### UTILITY-TRANSIT NEXUS: LEVERAGING INTELLIGENTLY CHARGED ELECTRIFIED TRANSIT TO SUPPORT A RENEWABLE ENERGY GRID

| 3  |                                                                        |
|----|------------------------------------------------------------------------|
| 4  |                                                                        |
| 5  | Tyler K. Wellik                                                        |
| 6  | Department of Civil, Architectural and Environmental Engineering       |
| 7  | The University of Texas at Austin                                      |
| 8  | tywellik@utexas.edu                                                    |
| 9  |                                                                        |
| 10 | Joseph R. Griffin                                                      |
| 11 | Control Firmware Engineer                                              |
| 12 | No University Affiliation                                              |
| 13 | joegriffin94@gmail.com                                                 |
| 14 |                                                                        |
| 15 | Kara M. Kockelman, Ph.D., P.E.                                         |
| 16 | (Corresponding Author)                                                 |
| 17 | Dewitt Greer Centennial Professor of Transportation Engineering        |
| 18 | Department of Civil, Architectural and Environmental Engineering       |
| 19 | The University of Texas at Austin – 6.9 E. Cockrell Jr. Hall           |
| 20 | Austin, TX 78712-1076                                                  |
| 21 | kkockelm@mail.utexas.edu                                               |
| 22 |                                                                        |
| 23 | Moataz Mohamed, Ph.D.                                                  |
| 24 | Assistant Professor of Smart Systems & Transportation                  |
| 25 | Department of Civil Engineering                                        |
| 26 | McMaster University                                                    |
| 27 | mmohame@mcmaster.ca                                                    |
| 28 |                                                                        |
| 29 | Journal of Renewable and Sustainable Energy Review 139, 110657 (2021). |
| 30 |                                                                        |
| 31 | ABSTRACT                                                               |

#### 31 32

1

2

33 The transportation sector is a major greenhouse gas emitter. Concurrent electrification of 34 vehicles and investment in renewable energy is required to effectively mitigate these 35 emissions. The introduction of intermittent renewable energy sources like solar and wind at a 36 large scale presents major challenges to utility operators. This study looks at the opportunity a 37 Vehicle-to-Grid (V2G) Battery Electric Bus (BEB) fleet offers in overcoming these challenges. 38 In particular, an Austin, Texas case study is analyzed to investigate the role of BEB charging in 39 buffering sharp changes in renewable energy production to help smooth power demands from traditional energy sources of coal, natural gas, and nuclear power plants. A V2G BEB 40 41 "smart charging" (SC) scenario is compared with respect to cost and emissions perspectives to a BEB "charge-as-needed" as well as a diesel bus scenario. By simply electrifying Austin's 42 43 buses, without any SC strategies, the total external cost of electricity grid and bus emissions 44 falls by approximately 3.42%, and with SC

45

strategies these emission costs fall by 5.64%. This is due to high renewable penetration in the region's electricity grid and because diesel is much more emitting per-unit-energy than power plants. From the transit operator's perspective, a BEB fleet costs more than a diesel bus fleet, but this could be offset by renewable energy or low-emission incentives. Finally, with SC strategies, the utility manager saved 22% of their daily cost in this case study.

6 7

Keywords: electric buses, smart charging, vehicle-to-grid charging (V2G), greenhouse gas savings

8 9

# 10 INTRODUCTION & MOTIVATION

The transportation sector is the largest greenhouse gas (GHG) emitting sector in the United States, constituting 28.9% of all GHG emissions nationally. Carbon dioxide is the major GHG emitter from the transportation sector, due to the combustion of petroleum-based products in vehicles' internal combustion engines. Therefore, moving away from petroleum-based fuels is a key to reducing emissions. From 1990 to 2017, GHG emissions from the transportation sector have risen for a number of reasons including population and economic growth, urban sprawl, and greater travel distances per capita (EPA, 2017).

19

20 Alternative, clean technology in all modes of transportation are needed to keep the earth from 21 critical 2°C warming. Transit buses are good candidates for electrification because of their fixed 22 schedules and routes, making it straightforward to plan around the battery range constraints 23 (Mohamed et. al., 2017). Adoption of battery electric buses (BEBs) have been limited in scale and 24 scope with the high upfront cost being the major barrier to entry. However, BEBs have the 25 opportunity to minimize this initial cost discrepancy by offering lean operation. They make for an 26 ideal application of electrified vehicle (EV) technology due to their stop-and-go nature, taking 27 advantage of regenerative braking to capture energy that is otherwise lost to heat during traditional 28 braking. In addition, Austin, Texas is an advantageous location for this case study as Austin rarely 29 gets below freezing, and EV ranges can decrease by up to 50% on the coldest days of the year in 30 the Northern U.S. (Yuksel & Michalek, 2015). Finally, BEB systems offer lowered and more 31 predictable operating costs, delivering an important advantage over diesel buses, which can face 32 volatile petroleum prices (Li et. al., 2018).

