can be attributed to the differences in road design factors. The 
likelihood of observing a crash is markedly higher in October than in January, further 
confirming the proposed model could capture seasonality.  

 
Figure 6: Empirical Posterior Distribution of Collision Probability, 𝑝𝑠,𝑡 for January and October 

In expectation, the occurrence of AVC should be relatively rare, meaning that the 
probability should be much smaller. However, Figure 6 also indicates that a large proportion 
of segments is estimated to have the probability above 0.75, meaning that observing an AVC 
is high conditional on animal road crossings. Such high probability values may seem counter 
intuitive. In order to make sense of the probabilities shown in Figure 6, it is important to 
recognize the difference between the information contained in the AVC dataset and that 
used in forming our expectation. The animal crossing inferred by the model are in fact those 
crossings that occurred when there are vehicles driving on the segment because only those 
events will qualify to be “trials” in the Binomial model. There may be other animal road 
crossings occurring when there are no vehicles on the segments, and these would not lead 
to AVCs. Therefore, they will not be recorded in the dataset and the exposure model will 
not be able to detect them. In this sense, the probabilities shown in Figure 6 is in fact the 
probability of observing an AVC given both the presence of an animal road crossing and 
vehicles driving on the segment. 

The spatial distribution of posterior collision probabilities (𝑝𝑠,𝑡) is shown in Figure 7 across 
the Texas highway network. Figure 7 shows several clusters of light-colored segments, 
which correspond to the network around major urban areas. In contrast, darker segments are 
typically major highways that span the entire state. This pattern is a manifestation of the 
sampled parameters shown in Table 3 (i.e., the negative estimates of urban area, and positive 
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estimates of speed limit and highway type).  

The probabilities shown in Figure 7 represent the likelihood of causing an AVC by an 
animal road crossing. This information is useful for appreciating AVC contributions of road 
design decisions. However, the number of road crossings by animals on any given segment 
is also key in determining expected AVCs. Segments with high crash probability, but having 
zero or very few animal road crossings are relatively less of a concern as compared to 
segments having a high crash probability and a large number of animal crossings. The 
segments of the latter type can be regarded as hotspots, meriting AVC prevention 
considerations. Identifying such hotspots can guide investments and intervention decisions. 
The posterior mean of the expected AVCs (𝑛𝑠,𝑡 × 𝑝𝑠,𝑡) are relevant, and are shown in Figure 
8 for two different months of a year. 

 
Figure 7: Posterior Mean of Collision Probability 𝑝𝑠,𝑡 for All Segments in the Texas Roadway 

Network for November 
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(a) January 

 
(b) October 

Figure 8: Posterior Expected AVCs for All Segments in the State-Controlled Texas Roadway 
Network 
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By using the number of crossing (𝑛𝑠,𝑡) in the calculation for the expected AVCs, Figure 8 
shows the prominent effect of seasonality. More specifically, the expected AVC values are 
higher (darker colored) for more segments in October than that in January. This corresponds 
well with Figure 1’s patterns and allows the model-identified hotspots to vary by month or 
season. Another apparent feature evident in Figure 8 is that segments with higher expected 
AVCs are only a small share of all segments, and scattered across the Texas network. This 
small share is due to the fact that over 98% of 𝑛𝑠,𝑡 values are zero in any month (as noted in 
Table 2). 

Since segments with a high number of expected AVCs are scattered across the network, a 
smooth change in expected AVCs from one segment to other nearby segments may be 
preferred, through spatial autocorrelation. However, in doing so the advantage of having 
segments with zero animal crossings play no role in the parameter estimation is lost, causing 
parameter estimates to be biased low from averaging effects over nearby segments. 
Moreover, this contradicts the goal of inferring segment-specific design factor effects and 
shifts the focus onto higher levels of spatial aggregation. 

