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ABSTRACT 

Machine learning (ML) is being used regularly in transportation and other applications to 
predict response variables as a function of many inputs. This paper compares traditional 
econometric methods of data analysis to ML methods in the prediction and understanding of 
four key transport planning variables: household vehicle-miles traveled (a continuous 
variable), household vehicle ownership (a count variable), mode choice (a categorical 
variable), and land use change (a categorical variable with strong spatial interactions). Here, 
the results of decision trees (DTs), random forests (RFs), Adaboost, gradient boosting 
decision trees (GBDTs), XGBoost, lightGBM (gradient boosting methods), catboost, neural 
networks (NNs), support vector methods (SVMs) and Naïve Bayesian networks (BN) are 
compared to methods of ordinary least squares (OLS), multinomial logit (MNL), negative 
binomial and spatial auto-regressive (SAR) MNL methods using the U.S.’s 2017 National 
Household Travel Survey (NHTS 2017) and land use data sets from the Dallas-Ft. Worth 
region of Texas. Results suggest that traditional econometric methods work pretty well on 
the more continuous responses (VMT and vehicle ownership), but the RF, GBDT and 
XGBoost methods delivered the best results, though the RF model required 30 to almost 60 
times more computing time than XGBoost and GBDT methods. The RF, GBDT, XGBoost, 
lightGBM and catboost offer better results than other methods for the two “classification” 
cases (mode choice and land use change), with lightGBM being the most time-efficient. 
Importantly, ML methods captured the plateauing effect that modelers may expect when 
extrapolating covariate effects.  

Key words：  machine learning; artificial intelligence; econometric methods; travel behavior 
prediction; model estimation comparisons; ensemble methods  

INTRODUCTION 

Machine learning (ML) is a branch of artificial intelligence (AI) that employs a variety of 
statistical, probabilistic and optimization techniques. Instead of making strict assumptions 

50 

mailto:kkockelm@mail.utexas.edu
maizyjeong
Highlight



about random components and equations linking predictor variables or covariates to response 1 
variables (X’s to Y’s), ML methods allow computers to “learn” and detect hard-to-discern 2 
patterns from large, noisy and/or complex data sets. Thanks to computing advances, ML is 3 
already being widely tested across various areas of transport data analysis, including truck-4 
type classification (Huang et al., 2018), mode recognition (Xie et al., 2003, Wang et al., 5 
2019), travel time prediction (Zhang et al., 2015), injury severity prediction (Delen et al. 6 
2017, Hamad et al., 2019, Das et al., 2019), traffic flow prediction (Hosseini et al., 2019, Cui 7 
et al., 2019), trip purpose identification (Deng et al., 2010), and automated-vehicle 8 
applications (Liang et al., 2019). To date, the most commonly used ML algorithms appear to 9 
be logistic regression (LR), using gradient ascent to calibrate model parameters (Caruana et 10 
al., 2006; Chen et al., 2016; Delen et al., 2017), decision tree (DTs), the support vector 11 
method (SVM), naïve Bayes (NB), k-nearest neighbors (KNN), K-means, random forest 12 
(RF), bagging algorithms, gradient boosting decision trees (GBDT), XGBoost (extreme 13 
gradient boosting), lightGBM (light gradient boosting method), and categorical boosting 14 
algorithms (catboost). Some of these are old, traditional methods (based on basic clustering 15 
math or a single sigmoidal equation). Others do not have target values or training data and are 16 
used for smoothing behaviors with reinforcement along the way (e.g., a self-driving car 17 
avoiding near-crashes and high centrifugal forces gets a higher score).  18 

Data mining models have more flexible structures than traditional econometric models in 19 
representing the relationship between the attributes of alternatives and choices. Thanks to 20 
such flexibility, they may be able to offer valuable insights into relationships that random-21 
utility-based choice models cannot recognize (see, e.g., Xie et al., 2003, Xu et al., 2018, Keya 22 
et al., 2019). Tree-based ML methods are often preferred by modelers because their 23 
specifications are relatively clear (as a series of discrete branches, from variable to variable), 24 
and this method appears to be quite resistant to outliers, noise/random errors, missing data, 25 
and overfitting (using training data) (Harb et al., 2009). Compared to other ML methods, 26 
which are regarded as black boxes, the tree-based ensemble methods (i.e., RF methods) are 27 
easily interpreted and can solve complex nonlinear relationship, which enable a better 28 
understanding of Y-vs-X relationships (Zhang et al., 2015). The following will describe the 29 
ensemble methods from Bagging to Boosting.  30 

Bagging 31 

RF is a common bagging methods that combines Brieman’s bagging idea with Ho’s random 32 
subspace method (Harb et al., 2009). Cheng et al. (2019) and Seksar et al. (2014) reviewed 33 
many recent RF studies, finding consistently strong predictive accuracy across distinctive 34 
data sets. RF also can identify, interpret, and rank-order the relevance of competing 35 
covariates and their interactions. Bagging methods involves random sampling of small 36 
subsets of data, and gives all resulting weak models equal probability. So each sample and its 37 
associated model have the same weight, running in parallel, which is very different from 38 
boosting methods, since those give more weight or credit to stronger/less weak models 39 
among the samples. 40 