33

34 It is important to note that even though EVs do not emit GHG emissions directly, they do not 35 necessarily operate "carbon-free". One must consider the carbon intensity of the grid from which 36 the EVs are getting their electricity to charge. Depending on this carbon intensity, GHG emissions 37 savings can be minimal when switching from diesel- or gasoline-powered vehicles to EVs, and it 38 can even be more polluting (Kennedy, 2015). Because of this, it is important to reduce the carbon 39 intensity of electricity grid systems in tandem with electrifying transportation. This could be 40 achieved by increasing renewable energy system capacity to power our grids, namely, sources of 41 solar and wind energy.

42

43 Renewable energy sources offer major reductions in GHG emissions while presenting some

- 44 challenges. Sun and wind are intermittent sources that can vary dramatically over the course of
- 45 each day (with the sun shining during the daytime, and wind blowing stronger at night) and
- 46 throughout the year (across seasons and weather patterns). Utility managers require backup power

generation during times when renewables are producing insufficient energy. It is costly to ramp
 up and down traditional energy sources, so managers seek to avoid this (Phuangpornpitak & Tia,
 2013).

3 4

This paper develops a methodology for vehicle-to-grid (V2G) electrified transportation systems to respond to daily utility operational challenges by optimally charging and discharging to level the production of traditional energy sources. In this initial study, we look at the application of electrifying Austin's bus transit fleet. In future studies, this methodology could be expanded to other electrified transportation systems. Note that this study focused on BEBs instead of fuel-cell or hybrid electric buses based on the findings of Mohamed, Garnett, Ferguson, and Kanaroglou (2016) who reported that BEBs were the optimal fuel source for electrifying bus transit, especially for grids with high renewable penetration.

12 13

14 Texas leads the country in wind power with 37.5% of Austin's electricity coming from a 15 combination of wind plus solar, compared to a national average of 10.4% in the United States 16 (Austin Energy B, 2018; REN21, 2016). In addition, Austin has plans to achieve at least 55% 17 renewable energy by 2025 and 65% by 2027 (Austin Energy, 2017). One could imagine a 18 partnership between the transit provider and the utility manager wherein the transit provider 19 receives discounted electricity prices in exchange for responding to power requests from the utility 20 manager. This project looks at a case study of electrifying the Austin, Texas bus transit fleet, 21 modeling this partnership between the utility and transit managers.

22

23 It should be noted that simplifications were made at the bus level in order to focus at the system-24 level on the broader research question: can a large-scale BEB system help support an electricity grid, particularly one that relies significantly on renewable, intermittent energy sources of solar 25 26 and wind? To do this, an average value of BEB energy consumption per-mile was extracted from 27 the literature based on bus weights and battery compositions, averaged for different terrain types. 28 This study did not optimize bus routing and charging station locations. These parameters were 29 considered exogenously. Results could be improved by considering this in the optimization cost 30 function in the future. Finally, only one solar and wind profile was considered in this study. Future 31 work should include testing this model with varied wind and solar profiles to improve the 32 reasonability of results.

- 3334 METHODOLOGY
- 35

36 This section describes the methodology and model framework, with two main models developed. The first is a utility manager model, which simulates the combination of energy sources the utility 37 38 manager will run under certain energy demands. The overarching goal of the utility manager is to 39 minimize the operational cost of delivering the required energy. The second model is a BEB 40 simulation, which models the energy status of the BEB system over the course of the day, including energy consumption and charging. The overarching goal of this model is to smooth the production 41 42 of the utility's traditional energy sources of coal, natural gas, and nuclear. See Figure 1 below for 43 a flow chart of the simulation.



#### 1 2 3 4 5 6 7 8 9

Figure 1 Flowchart of developed simulation model

**Utility Manager Simulation Model** 

#### This model simulates the energy sources used to meet the demands of the model region. It assumes that the utility manager's sole aim is to minimize cost to meet such energy demands, meaning that GHG emissions or other potential motivations are not considered in this decision-making. The 9 inputs to this model are the energy sources available to the utility manager, and each of those 10 sources' energy type, maximum capacity, minimum running load, variable operating and maintenance (O&M) cost, ramp rate, ramping cost, and startup cost. For the model region, the 11 12 available energy sources and their maximum capacities are publicly available (Austin Energy B, 13 2018). These sources consist of coal, simple cycle natural gas (SCNG), combined cycle natural 14 gas (CCNG), steam-powered natural gas, and nuclear plants, as well as wind and solar 15 installations. Operational information for each energy type is shown in Table 1 (U.S. EIA, 2016 16 and Van Den Bergh & Delarue, 2015).