Given a segment-level focus of this analysis, another interesting aspect that is easy to 
identify from this model is the effect of a change in any of the design factors. Among Table 
3’s design factors, speed limit is the most cost-effective (and implementation-time-efficient) 
way to lower AVCs. The posterior means of collision probabilities are recalculated when 
assuming a 10 mph decrease in posted speed limit. Figure 9 shows the histogram of change 
in collision probability resulting from this new speed limit. It is interesting to see that there 
is a stark difference in the effect of lowering speed limits in different months. This shows 
the temporal effectiveness of such a countermeasure. Other design factors can be tested for 
a more thorough temporal benefit, and the State of Texas may wish to focus on those, to 
save human and animal lives, while avoiding injuries and property loss. Figure 10 shows 
the spatial nature of the decrease in expected AVCs (𝑛𝑠,𝑡 × 𝑝𝑠,𝑡) where marginally larger 
reductions in expected AVCs are observed in urban areas. 
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Figure 9: Change in Posterior Probability of AVC for January and October with a 10 mph Speed 

Limit Drop Across Texas Highways 

 
Figure 10: Posterior Mean of Changes for Expected AVCs following a 10 mph Speed Limit 

Reduction on Texas Highways 
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CONCLUSIONS 
This study develops and demonstrates a new method for analysis of low count values across 
many points in time and space, using a large network of roadway segments. The model is 
validated using Texas’ animal-vehicle collision (AVC) dataset. The proposed model uses 
binomial distribution to specify the AVC counts and allows the number of animal crossings 
to be governed by a Dirichlet process (DP). The collision probability is represented using a 
logistic function that depends upon segment-specific factors, monthly rainfall, and segment-
month random effects. DP enables the modelling of segments with zero AVCs because it 
creates clusters of segments nonparametrically that can share information. Time-varying 
probability specification helps in capturing seasonal effects. To address the non-conjugacy 
of posterior updates of the parameters associated with the logistic probability function, 
Pólya-Gamma data augmentation is adopted.  

Several advantages of the proposed modelling framework become clear in the case study. 
First, this new specification enables hotspot identification over time points (for example, 
months or seasons), not just space. Second, the impacts of various segment-specific 
attributes are inferred directly across all 120,726 locations. The proposed modeling 
framework thus allows policymakers to dive deep into factors that impact AVCs. 
Evaluations for purposeful modifications in any segment-specific factor (like speed limit or 
lane width) can be achieved in a relatively straightforward fashion. However, to make the 
marginal effect estimates for control variables (e.g., speed limits or lane width) meaningful 
to devise AVC avoidance policies, various other traffic-related measures need to be 
considered.  

In summary, AVCs are difficult to predict, due to the interactions of complex vegetative, 
climatic, traffic, and human factors. Inclusion of more variables like driver sight distances, 
use of fencing, availability of underground tunnels for animal crossings, and clear zone 
dimensions alongside highways may be helpful. Extending the model to include the time of 
day variability can also help improve estimates since a large proportion of AVCs occurs at 
night**. However, increased model complexity will require advanced techniques to speed 
up model estimation, such as the use of Variational Bayes (Bansal et al., 2021).

                                                 
** FHWA study (https://www.fhwa.dot.gov/publications/research/safety/humanfac/94156.cfm)  
suggests a large proportion of AVCs occur early in the day between 4 and 6 am and at night 
between 6 and 11 pm. 

https://www.fhwa.dot.gov/publications/research/safety/humanfac/94156.cfm
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APPENDIX: DERIVATION OF THE GIBBS SAMPLER 
The sampling from conditional posterior distributions in the MCMC estimation of the 
proposed hierarchical model can be divided into two blocks. Whereas the first block 
contains the sampling of the number of animal road crossings, 𝑛𝑠,𝑡, the second block 
includes the sampling of collision probability, 𝑝𝑠,𝑡, and related parameters for all segment-
month pairs.  

In the first block, a stick-breaking construction is considered for the Dirichlet process that 
enables the estimation of the probability of each cluster containing segments. These 
probabilities help estimate cluster parameters, and eventually the continuous 𝑛𝑠,𝑡

∗  that is then 
truncated and discretized to obtain segment-month-level animal road crossing count 𝑛𝑠,𝑡. 
Conditional posterior distributions of all parameters in block 1 are in closed-form, except 
the final step for which the Metropolis-Hastings algorithm is used. In the second block, 
since the binomial distribution with logistic probability function does not have a conjugate 
prior, Pólya-Gamma data augmentation is adopted to transform the model likelihood to the 
Gaussian likelihood (Polson et al., 2013). For the notational simplicity, 𝑃(𝐴| ⋅) is used to 
denote the probability of 𝐴 conditioning on the rest of the parameters and data.  