Boosting 41 

Freund (1997) proved that using “boosting” algorithms to combine many weak models can 42 
result in a single and highly accurate model - one of the most powerful ideas for prediction 43 
over the past 20 years (Hou et al., 2018). Boosting methods use the same data set to run the 44 
prediction models, with the same weight given to each data set when predicting the first weak 45 
model, then using prediction error rates to adjust sample and model weights to predict the 46 
next model combination. Thus, boosting methods must run in sequence, which slows 47 
prediction speeds but delivers better prediction accuracy, as compared to bagging methods 48 
(Caruana et al., 2006). Gradient boosting, which combines gradient descent and boosting to 49 
improve prediction speed and accuracy, is an extension of the over-boosting method 50 



(developed by Friedman [2001]). Such algorithms are typically one of the following four 1 
methods: GBM (gradient boosting method), XGBoost, lightGBM, and catboost.  2 

GBMs generate base models sequentially and improve prediction accuracy since 3 
misclassified or incorrectly estimated samples are more likely to be selected (using larger 4 
weights) on successive estimation rounds. Zhang et al. (2015) used a gradient boosting 5 
regression tree (a kind of GBM) to predict travel times with greater accuracy than ARIMA 6 
and RF. Ding et al. (2016) devised the GBDT method (a kind of GBM) to estimate short-term 7 
subway ridership levels (by station) and showed how GBDT can reliably rank the relative 8 
influence of different covariates - like bus transfer activities and temporal features (Time of 9 
day, day, week and month were incorporated in the prediction model). It is also used 10 
compared to BP-NN, SVM and RF. For BP-neural network, and found that GBDT model 11 
receives the best model performance (higher R2). Proposed by Fruend in 1997, Adaboost is 12 
another kind of GBM to compare to RF (Miao et al., 2010), NN (Alfaro et al., 2008), and 13 
SVM (Wang et al., 2006). All of the results showed that AdaBoost outperforms other 14 
methods and is more robust than SVM.  15 

Recently, XGBoost has received a lot of attention. Hou et al. (2018) used single DT, RF, 16 
GBM and XGBoost to predict roadway traffic flows and found similar accuracy across 17 
methods, with XGBoost requiring the lowest computing times. Wang (2018) used the 18 
XGBoost, lightGBM and DTs methods to predict travel mode choices and found the 19 
lightGBM and XGBoost methods be more accurate than DTs, with lightGBM most preferred.  20 

Compared to GBDT, Ke et al. (2017) verified that lightGBM reduced training times by 95% 21 
or more, while achieving nearly the same predictive accuracy (measured as AUC). The main 22 
difference between lightGBM and the XGboost algorithms is that lightGBM uses a 23 
histogram-based algorithm to speed up the training process, reduce memory consumption, 24 
and adopt a leaf-wise leaf-growth strategy with depth limitations (Guo et al., 2017). Catboost 25 
is also a cutting-edge ML technique, which is good at dealing with categorical data. 26 
(Dorogush et al. 2018).27 

As analysis before, ensemble methods generally deliver better predictions than other 28 
algorithms. Consider ANN, SVM and Bayesian network models are also widely used in 29 
model prediction. This paper tested the following 10 ML models: decision trees (DTs), 30 
random forests (RFs), Adaboost, gradient boosting decision trees (GBDT), XGBoost, 31 
lightGBM, catboost, ANNs, SVMs and Bayesian networks. All these methods can be used 32 
for categorical or count or continuous response variable prediction. Their results were then 33 
compared to those from traditional estimation models (OLS, negative binomial, and MNL 34 
specifications) for prediction of annual household VMT, household vehicle ownership, and 35 
mode choices. Spatial econometric techniques (MNL SAR) were also used to analyze the 36 
land use change data. Data come from Dallas-Ft. Worth’s 2017 National Household Travel 37 
Survey (NHTS 2017) add-on sample and from the Dallas-Ft. Worth region more generally 38 
(via its metropolitan planning organization: the North Central Texas Council of 39 
Governments, or NCTCOG).  40 

Interestingly, almost no ML users in the world are yet making their ML model specifications 41 
transparent. For example, Hou et al. (2018), Linero and Nethery (2015), Folden (2018), Goh 42 
(2018), Brown (2019), Pu (2019), and nearly all others only compare competing models’ 43 
predictive accuracy (using, e.g., root-mean-squared errors [RMSE values]) and simply rank 44 
the explanatory variables (on the basis of dE(y)/dx slope comparisons, typically). Thus, this 45 
new paper examines not just goodness of fit in predicting hold-out sample values, but 46 
emphasizes interpretation of results for behavioral understanding, smarter planning and 47 
policy making, and better investment and management decisions. 48 

MACHINE LEARNING (ML) METHODS 49 



ML methods are extensive. Because ANNs, BN and SVM are three common methods which 1 
are already used before the ML and AI emerge, and many papers have describe these three 2 
algorithms, meanwhile, due to space constraints, more information on ANNs, BN and SVM 3 
methods can be found in Xiao et al. (2015), Omrani (2015), Delen et al. (2017) and Iranitalab 4 
(2017). This paper will pay more attention to ensemble methods, below are key details for 5 
specifications of Bagging and Boosting. 6 