17

With the different energy sources as inputs, this model also reads in, at each timestep, solar and wind production, as well as energy demands from the BEB charging, and non-BEB energy demands (Austin Energy A, 2018 and Sargent, 2018). The model assumes that energy sources are always available to run up to the maximum specified capacity, with ramp rates constraining how

- 22 quickly they can get there.
- 23

| Energy Source Type  | Variable O&M  | Minimum Load    | Ramp Rate       | Ramping Cost  | Startup Cost |
|---------------------|---------------|-----------------|-----------------|---------------|--------------|
|                     | Cost (\$/MWh) | (% nominal/min) | (% nominal/min) | (\$/\U00e0MW) | (\$/\DMW)    |
| Coal (steam)        | 4.33          | 32.5            | 2.330           | 2.227         | 98.960       |
| SC Natural Gas      | 4.93          | 35              | 12.92           | 0.9896        | 52.449       |
| CC Natural Gas      | 4.93          | 40              | 5.415           | 0.6185        | 55.665       |
| Natural Gas (steam) | 4.93          | 40              | 3.415           | 1.732         | 90.301       |
| Nuclear             | 2.30          | 45              | 2.625           | 0             | 43.295       |
| Wind                | 0             | 0               | 100             | 0             | 0            |
| Solar               | 0             | 0               | 100             | 0             | 0            |

Table 1 Operational information of different energy sources 1

2

3 The timestep used in this study is one minute and the total model run time is 24 hours. Each 4 timestep, the utility manager determines how much energy is required and the means to provide 5 the energy. As is shown in Eq. (1), at each timestep t the total power required from bus and nonbus related loads (MW),  $D_t$ , must equal the sum of the power production  $P_{i,t}$  (MW) of each energy 6 source *i* that is currently on.  $O_{i,t}$  is a binary indicator of energy source *i* being on  $(O_{i,t} = 1)$  or off 7 8  $(O_{i,t} = 0).$ 

$$D_t = \sum_i P_{i,t} * O_{i,t} \tag{1}$$

10 To determine how to fulfill the power required in each timestep, the utility manager uses the 11 objective function in Eq. (2) subject to constraint Eq. (1) and (3), where  $C_i$  is the variable O&M cost of source i (\$/MW min),  $RC_i$  is the ramping cost (\$/ $\Delta$ MW) and  $SC_i$  is the startup cost 12 13 14 ( $\Delta MW$ ), each of energy source *i*.

15 
$$Minimize\left\{\sum_{i} \left(O_{i,t}C_{i}P_{i,t} + \max(0, P_{i,t} - P_{i,t-1}) * RC_{i} + \max(0, O_{i,t} - O_{i,t-1}) * Q_{i,min} * SC_{i}\right)\right\} (2)$$

22 23

24 25

26 27

$$L_{i,min} \le P_{i,t} \le L_{i,max} \text{ for all } i \text{ with } O_{i,t} = 1$$
(3)

 $L_{i,max}$  and  $L_{i,min}$  are the maximum and minimum power production (MW) that energy source i is 17 capable of achieving at the current timestep, constrained by ramp rates and maximum and 18 19 minimum capacities (Eq. (4) - (7)). 20 21

$$L_{i,min} = P_{i,t-1} - R_i \tag{4}$$

$$L_{i,min} \ge Q_{i,min} \tag{5}$$

$$L_{i,max} = P_{i,t-1} + R_i \tag{6}$$

$$L_{i,max} \le Q_{i,max} \tag{7}$$

where  $R_i$  is the maximum change in power (MW) in one minute,  $Q_{i,min}$  is the minimum power 28 capacity (MW), and  $Q_{i,max}$  is the maximum power capacity (MW), each of energy source *i*. If an 29 energy source was off  $(O_{i,t} = 0)$  in the previous timestep, then it can produce  $Q_{i,min}$  power in the 30 31 current timestep. Additionally, an energy source can turn off if  $L_{i,min} = Q_{i,min}$ .

32

33 Note that to initialize the model (when t = 0), the utility manager does not consider ramp rates or 34 startup costs; it just runs the plants with the lowest variable O&M cost to reach the required 35 production levels at the model start time. This effectively means that, during initialization, constraint Eq. (4) and (6) are not considered and  $RC_i = SC_i = 0$ . 36

Each timestep, the model issues a power request to the bus manager. The goal of this power request is to use BEB charging to buffer sharp changes in renewable energy production, allowing for smoother production from traditional energy sources, thereby reducing the utility manager's costs. To develop the power request, the model first uses Eq. (8), which defines  $G_t$ , the total renewable energy generation, as the sum of  $W_t$  and  $S_t$ , the wind and solar production, all at time t in MW.

7

$$G_t = W_t + S_t \tag{8}$$

8 The power request,  $R_{buses,t}$ , is then given in Eq. (9), where  $\overline{B}$  is the average bus energy 9 consumption given by Eq. (10) and  $\widetilde{G_t}$  is the filtered  $G_t$  using a low-pass filter given by Eq. (11), 10 each in MW, where f = 0.52 is the filter factor used. This filter factor was optimized to minimize 11 the cost to the utility manager.  $\widetilde{G_t}$  is initialized as  $G_t$  at t = 0, and is updated by Eq. (11) in each 12 subsequent timestep.

$$R_{buses,t} = \overline{B} + G_t - \widetilde{G_t} \tag{9}$$

$$\bar{B} = \frac{1}{t_f - t_i} * \frac{1 \, MWh}{1000 \, kWh} * \sum_b d_b * c_b \tag{10}$$

13

14

$$\widetilde{G_t} = f * \widetilde{G_{t-1}} + (1-f) * G_t \tag{1}$$

16 where  $t_f$  is the final model timestep,  $t_i$  is the initial model timestep,  $d_b$  is the total distance traveled 17 by bus *b* over the course of the day (miles), and  $c_b$  is the consumption rate of bus *b* (kWh/mile).