A.1 Posterior sampling of 𝑛𝑠,𝑡 and the related parameters 

Conditioning on the starting value of exposure, 𝑛𝑠,𝑡, a blocked Gibbs sampler for the 
Dirichlet process is used to sample 𝑛𝑠,𝑡 (Ishwaran and James, 2001a).6 Here, the kernel 
function used for representing clusters is a truncated normal density function with the 
truncation made at -0.5 from below to ensure the non-negativity of resulting 𝑛𝑠,𝑡. For 
simplicity in cluster-specific distribution, the precision parameter 𝜗 is set to one, with the 
following base distribution: 

𝑃0(𝜇, 𝜎2) = 𝐍𝐨𝐫𝐦𝐚𝐥(𝜇|𝜇0, 𝜎2)𝐆𝐚𝐦𝐦𝐚(1/𝜎2 |𝑑0, 𝑒0),   (5) 

The prior parameters are chosen to be weakly informative (µ0  =  0,  𝑑0  =  2 and 𝑒0  =
 10). Due to the discrete nature and the limited number of distinct values of 𝑛𝑠,𝑡, the 
maximum number of distinct clusters (𝐶) is set to 3.7 For a thorough review of the stick-
breaking construction, readers can refer to Ishwaran and James (2001b). Using the above 
prior specification, the Gibbs sampler proceeds via the following sampling steps: 

 For each 𝑠 = 1, … , 𝑆 and 𝑡 = 1, … , 𝑇, update 𝜇𝑠,𝑡and 𝜎𝑠,𝑡
2  by sampling from a 

multinomial distribution with 

𝑝(𝜇𝑠,𝑡 = 𝜇𝑐
∗ 𝑎𝑛𝑑 𝜎𝑠,𝑡

2 = 𝜎𝑐
∗2| ⋅) =

𝑤𝑐𝑝(𝑛𝑠,𝑡|𝜇𝑐
∗, 𝜎𝑐

∗2
)

∑ 𝑤𝑙𝑝(𝑛𝑠,𝑡|𝜇𝑙
∗, 𝜎𝑙

∗2
)𝐶

𝑙=1

, 

 
 (6) 

where 𝑤𝑙 is the weight and 𝜇𝑙
∗ and 𝜎𝑙

∗ are parameters for cluster 𝑙. The kernel function 
for each cluster is as follows: 

                                                 
6 See Shirazi et al. (2016) for an application in safety research. 
7 We tried to estimate the model with the higher number of clusters, but convergence issues are encountered due to a 
limited range of 𝑛𝑠,𝑡.  
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𝑝(𝑛𝑠,𝑡|𝜇𝑙
∗, 𝜎𝑙

∗2) =
Φ(𝑛𝑠,𝑡 + 1/2|𝜇𝑙

∗, 𝜎𝑙
∗2) − Φ(𝑛𝑠,𝑡 − 1/2|𝜇𝑙

∗, 𝜎𝑙
∗2)

1 − Φ(−1/2|𝜇𝑙
∗, 𝜎𝑙

∗2)
,  

  
 (7) 

where Φ(.) is a normal cumulative distribution function 

 A stick-breaking construction of Dirichlet process is used to compute the probabilities 
or weights for each cluster. Assuming 𝑉𝑙 for each cluster 𝑙 is independent 𝐁𝐞𝐭𝐚(1, 𝜗), 
the weights are 𝑤1 = 𝑉1 and 𝑤𝑙 = 𝑉𝑙 ∏ (1 − 𝑉𝑖)𝑖<𝑙  for 𝑙 = 2, … , 𝐶. By setting 𝑉𝐶 to 1, 
the weights across all clusters are guaranteed to sum to 1. The posterior of 𝑉𝑙 accounts 
for the number of segment-time pairs that belong to cluster 𝑙. It can be sampled from:  

𝑉𝑙 ∼ 𝐁𝐞𝐭𝐚 (1 + 𝑛𝑙, 𝜗 + ∑ 𝑛𝑖

𝐶

𝑖=𝑙+1

) , for 𝑙 = 1, … 𝐶 − 1,    (8) 

where 𝑛𝑙 is the number of 𝜇𝑠,𝑡 that is equal to 𝜇𝑙
∗. 