Bagging Trees via Random Forest 7 

Breiman proposed the RF method in 1996. RFs combine decision tree (DT) predictors by 8 
using bootstrap method, and then using voting (for classifier) or average (for regression) the 9 
results of each DT to obtain the final prediction value. In RF, each decision node uses the 10 
best among a subset of predictors randomly chosen at that node. This method has performed 11 
very well compared to many other commonly-used classifiers and is resistant to overfitting 12 
(Breiman, 1996). 13 

Boosting Techniques 14 

This section describes 5 top boosting methods: Adaboost, GBDT, XGBoost, lightGBM and 15 
catboost, which are presented in the chronological order they were introduced in the 16 
literature, also from simpler to more complex. 17 

Adaboost 18 

Adaptive boosting (Adaboost) was introduced by Freund and Shapire in 1997; it combines a 19 
collection of weak models to provide a stronger model. With m training-set data points, this 20 
method uses initial weights of 1/m for each observation to “train” (i.e., estimate) a set of base 21 
(initial, weak) models. The predictions of these (the number of base models depend on the 22 
prediction accuracy and overfitting or not) base models are used to generate a new set of 23 
weights call alpha values by using prediction accuracy (alpha = 0.5*ln (1-accuracy/total) / 24 
(accuracy/total)), which are then used to update data-point weights. Larger weights are 25 
assigned to samples with more misclassified data points (i.e., to harder-to-predict data sets), 26 
and these updated weights are used to train the next model version. Final predictions for each 27 
data point are obtained as an alpha-weighted “voting” (or score) total across all upstream 28 
models (Krishnaveni et al., 2011). 29 

Gradient Boosting Decision Tree (GBDT) 30 

Like other boosting methods, GBDT combines several relatively weak models into a stronger 31 
model. It uses forward stage-wise additive modeling, GBDT only can uses CART 32 
(Classification And Regression Tree, which use Gini impurity to select the node classifier 33 
variables, smaller Gini impurity means better prediction accuracy) trees to be the base 34 
learners, loss of function is minimized in the direction of its steepest-descent, the aim of each 35 
iteration is to decrease the last residual. GBDT algorithms resist noise components and outlier 36 
data points by bagging and adding regularization, making GBDT more robust than other 37 
methods. For these reasons, GBDT is now widely used for classification of data points, 38 
prediction of continuous response variables (which ML users call “regression”), and ranking 39 
of outcomes or decisions (Ding et al., 2016). 40 

Extreme Gradient Boosting Model (XGBoost) 41 

Friedman (2001) proposed the XGBoost model as a well-developed algorithm in the boosted 42 
DT family (Hou et al., 2018). It also is trained (estimated) in a forward “stage-wise” (i.e., 43 
input by input) fashion, to minimize the “loss function” (typically the sum of squared error 44 
terms), by adjusting parameters bit by bit (to remove residual correlation between an input 45 
variable and the loss function). XGBoost uses a parallel tree boosting method (also known as 46 
GBM with DTs) that solves many data science problems in a fast and accurate way (Hou et 47 
al., 2018). It can use CART or gblinear as its base model, and add regulation to the objective 48 



function. A second-order Taylor series expansion is used to approximate the method’s 1 
objective function (i.e., it’s loss function, like the RMSE), based on second derivatives.  2 

LightGBM 3 

For very large data sets, the LightGBM technique is often helpful. It combines gradient-based 4 
one-side sampling (GOSS) and exclusive feature (covariate) bundling (EFB) to tackle the 5 
problem of model complexity (thanks to a very large set of covariates and/or training data). 6 
GOSS method keeps those instances with large gradients, and only randomly drop those 7 
instances with small gradients (leaf-wise tree growth strategy with depth limited [other 8 
algorithms grow level-wise]). LightGBM has been found to accelerate “training speed” (i.e., 9 
estimation times) while delivering accuracy compared to other ML methods (Ke et al., 2017).  10 

Catboost 11 

The Yandex Company proposed “Catboost” in 2017 to boost estimation for categorical data. 12 
Catboost is considered a cutting-edge ML technique, able to compete with any leading ML 13 
algorithm on the performance front (Dorogush et al. 2018). Catboost, which use complete 14 
binary tree, can be used without any explicit pre-processing of input values to convert 15 
categories into numbers, so it can handle categorical “features” (i.e., covariates) 16 
automatically. More specifically, data set is randomly permutated firstly, then for each 17 
sample, it calculates average label value for samples with the same category value prior to the 18 
given one in the permutation, which is different from one-hot encoding. It also reduces the 19 
need for extensive parameter tuning and lowers the chances of overfitting, which leads to 20 
more robust prediction (Dorogush et al., 2018).  21 

MODEL FIT ASSESSMENT 22 

Different model-fit statistics or loss-function values are used to evaluate and compare ML 23 
and other estimation techniques. The better score statistic to use generally depends on the 24 
response variable’s characteristics (e.g., is it binary, categorical, ordered or continuous?). The 25 
following sections discuss scoring techniques, starting with a classification case. 26 