18

#### 19 **BEB Simulation Model**

20

21 This model simulates the BEB system over the course of the day. Three bus types are considered, 22 with all buses' states of charge (SoC) constrained so that they cannot go below 10% or above 90%, 23 to preserve the battery's long-term health, as shown in Eq. (12). There is one charge opportunity 24 defined per route. If the distance between charge opportunities is less than 18 miles, an 80-kWh 25 battery capacity is used, with a consumption rate of 1.69 kWh/mile and a charge rate of 4.17 26 kWh/min, based on the Proterra Catalyst BEB model. If the distance between charge opportunities 27 is 18 to 37 miles, a 200-kWh battery capacity is used, with a consumption rate of 2.16 kWh/mile 28 and a charge rate of 4.17 kWh/min, based on the New Flyer XE40. Finally, if the distance between 29 charge opportunities is greater than 37 miles, a battery capacity of 324 kWh is used, with a 30 consumption rate of 2.14 kWh/mile and a charge rate of 3.33 kWh/min, based on the BYD 40-31 Electric. This selection ensures that fully-charged (90% SoC) buses can skip a charge opportunity 32 and still complete their routes. These consumption rates are based on an Altoona Bus Research 33 and Testing Centre report that used an average of different driving cycle types, and charge rates 34 35 are also averaged (Proterra-E40, 2015; New Flyer, 2015; BYD-40E, 2014).

36

$$0.1 \le S_{b,t} \le 0.9 \text{ for all } t \tag{2}$$

Each 1-minute timestep, the bus manager determines the SoC of each bus in the system and defines

which buses are able to charge. If the bus was charging during the previous timestep, the SoC increases by the charge rate  $r_h$  (kWh/min), as shown in Eq. (13). If the bus was running during

40 that timestep, then the SoC decreases falls as a function of the consumption rate  $c_b$  (kWh/mile)

- 41 and the average speed traveled during that timestep  $v_{b,t}$  (miles/hour), as in Eq. (14).  $S_{b,t}$  is the SoC
- 42 at time t (between 0 and 1).

$$S_{b,t} = r_b * (1 \min) \tag{3}$$

1

$$S_{b,t} = c_b * v_{b,t} * \frac{1 hr}{60 \min s}$$
(4)

2

Of the buses at charge opportunities at each timestep, the manager compiles a normalized priority list to determine the order in which buses should be charged. This list is ordered based on Eq. (15), where a higher value of  $p_{b,t}$  (unitless) equates to a higher charging priority for bus *b* at time *t*.  $E_{b,t}$ is the energy needed by bus *b* for the next route at time *t* (kWh),  $T_{b,t}$  is the time until bus *b* must leave the charger at time *t* (minutes). There are separate priority lists for each charging station and for each charger type. The 80-kWh buses are constrained to charge at EVA080K chargers and the 200- and 324-kWh buses must charge at SAE J3105 chargers, based on bus model specifications.

11

$$p_{b,t} = \frac{E_{b,t}}{T_{b,t}r_b} \tag{5}$$

When  $p_{b,t} = 1$ , the bus is deemed in the critical charging category, and must charge during that timestep and all timesteps  $T_{b,t}$  until the bus must leave the charger to make its route. Once buses are assigned chargers, they are removed from the priority list for that timestep. After all critical buses are assigned a charger, the bus manager looks at the power request from the utility manager in Eq. (16) to understand what to do next, where  $z_{b,t}$  is a binary indicator of bus *b* charging (1) or not (0) at time *t*.

18

$$X_{buses,t} = R_{buses,t} - \sum_{b} z_{b,t} r_{b}$$
(6)

19 If  $X_{buses,t}$  is positive, the bus manager aims to charge more buses than just the critical buses. In 20 this case the bus manager looks at the top of the priority list and assigns that bus to a charger if 21 there is a charger available at that bus's charging station and it would not violate the constraint in 22 Eq. (12). If this is the case, Eq. (16) is updated and that bus is removed from the priority list for that timestep. If there is no charger available at that charging station, then the bus does not charge 23 24 but it is still removed from the priority list for that timestep. The bus manager continues down the list so long as  $X_{buses,t}$  is positive, there are still chargers available, and there are still buses that 25 26 qualify to charge. If any of these are not true, this portion of the model terminates, and the achieved 27 power for that timestep is sent to the utility manager.