 For each 𝑠 = 1, … , 𝑆 and 𝑡 = 1, … , 𝑇, draw 𝑛𝑠,𝑡
∗  by first sampling from the following: 

𝑢𝑠𝑡 ∼ 𝐔𝐧𝐢𝐟𝐨𝐫𝐦 (Φ (𝑛𝑠,𝑡 −
1
2 |𝜇𝑠,𝑡, 𝜎𝑠,𝑡

2 ) , Φ (𝑛𝑠,𝑡 +
1
2 |𝜇𝑠,𝑡, 𝜎𝑠,𝑡

2 )),    (9) 

and then set 𝑛𝑠,𝑡
∗ = Φ−1(𝑢𝑠,𝑡|𝜇𝑠,𝑡, 𝜎𝑠,𝑡

2 ). 

 Update the cluster-specific parameters using their conditional distributions for 𝑙 =
1, … 𝐶: 

1/𝜎𝑙
∗2 ∼ 𝐆𝐚𝐦𝐦𝐚 (𝑎0 +

𝑛𝑙

2
, 𝑏0 +

1

2
∑ ((𝑛𝑠,𝑡

∗ − 𝜂) +
𝑛𝑙

1 + 𝑛𝑙
η2)

{(𝑠,𝑡):𝜇𝑠,𝑡=𝜇𝑙
∗}

),  (10) 

 

𝜇𝑙
∗ ∼ 𝐼

[−
1
2

,∞)
𝐍𝐨𝐫𝐦𝐚𝐥 (

∑ 𝑛𝑠,𝑡
∗

{(𝑠,𝑡):𝜇𝑠,𝑡=𝜇𝑙
∗}

1 + 𝑛𝑙
,

𝜎𝑙
∗2

1 + 𝑛𝑙
),   (11) 

where 𝜂 =  ∑
𝑛𝑠,𝑡

∗

𝑛𝑙
{(𝑠,𝑡):𝜇𝑠,𝑡=𝜇𝑙

∗} . 

 The above steps include update of all parameters associated with the distribution of 𝑛𝑠,𝑡. 
Conditional on these parameters and the parameters related to collision probability 𝑝𝑠,𝑡, 
the conditional marginal probability of 𝑛𝑠,𝑡 is as follows: 

𝑃(𝑛𝑠,𝑡| ⋅) ∝ [ ∑ 𝑤𝑙

Φ (𝑛𝑠,𝑡 +
1
2

|𝜇𝑙
∗, 𝜎𝑙

∗2) − Φ (𝑛𝑠,𝑡 −
1
2

|𝜇𝑙
∗, 𝜎𝑙

∗2)

1 − Φ (−
1
2

|𝜇𝑙
∗, 𝜎𝑙

∗2)𝑙=1,…,𝐶

]  𝐁𝐢𝐧𝐨𝐦𝐢𝐚𝐥(𝑘𝑠,𝑡|𝑛𝑠,𝑡 , 𝑝𝑠,𝑡) (12) 

Utilizing the above expression, a Metropolis-Hastings algorithm is used to sample 𝑛𝑠,𝑡 for 
all segment-month pairs. 

A.2 Posterior sampling of 𝑝𝑠,𝑡 and the related parameters 

The posterior sampling for the parameters related to collision probability, 𝑝𝑠,𝑡, can be 
divided into two parts: The first part is concerned with the parameters for defining 𝑝𝑠,𝑡, 
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which are the regression parameters 𝛼0,𝑡, 𝜷 and 𝜸𝒕, and the second part is related to the 
parameters associated with indicators, 𝐼𝑠,𝑡. 

Conditional on both 𝑛𝑠,𝑡 and 𝐼𝑠,𝑡, marginal posterior distributions of 𝛼0,𝑡, 𝜷 and 𝜸𝒕 are not 
of well-known form. To address this non-conjugacy challenge, a Pólya-Gamma-distributed 
auxiliary variable, 𝜔𝑠,𝑡, is introduced for each segment-month pair (Polson et al., 2013).8 
After conditioning on 𝜔𝑠,𝑡 and other parameters, the resulting marginal posterior 
distributions of 𝛼0,𝑡, 𝜷 and 𝜸𝒕 become Gaussian. The detailed sampling steps are as follows: 

 Conditional posterior distribution of 𝜔𝑠,𝑡 is: 

𝜔𝑠,𝑡|. ∼  𝐏ó𝐥𝐲𝐚𝐆𝐚𝐦𝐦𝐚(𝑛𝑠,𝑡, 𝛼0,𝑡𝐼𝑠,𝑡 + 𝜷′𝒙𝑠 + 𝜸𝒕
′𝒚𝒔,𝒕), (13) 