Classification Problems for Categorical Response Data 27 

Contents of a confusion matrix for response categorization are commonly used to compare 28 
competing models’ performance, based on the metrics of recall, precision, F1 score, and what 29 
ML modelers call “AUC” (which stands for area under the receiver operating characteristic 30 
or ROC curve).  31 

Using a 3-category example, class or category i’s precision is simply the fraction of data 33 
points categorized correctly into class i: pi =nii/ (nii+ni2+ni3), where nij is the number of data 34 
points with a class i response that are model-classified as class j.  35 

The 3 positive predictive values (p1, p2 and p3) and the true positive rates of the three classes 36 
(P1 = n11/ni1, P2=n22/ni2, and P3=n33/ni3) are then harmonically averaged to calculate the 37 
index called F1score, which is 1/3(2/(1/pi + 1/Pi), and this statistic ranges from 0 to 1, with 1 38 
being the best score feasible (with all class 1 data points properly categorized, and no others 39 
mistakenly placed in that category). 40 

Regression Problem (Continuous Response Variable Prediction) 41 

Scoring criteria commonly used to improve models and compare models with continuous 42 
response variables are the mean square error (MSE), mean absolute error (MAE), root mean 43 
square error (RMSE), root mean squared logarithmic error (RMSLE), and coefficient of 44 
determination (R2) or correlation between actual and predict values ( = sqrt(R2) in the 45 
bivariate context). The R2 and RMSE values are defined in Eqs. 2 and 3:  46 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑦𝑖 − 𝑦�̂�)

2                       (2) 47 



𝑅2 = 1 −
∑((𝑦𝑖−𝑦�̂�)2)

∑((𝑦𝑖−�̅�)2)
                         (3) 1 

where yi is the observed output value, and iŷ  is the model-predicted response or output. 2 

Avoiding Overfitting 3 

ML results can suffer from overfitting problems, since they can have hundreds, thousands or 4 
more parameters embedded in them, making them too responsive to outliers and demanding 5 
very large data sets, which many researchers will not have. ML researchers avoid this issue 6 
by holding out a testing (validation) sample of the data, apart from the training (calibration) 7 
data set used to create the model. Using random processes, if there a considerable deviation 8 
in model prediction accuracy between these two distinctive data sets, parameters in the 9 
trained model are adjusted. ML routines are typically programmed to replicate this process of 10 
partitioning the initial data set, fitting the model (on each training data set), and evaluating 11 
the success rate or scores R different times. The average of these scores is the overall success 12 
rate.  13 

Sensitivity 14 

Many people feel that ML methods are like black boxes, since few make explicit the 15 
parameters and equations behind them, or at least the relationships between outputs and 16 
inputs (i.e., between response values Y and each explanatory variable Xi). New sensitivity 17 
analyses have been proposed to address this long-standing weakness (Delen et al., 2017). In 18 
this paper, the average change in model-predicted output values (Y) with respect to a 1 19 
standard deviation or binary (0 to 1) change in every input (for every data point) is used to 20 
appreciate the relationship between each explanatory variable and the dependent variable. 21 
This effect is calculated differently for continuous versus binary inputs (e.g., x1 = Age vs x2 22 
= Gender or Presence of Children in the Respondent’s Household), since the latter does not 23 
change smoothly/continuously in practice. The difference in the average response was 24 
divided by the response variable’s standard deviation to normalize the impacts, for ready 25 
comparison across different response-variable contexts (e.g., Y1 = VMT vs. Y2 = Vehicle 26 
Ownership). As shown in Eq. 4. 27 

∆𝑌 𝑤. 𝑟. 𝑡 =
𝑦𝑐ℎ𝑎𝑛𝑔𝑒𝑑−𝑦𝑢𝑛𝑐ℎ𝑎𝑛𝑔𝑒𝑑

𝜎
                  (4) 28 

DATA SETS  29 

This work relies on two data sets to do estimate four distinctive response variables. These are 30 
the Dallas-Ft. Worth or “DFW” sample in the U.S. 2017 National Household Travel Survey 31 
(NHTS 2017) data set and the land use data sets provided by DFW’s metropolitan planning 32 
organization (NCTCOG). After removal of records with missing covariates, the four data 33 
sets’ sample sizes are as follows: daily household-level VMT: n1 = 8,676 households; vehicle 34 
ownership: n2 = 8,545 households; model choice: n3 = 13,834 person-trips; and land use 35 
change: n4 = 99,304 grid cells (each measuring 30 m by 30 m).  36 

The data sets contain a variety of valuable variables, including individual and household 37 
demographics, trip-level and mode-alternative attributes and neighborhood land use and 38 
access details. Table 1 provides summary statistics for all variables considered here. 39 

TABLE 1 Summary Statistics for four Transportation-related Data Sets 40 
HHVMT Model (n1 = 8,676)  