28

In contrast, if  $X_{buses,t}$  is negative after all critical buses are assigned a charger, the bus manager 29 tries to discharge some buses. The bus manager starts at the bottom of the priority list and assigns 30 31 that bus to discharge if there is a charger available at that bus's charging station and if the bus will 32 still have enough energy for its next route after it discharges at rate  $-r_b$  for that timestep. If both 33 of these are true and Eq. (12) will not be violated, Eq. (16) is updated and that bus is removed from the priority list at that timestep. If those conditions to discharge are not true, that bus does not 34 35 discharge, and it is removed from the priority list for that timestep. The bus manager continues up the list so long as  $X_{buses,t}$  is negative, there are still chargers available, and there are still buses 36 37 that qualify to discharge. If any of these are not true, this portion of the model terminates, and the 38 achieved power is sent to the utility manager.

39

)

#### **Cost Analysis** 1

2

3 A cost analysis is completed for each model run. Bus capital and operating costs, utility operating

4 costs, and GHG external costs are considered. Utility operating costs are detailed in Table 1.

#### 5 Table 2 Cost assumptions for scenario cost analysis

| Bus capital and infrastructure costs (                           | (USD)                 |
|------------------------------------------------------------------|-----------------------|
| Cost of new diesel bus (\$/bus)                                  | \$280,000             |
| Cost of new 80-kWh BEB bus (\$/bus)                              | \$491,000             |
| Cost of new 200-kWh BEB bus (\$/bus)                             | \$553,000             |
| Cost of new 324-kWh BEB bus (\$/bus)                             | \$700,000             |
| Cost of 80-kWh BEB charger (\$/charger outlet)                   | $0^*$                 |
| Cost of 200-kWh BEB charger (\$/charger outlet)                  | \$250,000             |
| Cost of 324-kWh BEB charger (\$/charger outlet)                  | \$250,000             |
| Bus operating assumptions and co                                 | osts                  |
| Diesel bus fuel mileage (MPG)                                    | 4.2                   |
| 80-kWh BEB energy consumption (kWh/mile)                         | 1.69                  |
| 200-kWh BEB energy consumption (kWh/mile)                        | 2.16                  |
| 324-kWh BEB energy consumption (kWh/mile)                        | 2.14                  |
| Diesel fuel cost (\$/gallon)                                     | \$2.50                |
| Electricity cost $(%/kWh)^2$                                     | \$0.06**              |
| Diesel bus operating cost (\$/mile)                              | \$0.48                |
| 80-kWh BEB operating cost (\$/mile)                              | \$0.10                |
| 200-kWh BEB operating cost (\$/mile)                             | \$0.13                |
| 324-kWh BEB operating cost (\$/mile)                             | \$0.13                |
| GHG emission assumptions and c                                   | osts                  |
| Diesel CO <sub>2</sub> emissions (lbs/mile)                      | 3.85                  |
| Diesel NO <sub>X</sub> emissions (lbs/mile)                      | $4.84 \times 10^{-4}$ |
| Diesel SO <sub>2</sub> emissions (lbs/mile)                      | 2.38×10 <sup>-4</sup> |
| Diesel PM emissions (lbs/mile)                                   | $1.10 \times 10^{-3}$ |
| Coal power plant CO <sub>2</sub> emissions (lbs/kWh)             | 0.703                 |
| Coal power plant NO <sub>x</sub> emissions (lbs/kWh)             | $2.05 \times 10^{-4}$ |
| Coal power plant SO <sub>2</sub> emissions (lbs/kWh)             | 3.41×10 <sup>-4</sup> |
| Coal power plant PM emissions (lbs/kWh)                          | $1.40 \times 10^{-4}$ |
| Natural gas (CC) power plant CO <sub>2</sub> emissions (lbs/kWh) | 0.399                 |
| Natural gas (CC) power plant NO <sub>X</sub> emissions (lbs/kWh) | 2.56×10 <sup>-5</sup> |
| Natural gas (CC) power plant SO <sub>2</sub> emissions (lbs/kWh) | 3.41×10 <sup>-6</sup> |
| Natural gas (CC) power plant PM emissions (lbs/kWh)              | $1.92 \times 10^{-7}$ |
| Natural gas (SC) power plant CO <sub>2</sub> emissions (lbs/kWh) | 0.399                 |
| Natural gas (SC) power plant NO <sub>X</sub> emissions (lbs/kWh) | $1.02 \times 10^{-4}$ |
| Natural gas (SC) power plant SO <sub>2</sub> emissions (lbs/kWh) | 3.41×10 <sup>-6</sup> |
| Natural gas (SC) power plant PM emissions (lbs/kWh)              | 5.52×10 <sup>-7</sup> |
| Total cost of CO <sub>2</sub> (\$/lb)                            | \$0.06                |
| Total cost of NO <sub>x</sub> (\$/lb)                            | \$1.40                |
| Total cost of $SO_2$ (\$/lb)                                     | \$1.00                |
| Total cost of PM ( $\leq 10 \mu\text{m}$ ) ( $\$/lb$ )           | \$2.15                |

Total cost of PM (< 10  $\mu$ m) (\$/lb)\$2.1\*One charger is provided with each BYD 40-Electric bus, included in the cost of the bus.