 It is worth nothing that posterior updates for time-invariant, 𝜷, and time-varying 
parameters, [𝛼0,𝑡, 𝜸𝒕], differ substantially, and therefore, we update them separately as 
detailed below:  

a. We follow Polson et al. (2013) to obtain the posterior update for time-invariant 
parameters, 𝜷, which turns out to be Gaussian:  

𝜷 ∼ 𝐌𝐕𝐍(𝒎𝛽, 𝑽𝛽), (14) 
where, 

𝑽𝛽 = (∑ ∑(𝜔𝑠,𝑡𝒙𝒔𝒙𝒔
′ )

𝑠𝑡

+ 𝑩0
−1)

−1

,  

𝒎𝛽 = 𝑽𝛽 (∑ ∑ 𝒙𝒔(𝜅𝑠,𝑡 −  𝜔𝑠,𝑡𝜸𝒕
′𝒚𝒔,𝒕 −  𝜔𝑠,𝑡𝛼0,𝑡𝐼𝑠,𝑡)

𝑠𝑡

),  

(15) 

𝜅𝑠,𝑡 = 𝑘𝑠,𝑡 −
𝑛𝑠,𝑡

2
 and 𝑩0 is the prior uninformative covariance matrix (subset of 𝜮𝟎,𝒕, 

a diagonal matrix with large values) for 𝜷.  

b. Similarly, time-varying parameters, [𝛼0,𝑡, 𝜸𝒕
′], are drawn from: 

 [𝛼0,𝑡, 𝜸𝒕
′]~ 𝐌𝐕𝐍 (𝒎𝒕, 𝑽𝒕) (16) 

where, 

𝑽𝑡 = (∑(𝜔𝑠,𝑡𝒛𝒔,𝒕𝒛𝒔,𝒕
′ )

𝑠

+ 𝑫0
−1)

−1

,  

𝒎𝑡 = 𝑽𝑡 (∑ 𝒛𝒔𝒕(𝜅𝑠,𝑡 − 𝜔𝑠,𝑡𝜷′𝒙𝒔)

𝑠

), 

 (17) 

where 𝒛𝒔𝒕 = [𝐼𝑠,𝑡 , 𝒚𝒔,𝒕
′ ]′ and 𝐷0 is the prior uninformative covariance 

matrix (subset of 𝜮𝟎,𝒕, a diagonal matrix with large values) for [𝛼0,𝑡, 𝜸𝒕] .  

                                                 
8 See Buddhavarapu et al. (2016) and Buddhavarapu et al. (2020) for applications in safety research. 
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 For all segment-month pairs, the indicator 𝐼𝑠,𝑡 is drawn from its conditional 
posterior distribution: 

𝑃(𝐼𝑠,𝑡 = 1| ⋅) =
𝑃𝑠,𝑡

1 𝑞𝑡

𝑃𝑠,𝑡
0 (1 − 𝑞𝑡) + 𝑃𝑠,𝑡

1 𝑞𝑡

 , (18) 

where 

𝑃𝑠,𝑡
0 = exp (𝜅s,t𝜓𝑠,𝑡 −

1

2
𝜔𝑠,𝑡𝜓𝑠,𝑡

2 ) | 𝜓𝑠,𝑡 =  𝜷′𝒙𝑠 + 𝜸′
𝒕𝒚𝒔,𝒕 

𝑃𝑠
1 = exp (𝜅s,t𝜓𝑠,𝑡 −

1

2
𝜔𝑠,𝑡𝜓𝑠,𝑡

2 ) | 𝜓𝑠,𝑡 =  𝛼0,𝑡𝐼𝑠,𝑡 + 𝜷′𝒙𝑠 + 𝜸′
𝒕𝒚𝒔,𝒕 

(19) 

 Lastly, assuming prior distribution for 𝑞𝑡 to be 𝐁𝐞𝐭𝐚(1,1), its conditional posterior 
distribution is: 

𝑞𝑡~ 𝐁𝐞𝐭𝐚 (1 + ∑ 𝐼𝑠,𝑡

𝑆

𝑠=1

, 1 + ∑(1 − 𝐼𝑠,𝑡)

𝑆

𝑠=1

).  (20) 

 

 

 