Variable Description Mean Std. Dev. Min Max 

HHVMT Vehicle-miles travelled (miles) 25,612.44 21,823.6 2 402,000 

Own Home 1. Own (76.40%); 2. Rent (23.60%) 1.236 0.425 1 2 

HH Size # household members 2.229 1.202 1 10 

#HH Veh # household vehicles 1.971 1.0515 0 10 

https://www.sciencedirect.com/science/article/pii/S2214367X18300863#t0010


HH Income Household income per year $85,517 $56,975 $5,000 
$202,00

0 

#Drivers # household drivers 1.744 0.753 0 7 

#HH Trips # person-trips on travel day 7.463 5.947 0 53 

#Children # of children in household 0.105 0.384 0 4 

#Workers # household workers 1.141 0.881 0 5 

UrbRur 1. Urban (92.37%); 2. Rural (7.63% ) -- -- 1 2 

DistCBD Distance to the CBD (miles) 22.67 12.34 0.119 73.82 

Workerden 
Workers per square mile in the census tract 

of the household's home location 
1,892.5 1,393.7 25 5,000 

Vehicle Ownership Model (n2 = 8,545) 

Variable Description Mean Std. Dev. Min Max 

#HH Veh Count of household vehicles 1.974 1.054 0 10 

Own Home 1. Own (74.37%); 2. Rent (25.63%) -- -- 1 2 

HH Size Count of household members 2.234 1.206 1 10 

HH Income Household income $86,245.47 $58,442.45 $5,000 
$210,00

0 

#Drivers Count of household driver 1.746 0.754 0 7 

#Workers Count of household worker 1.144 0.881 0 5 

UrbRur 1. Urban (92.29%); 2. Rural (7.71%) 1.077 0.267 1 2 

Popden 

Population density (persons per square 

mile) in the census tract of the household's 

home location. 

3,673.54 3,189.55 5,619 41,300.6 

Mode Choice Model (n3 = 13,834) 

Variable Description Mean Std. Dev. Min Max 

Mode Choice 

1. Drivealone (52.33%); 2. Carpool 

(39.94%); 3. Walk/Bike (3.85%); 4. Transit 

(3.87%) 

-- -- -- -- 

Travel Time Travel time (min)  53.615 63.018 1 1,160 

Cost Cost $4.56 $18.77 $0 $654.78 

Trip Purp 

3 Trip purposes: 1. NHB (21.62%); 2. HBO 

(51.77%); 3. HBW (26.6%) = 

Non-home based, home-based other/non-

work, and home-based work trips 

-- -- 1 3 

Age Age of the traveler 45 21 5 100 

Driver 1. Yes (83.02%); 2. No (16.97%) 1.1697 0.3754 1 2 

Sex 1. Male (47.46%); 2. Female (52.53%) 1.5253 0.4993 1 2 

HH Size Count of household members 2.8361 1.3882 1 10 

#HH Veh Household vehicle number 2.235 1.0582 0 10 

HH Income Household income 98,871 66,483 5,000 250,000 

Workerden 
Workers per square mile in the census tract 

of household's home location. 
1,806.9 1,694.6 9.25 19,269.2 

Land Use Change Model (n4 = 99,304) 

Variable Description Mean Std. Dev. Min Max 

Land use 

change 

1. Residential (6.69%); 2. Commercial/civic 

(2.00%); 3.Underdeveloped (60.90%); 4. 

Other (6.21%); 5. Ranch land (24.20%). 

-- -- -- -- 

Builtdens 

SF_1mi 

Pixel density per square mile within 1 mile 

of all single-family pixels built as of 2010. 
276.757 335.7188 0 2170.5 

Chgdens_MF_

2mi 

Pixel density per square mile within 2 miles 

of all multi- family pixels built between 

1990 and 2010. 

22.61893 37.74299 0 468.38 



Chgdens_com_

3mi 

Pixel density per square mile within 3 miles 

of all commercial pixels built between 1990 

and 2010. 

29.696 41.116 0 405.82 

Chgdens_2mi 
Pixel density per square mile within 2 miles 

of all pixels built between 1990 and 2010. 
253.630 236.559 0 1416.3 

Disemp 
Distance to an "employment cluster" zip 

code in 2010. 
27451.25 17072.42 0 66798 

Empdens_3mi 
Density of all jobs located within 3 miles in 

2010. 
266.607 791.504 0 14033 

Elevation Elevation in feet above mean sea level. 754.799 193.668 340.01 1357.8 
Notes: 1 pixel = 30 m * 30 m (approx. 0.25 acres). Only 3.7% of all pixels were used, due to excessively large 1 
data set size being transferred to the research team, for this very large metroplex region. These are uniformly 2 
sampled in space, so their centroids are 150 meters apart in a grid across the region, to give wide dispersion in 3 
land use settings. 4 

Experiments 5 

Each of the four data sets were randomly split into two sets (70% for training and 30% for 6 
testing) ten times, with results averaged over the 10 different estimation runs for each of the 7 
ML methods deemed most competitive for the different response variables. Python codes 8 
from the scikit-learn were used in this paper to run the ML methods, lightGBM and catboost 9 
packages were installed in Python, and Stata was used to run the MLE model. 10 