\*\*Assuming Austin's industrial-rated electricity cost.

6 7 8 9 Sources for this table: Austin Energy, 2018 B; Biswas et. al., 2009; BYD, 2015; Carpenter, 2017; Green Car

Congress, 2014; IER, 2009; Kane, 2016; Matthews et. al., 2001; Mitchell, 2017; Muncrief, 2016; NREL, 2016;

10 Proterra, 2016; Proterra, 2017; Proterra, 2018 A; Proterra, 2018 B; Proterra, 2019; Reuters, 2010; U.S. EIA, 2016;

11 van den Bergh & Botzen, 2015; Yasar et. al., 2013. 1 The bus-related assumptions and costs are based on four different buses currently on the market:

a standard 40 diesel bus, the 324-kWh Proterra Catalyst, the 200-kWh NewFlyer XE40, and the

3 80-kWh BYD 40-Electric. For GHG external costs, many estimates exist. These estimates are

4 challenging due to many factors of uncertainty. Averages of several estimates are used in this

analysis. Nuclear, wind, and solar are assumed to produce zero emissions. See Table 2 for moredetails.

### 7 8 CASE STUDY

9

# 10 Input Data

11

12 The Austin, Texas region is used to test the methodology outlined in the previous section. The

Austin bus fleet currently consists of 423 buses. There are eighty-one bus routes of varying lengths.
 General Transit Feed Specification (GTFS) data was used to define route schedules to be used as

General Transit Feed Specification (GTFS) data was used to define route schedules to be used as input to the BEB Simulation model (CapMetro, 2019). Thirteen charging station locations were

16 defined across the Austin region and each bus route has one charging location defined on its route.

17

In addition to solar and wind power purchases, Austin's electricity comes from two coal plants each with capacities of 285 MW, two nuclear plants with capacities of 200 MW, and fourteen natural gas plants of varying capacities between 48 and 435 MW. The capacity factor of Austin's nuclear plants is 100.12% on average, and it is 78.00% for coal and 16.57% for natural gas (Austin

Energy B, 2018). It is clear that Austin runs its coal and nuclear plants much more constantly than

its natural gas plants, which might be attributed to the operational costs of each, shown in Table 1.
Each plant's capacity rating is read in at the beginning of the model run and is matched with ramp
rates and operational costs from Table 1 based on their fuel source.

26

27 One example of a solar and wind energy profile is tested in this case study. A standard idealized 28 solar profile was approximated, centered at 2 pm, where it reaches its maximum capacity, and 29 going to zero at sunset and sunrise. Real wind data from the Electricity Reliability Council of 30 Texas (ERCOT) region was used, scaled to match Austin's capacity (ERCOT, 2019), Often times, 31 wind production valleys align with solar production peaks, as happens in this example. It is an 32 ideal situation from the utility manager's perspective because it means less ramping of traditional 33 energy sources of coal and natural gas, which is costly and emitting. It is possible that wind and 34 solar peaking can occur more simultaneously, which has the possibility of major traditional 35 ramping implications, so this case should be tested in the future.

36

Finally, a simplified non-BEB energy consumption profile was assumed based on average daily energy consumption in the city of Austin in 2018, fit to a standard energy consumption model (Austin Energy A, 2018 and Sargent, 2018). This was assumed to be the base energy demand, with additional loads coming from BEB charging. Note that the selected solar and wind production profiles made up 39.1% of the required energy needed for the non-bus consumption. This is close to the average of 37.5% mentioned previously, and thus these profiles were deemed reasonable for a typical day in Austin. See Figure 2 below for these consumption and production profiles.



Figure 2 Solar and wind production and non-bus electricity consumption tested

### 4 Scenario Definition

5

1 2

3

6 Three scenarios are considered in this study. In each scenario, bus routes run the same schedule. 7 In addition, the same non-BEB energy consumption is used. The first scenario is meant to reflect 8 the current state in Austin where all buses are diesel. The second scenario is a non-smart-charging 9 (non-SC) BEB scenario, where the bus manager does not receive feedback from the utility 10 manager. At each timestep in the non-SC scenario, buses with the highest charge priorities are assigned to chargers (Eq. (12)-(15)). Finally, the third scenario is a smart charging (SC) BEB 11 12 scenario. This scenario charges based on Eq. (12)-(16), where buses aim to match power requests 13 made by the utility manager at each timestep.

14

For the BEB scenarios, the number of chargers was not optimized, but several iterations were tested to determine the minimum number of chargers at each location where buses could always make their routes. In addition, bus chargers come in pairs, so an even number of chargers was required at each location. Also, because the 80-kWh buses include a charger with their purchase, those chargers did not need to be minimized.