RESULTS 11 

Tables 2 and 3 summarize model results in terms of computing time, predictive accuracy 12 
(using R2 values), and RMSE or recall and F1scores (depending on type of response variable 13 
being estimated). Carrion-Flores’ (2009) multinomial logit model with spatial auto-regression 14 
(MNL-SAR) specification was used to predict the land use changes across much of the DFW 15 
region (11 counties) between 2010 and 2015. For the regression models, The GBDT and RF 16 
achieve a better prediction accuracy, while RF takes longer running time than the GBDT. In 17 
the classification models, the catboost, GBDT, XGboost and lightGBM achieve better 18 
prediction accuracy, while the running time of lightGBM being the most time-efficient. 19 

 20 
TABLE 2 Regression Model Comparisons based on Computing Time, Predictive 21 

Accuracy, R2 and RMSE (for HH VMT& HH Vehicle Ownership) 22 

Method Used 
Run Time 

(seconds) 

Training 

Accuracy (R2) 

Test Data Set 

Accuracy (R2) 
RMSE 

Annual HHVMT Prediction Results using OLS vs. ML Methods 

OLS 0.14 0.479 0.468 15754.88 

Decision Tree (DT) 0.07 0.526  0.431 14534.29 

Random Forest (RF) 49.49 0.594 0.497 11433.93 

AdaBoost 17.48 0.382  0.323 17318.64 

GBDT 3.56 0.642 0.542 9589.14 

XGBoost 0.98 0.569 0.488 11867.06 

lightGBM 4.49 0.512 0.452 12885 

NN 9.56 -0.0123 -0.0359 21567.33 

SVM 5.48 -0.06603 -0.0666 22043.15 

HH Vehicle Ownership Prediction Results using Negative Binomial vs. ML Methods 

Poisson regression 0.169 0.4526 0.4319 0.779 

Decision Tree (DT)  0.03 0.5372 0.5029 0.699 

Random Forest (RF)  18.28 0.5786 0.5251 0.639 

AdaBoost 1.82 0.5138 0.4804 0.729 

GBDT 0.61 0.5855 0.5246 0.645 

https://scikit-learn.org/
https://scikit-learn.org/


XGBoost 0.68 0.5618 0.492 0.680 

LightGBM 0.26 0.539 0.4924 0.683 

SVM 0.56 -0.2536 -0.1322 1.121 

NN 2.52 -0.7005 -0.6547 1.131 

 1 

TABLE 3 Computing Time, Training Accuracy, Precision, Recall and F1score Values for 2 
Mode Choice & Land Use Change Prediction 3 

Notes: Extra trees is a variation of RF model, it is tested and shows prediction accuracy worse than RF. 4 

In terms of HHVMT prediction, the GBDT proved most effective relative to the many other 12 
models examines, achieving highest prediction accuracy in just 3.56 seconds, followed by the 13 
random forest technique, which took 49.5 sec, (almost 14 times longer), but is considered a 14 
more transparent model (with interpretable branches across all input variables used) 15 

In terms of HH vehicle ownership prediction, the GBDT and RF methods outperformed the 16 
other models (with the RF requiring 30 times more computing time than the GBDT). RF’s 17 
performance was followed by a simple, single DT.  18 

In terms of mode choice prediction, the DT and ensemble methods beat the MNL approach, 19 
while catboost required much longer running times than XGBoost, GBDT and lightGBM.  20 

For land use change predictions (over the 20-year data period), the catboost method 21 
achieved the highest F1score (of 0.74), which is only slightly higher than that of the XGBoost 22 
(0.73), GBDT (0.73), lightGBM (0.72) and RF (0.71) methods. This required only slightly 23 
(11%) more run time than XGBoost required, 8.32 times more than lightGBM, and 5.2 more 24 
than RF, but 77% less computing time than GBDT. So lightGBM may be best used in 25 

Method Used Time (seconds) 
Training 

accuracy 
Precision Recall F1score 

Mode Choice Prediction Results by MNL and ML 

MNL 0.83 0.658 0.63 0.64 0.63  

Decision tree 0.09 0.976 0.98 0.98 0.98  

Random Forest (RF)  13.24 0.989 0.98 0.98 0.98  

AdaBoost 0.24 0.877 0.81 0.88 0.84 

XGBoost  6.15 0.989 0.99 0.99 0.99 

GBDT 7.00 0.994 0.99 0.99 0.99 

NN  0.71 0.556 0.65 0.56 0.60 

NBayes  0.06 0.856 0.85 0.86 0.84 

catboost 60.63 0.993 0.99 0.99 0.99 

lightGBM 2.20 0.997 0.99 0.99 0.99 

Land Use Change Prediction Results by MNL SAR and ML 

MNL SAR 8.93 0.643 0.64 0.64 0.64 

Decision Tree (DT) 1.04 0.714 0.67 0.70 0.68 

Random Forest (RF) 30.97 0.744 0.72 0.71 0.71 

AdaBoost 29.24 0.612 0.53 0.61 0.57 

Extra trees 49.27 0.65 0.66 0.65 0.65 

XGBoost 143.82 0.76 0.74 0.73 0.73 

GBDT 208.82 0.769 0.73 0.74 0.73 

NN 256.56 0.626 0.55 0.63 0.59 

NBayes 0.32 0.348 0.47 0.34 0.39 

catboost 161 0.743 0.74 0.74 0.74 

lightGBM 19.34 0.733 0.73 0.72 0.72 

https://www.youdao.com/w/variation/#keyfrom=E2Ctranslation


predicting land use changes, if run times are a concern (which will depend on application 1 
needs and data set size).  2 

Estimates of Practical Significance across Competing Models 3 

Using Eq. 4, estimates of the practical significance of input variables for each of the four 4 
output variables can be calculated. Here, only the top ML models’ estimates are compared to 5 
those from the traditional econometric methods used, and just for a few of the input variables, 6 
to illustrate differences, while respecting word-count constraints. 7 

Practical significance is imputed by increasing each input value for each data point in each 8 
data set. For example, inputs of HHsize and #Workers were varied from 1 to 6 to appreciate 9 
each model’s estimate of how this would impact a household’s expected VMT. 10 

The prediction results comparison for the four models and practical significance analysis 11 
results for some important variables are shown in Figure 1 through 3. 12 

 13 

(a) Influence of Variables on VMT      (b) Influence of Variables on HH Vehicle Ownership 14 

 15 

(c) Influence of Number of Workers Increase on VMT 16 
(d) Influence of Number of Drivers Increase on HH Vehicle Ownership 17 

 18 
Figure 1 VMT & HH Vehicle Ownership Changes: Comparisons of Practical 19 

Significance Estimates 20 
 21 

   



   

   

   

  

 

 (a) Models Comparison of Influence of Variables on Chosen Probabilities of Each Mode 

   

 

  

(b) Influence of Travel Time Increase on Chosen Probabilities of Each Mode 

 
Figure 2 Mode Choice Changes: Comparisons of Practical Significance Estimates 1 
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(a) Models Comparison of Influence of Variables on Chosen Probability of Each Land Use 

Type 

   

  

 

(b) Influence of Builtdensity of Single Family within 1mi on Land Use Change Probabilities 
 1 

Figure 3 Land Use Change: Comparisons of Practical Significance Estimates 2 
 3 

Annual HHVMT 4 

As seen in Figure 1 (a), HHSize has a significant impact (around 40%) on HHVMT. The 5 
results predicted by the OLS is 1.11 times more than ML models, the practical significance of 6 
the number of HH workers is around 2 times more than results of ML methods, and the 7 
results of worker density show a huge difference between the OLS and ML methods, while 8 
the ML methods share very similar results. 9 

As seen in Figure 1 (c), the plot of OLS shows a continuously increase trend, while the ML 10 
methods deliver a flattening of response with increase in input values, which is more realistic. 11 
Of course, one can add such behaviors to an OLS model, but guessing at additional input 12 
variables, but the ML method takes care of this automatically, which is valuable. 13 

HH Vehicle Ownership 14 



As shown in Figure 1 (b), the number of drivers is the most practically significant input used 1 
here, followed by home ownership type (rent vs. own). ML and traditional methods are found 2 
to deliver very similar estimates of impact for each covariate, apart from the indicator 3 
variable “rural”, which is estimated to be 6 times more impactful when using the NegBin 4 
model than when using any of the ML methods. As shown in Figure 1 (d), with the increase 5 
of numbers of driver in a household, the plot about household vehicle ownership of NegBin 6 
model shows a continuously increase trend, while the ML methods deliver a flattening of 7 
response with increase in input values, which is more realistic. 8 

Travel Modes 9 

As shown in Figure 2 (a), travel cost and travel time have very sizable impacts on mode 10 
choice, in contrast to the effects of trip purpose, traveler gender and HH size. Since the 11 
accuracy of the DF, RF, XGBoost, GBDT, and lightGBM models are notably higher than 12 
those of the MNL models, the practical significance of the MNL results differ significantly 13 
from those generated using ML methods. For example, the Age and Worker density variables 14 
show that the ML models prediction results are similar with each other, while the results of 15 
the MNL is extremely different from the ML prediction results. 16 

The MNL model suggests rather linear relationships between travel time increases and mode 17 
choice probabilities. In contrast, the ML methods’ predictions of drive alone and carpool 18 
models delivered a sharp decrease or increase, followed by a flattening or plateauing, with 19 
little effect on the other two modes’ probability predictions (which stayed around 0%). It is 20 
useful to have models that allow for non-monotonic effects, which the ML methods are 21 
delivering here, thanks to their behavioral flexibility – without as much mis-prediction as a 22 
traditional MNL model can produce. While the ML methods do not offer a random-utility-23 
maximization (RUM) basis for behavior, such functional flexibility is generally realistic and 24 
useful to have. 25 

Land Use Changes 26 

The sensitivity tests show how local (1-mile) density of single-family land development has a 27 
strong and positive impact on land use change probabilities toward residential land use (as 28 
expected), and a negative effect on a shift toward ranchland use. A 2-mile (radius) density of 29 
multi-family use built between 1990 and 2010 has a strong negative influence on land use 30 
change toward “underdeveloped” status (as per the NCTCOG’s definition of uses). 31 
Commercial land use density within 3 miles has a positive influence on land use change 32 
toward commercial activities. And distance to an "employment cluster" zip code (in the year 33 
2010 data) is found to have a positive influence on ranch land use change.  34 