20

21 Buses are assumed to last twelve years. We assume that there is the same number of inactive buses 22 in the fleet in the diesel and BEB cases, though there are more active buses in the BEB scenarios 23 because of additional time needed to charge. This is likely a conservative assumption because there 24 is significantly less maintenance needed on BEBs than diesel buses (due to fewer moving parts in 25 EVs). The lifetime of charging stations is generally listed as 30 years. However, because this is a 26 new technology, they are likely to be obsolete before then. Therefore, we assume that the lifetime 27 of chargers is 12 years to accommodate the expected technological advancements in that time. We 28 also assume that the bus manager would not be motivated to run the SC scenario, which helps the 29 utility manager, unless they were given a discount on charging costs. We assumed they were given 30 a 50% discount on electricity in the SC scenario. This seems like a steep discount, but the Results 31 section will show that this discount more than pays for itself from the utility manager's perspective.

# 1 **RESULTS**

2

A comparative analysis is performed for all scenarios based on cost and GHG emissions, shown in Table 3. Annual cost to the bus manager includes bus purchase, fueling, and infrastructure cost. Annual variable cost to the utility manager includes their variable O&M, startup, and ramping costs. It assumes each day is like the day detailed in Figure 2 which is a limitation, though the renewable production is fairly representative of an average day in Austin. In the SC scenario, the bus electricity discount is also included in the utility manager's cost.

9

# 10 Table 3 Summary of scenario results

|                                                      | <b>Current State</b> | Non-SC BEB    | SC BEB        |
|------------------------------------------------------|----------------------|---------------|---------------|
| Bus statistics                                       | and costs            |               |               |
| Number of daily active buses in the fleet            | 302                  | 423           | 423           |
| Total number of buses in the fleet                   | 423                  | 544           | 544           |
| Average cost of buses in fleet                       | \$280,000            | \$646,253     | \$646,253     |
| Daily total diesel consumed (gallons)                | 21,080               | 0             | 0             |
| Daily total net bus charging (MWh)                   | N/A                  | 188.36        | 188.36        |
| Total daily fueling/charging cost                    | \$52,699             | \$11,370      | \$5,685       |
| Infrastructure stat                                  | istics and costs     |               |               |
| Number of EVA080K chargers                           | 0                    | 38            | 38            |
| Number of SAE J3105 chargers needed                  | 0                    | 92            | 92            |
| Annual charging infrastructure costs                 | 0                    | \$1.92M       | \$1.92M       |
| Total energy production                              | on statistics and co | st            |               |
| Total daily electric energy production (MWh)         | 36,760               | 36,940        | 36,940        |
| Daily coal energy production (MWh & % of total)      | 10.2.k (27.8%)       | 10.2k (27.5%) | 9.01k (24.4%) |
| Daily gas energy production (MWh & % of total)       | 2.71k (7.37%)        | 2.93k (7.94%) | 4.53k (12.3%) |
| Daily nuclear energy production (MWh & % of total)   | 9.49k (25.8%)        | 9.47k (25.6%) | 9.03k (24.4%) |
| Daily wind energy production (MWh & % of total)      | 10.2k (27.7%)        | 10.2k (27.6%) | 10.2k (27.6%) |
| Daily solar energy production (MWh & % of total)     | 4.17k (11.4%)        | 4.17k (11.3%) | 4.17k (11.3%) |
| Daily cost of production                             | \$1.09M              | \$1.09M       | \$845k        |
| Electricity grid and bus greenho                     | ouse gas emission    | s and costs   |               |
| Total daily CO <sub>2</sub> emissions (tons)         | 4,308                | 4,160         | 4,072         |
| Total daily NO <sub>X</sub> emissions (tons)         | 1.205                | 1.191         | 1.035         |
| Total daily SO <sub>2</sub> emissions (tons)         | 1.756                | 1.740         | 1.546         |
| Total daily PM emissions (tons)                      | 0.7637               | 0.7128        | 0.6313        |
| Daily external cost of CO <sub>2</sub> emissions     | \$538,500            | \$520,000     | \$509,000     |
| Daily external cost of NO <sub>x</sub> emissions     | \$3,373              | \$3,336       | \$2,899       |
| Daily external cost of SO <sub>2</sub> emissions     | \$3,512              | \$3,480       | \$3,089       |
| Daily external cost of PM emissions                  | \$3,284              | \$3,065       | \$2,715       |
| Summary of costs and savings                         |                      |               |               |
| Annual cost to the bus manager                       | \$29.1M              | \$35.4M       | \$32.3 M      |
| Annual variable cost to utility manager              | \$398M               | \$396M        | \$312M        |
| Annual external cost of emissions                    | \$200M               | \$193M        | \$189M        |
| Overall annual net benefit relative to current state | N/A                  | \$2.60M       | \$94.6M       |

The capital cost for BEBs is more than twice that of diesel buses. However, the daily fueling cost is 4.6 times lower for BEBs because of the lower cost of electricity compared to diesel. Given this, the annual bus manager's cost of owning a BEB fleet, which is larger than the diesel fleet, is only \$6.3M more in the non-SC scenario and is \$3.2M more in the SC scenario. This annual cost assumes the buses and charging station costs are distributed over 12 years and does not include any interest payments.