As figure 3 (b) shows, with the increase of build density of single family within 1 mi, the plot 35 
of MNL SAR shows an increasing trend, the probability of the pixels’ land use change to 36 
residual will be 1 and 0 for other land use type, while the ML methods deliver a flattened or 37 
saturated response, as this input rises by 1 SD at a time, the probability of the pixel’ land use 38 
change to residual will be about 0.3. Considering the land use aggregation effect, if around of 39 
the 30m by 30m pixel are all residential, this pixels’ land use type are more likely to change 40 
to residential, so, in the land use change type prediction, the MNL SAR prediction results are 41 
more realistic. For the ML, the results of GBDT are more similar to the MNL SAR results, 42 
so, the GBDT method not only has a better prediction accuracy but also predict land use 43 
change more realistically. 44 

Compared to the traditional methods (OLS & MLE) which have own function to show 45 
practical significant among X variables and response variable, and add random error terms 46 
into their prediction models to consider the uncertainty of Y, learning from the results and 47 
analysis above, we can see that some ML methods can always achieve better accuracy no 48 
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matter for classification or regression problems, and can show the practical significant among 1 
X variables and response variable in a more realistic way. By using the ML methods, the 2 
prediction model between the X variables and response variable can be obtained after training 3 
the data sets, then, new X variables (average of the X variables or increase 1 SD for some 4 
variables) can be simulated to seek the quantitative relationship between the X variables and 5 
response variable. While it is not wise to only give one predicted Y not consider the 6 
uncertainty of the predicted Y, one way to solve this problem is constructing many prediction 7 
models, input same X variables into these model and then get the interval of predicted Y. 8 

CONCLUSION 9 

This work explains and applies top ML methods for estimating distinct transportation 10 
variables of major interest to planners, policymakers, and the public at large. For example, 11 
household vehicle ownership, mode choice and VMT have important consequences for traffic 12 
congestion, crash counts, air pollution and energy consumption. Accurate prediction of such 13 
variables and understanding of their dependencies on household demographics, land use 14 
patterns, transport supply, and policy variables is very valuable. ML makes available a new 15 
suite of tools that transportation data analysts can exploit, but we must first understand that 16 
weaknesses and strengths, and “open up” the black boxes of the past to appreciate how our 17 
choice and attributes impact our final response values. This work demonstrates such 18 
applications for a variety of DFW data sets. 19 

Based on testing conducted here, using the HHVMT continuous response and vehicle 20 
ownership count variables, the GBDT and RF models always performed better than the other 21 
ML models, with the RF requiring 13.9 more computing than the GBDT in HHVMT 22 
prediction and 30 times more than GBDT in vehicle ownership prediction. The XGBoost, 23 
GBDT, catboost and lightGBM all achieved better classification results – for mode choices 24 
and land use changes, with the catboost method required the most time for mode choice 25 
prediction and lightGBM requiring the least. In land-use change prediction, GBDT required 26 
more time. Overall, GBDT was found here to be the best model for the continuous and count 27 
response values, while lightGBM is preferred for categorical response prediction.  28 

From the practical significance analysis, one finds that methods with similar predictive 29 
accuracy deliver similar estimates of each input’s practical significance. For the continuous 30 
and count-based response variables (HH VMT and vehicle ownership), output accuracy and 31 
input significance are very similar between the traditional and ML methods. In the case of 32 
categorical mode choice, the MNL model’s F1score was not so competitive, so its estimates 33 
of input impact differed from the best-performing methods. In the case of land use change 34 
prediction, the ML and SAR-MNL models has similar F1score values, and so delivered 35 
similar estimates of practical significance across inputs, while the results of SAR-MNL and 36 
GBDT are more realistic. But there is less expectation of monotonicity of effect in the ML 37 
methods, so an input’s impact can change course or at least flatten, which is valuable in many 38 
example cases, as demonstrated in predicting VMT, mode choice and land use change, based 39 
on certain input variables. 40 

Since ML methods generally outperform traditional statistically-based prediction methods 41 
and transportation projects and policies regularly have multi-million-dollar impacts, it is 42 
important to at least test such methods to ensure decisions are consistent across modeling 43 
assumptions. Planners and modelers have a duty to use limited public resources optimally. 44 
Related to this, most policymakers are not concerned about the interpretability of the tools 45 
used to reach such conclusions, but many of the best ones are. So it is valuable to try and 46 
unpack ML equations, or at least document how outputs vary with respect to each input, for 47 
the average observational unit or a sample of such units. Finally, ML methods also remain 48 
lacking in terms of conveying uncertainty in predicted output values. For example, is the ML-49 



estimated VMT per year for the average Dallas household 25,320 miles +/- 5200 miles or +/- 1 
8400 miles? And what is the probability that this household’s oldest adult drives to work 2 
rather than bikes to work tomorrow? What software does the data analyst have access to? 3 
What programming languages is he/she comfortable with? And how important is immediate 4 
transparency in results for application of the model? Or having a behavioral foundation, like 5 
random utility maximization for mode choice? These distinctions matter, so important 6 
investigative and application work remains for ML users. 7 
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