7

8 Of course, total electricity consumption increases slightly in both BEB scenarios relative to the 9 current state. However, the utility cost in the SC scenario decreases by nearly 22% compared to 10 the current state. This shows why the utility manager would be motivated to provide a major 11 discount to the bus manager for participating in V2G smart-charging. The utility manager saves 12 approximately \$84M annually in the SC scenario compared to the other two scenarios, which is 13 our most significant model result.

14

Finally, since diesel is much more emitting per-unit energy than any power plant type, the total social cost of emissions decreases significantly in both BEB scenarios compared to the current state, with slightly lower emissions in the SC scenario compared to the non-SC scenario because there is less coal and more natural gas production. Note that this study only considers emissions from the electricity grid and the buses. It does not consider emissions from other forms of transportation or other sources, but it is assumed that those are constant across scenarios.

21

22 The top pane of Figure 3 shows the total production by energy source in the non-SC scenario. In 23 this scenario, nuclear runs constant at full capacity until wind generation increases at night. Both 24 coal plants also run at full capacity until about 1 pm, when solar production nears maximum capacity, and one of the coal plants dips in production. Then around 9 pm when base load energy 25 26 demands decrease and wind becomes strong, both coal plants dip to their minimum capacity. The 27 SCNG plants are more variable because these are considered "peaker" plants. They are smaller 28 plants that can ramp quickly, so they can respond to sharp changes in production needs. Note that 29 CCNG does not run in this scenario.

30

31 In the bottom pane of Figure 3, the change in production by source is shown for SC relative to the

non-SC scenario, where positive values indicate that the SC scenario produces more, and negative
 values indicate that the SC scenario produces less than the non-SC scenario. In the SC scenario,

nuclear ramps down a bit more around 9pm than the non-SC scenario. There are also slight

differences in coal production. However, what is most noteworthy in this scenario is that instead

of running many SCNG "peaker" plants, the utility runs its CCNG plant. CCNG plants have lower

ramp rates, but they are cheaper to ramp, so the utility prefers them. Because the SC scenario

smooths the renewable production, the utility is able to substitute the emitting, costly, quick-

39 ramping SCNG plants for the more efficient CCNG plant.



Production in non-SC scenario

# 2 3

1

#### Figure 3 Production by source in non-SC scenario and change in production in SC relative 4 to non-SC scenario

5

6 Recall that in the non-SC scenario, the bus manager receives no feedback from the utility manager 7 and buses charge on a priority-basis. In the SC scenario, BEBs responds to power requests from the utility manager to smooth sharp changes in renewable energy production, mainly from wind 8 9 production in this case study. In Figure 4 the power requested is plotted along with the actual 10 power achieved by the bus manager. The bus manager is not always able to fully meet the power requests, but it does guite well given that buses must be sufficiently charged to make their routes 11 and must remain within SoC limits of 10% to 90%. Figure 5 shows the difference in the net BEB 12

system electricity consumption in the non-SC and SC scenarios. The SC scenario looks much
 noisier because it is attempting to smooth noise from renewable energy production.

 $\frac{2}{3}$ 











9

Figure 5 Net BEB system energy consumption in non-SC and SC scenarios

# 10 CONCLUSIONS

11

This study finds that BEB annualized costs are more expensive than those of diesel buses from a transit agency's cost perspective, though it is not insurmountable. These costs could be offset by renewable energy or low-emission incentives, if carbon taxing, electric bus incentives, or other similar legislature is passed in the future. From the utility manager's perspective, the prospect is very encouraging. If Austin fully electrified its bus fleet and participated in V2G SC strategies, there is the possibility of substantial cost savings for the utility manager, even if they significantly reduce the cost of electricity for buses. When the BEBs in this case study charged according to our

19 proposed SC model, the fleet manager was able to cut nearly 22% of their daily cost.

1 When considering the social costs of bus emissions, BEBs are more attractive yet. With Austin, 2 and many other cities, planning to expand energy generation from solar and wind, this switch in 3 transit technologies will only become more beneficial to human health. Simply electrifying 4 Austin's buses, without any SC strategies, the total external cost of the considered emissions falls 5 by approximately 3.42%, and with SC strategies the cost of emissions falls by 5.64%. This is 6 significant given that this is only considering the electrification of diesel buses. It is worth noting 7 that our results may have underestimated emissions from the utility across all scenarios because 8 only the emissions per MWh of each source were considered. It is intuitive that ramping and 9 starting up plants would be less efficient than running a constant load, thus creating more GHG 10 emissions. We could confidently argue that if we included this cost in the future, the SC scenario 11 would look even more positive due to less ramping.

12

Finally, all costs considered, both BEB scenarios are preferable compared to the current state diesel scenario. The non-SC scenario is \$2.6M net positive (0.41% savings relative to current state) and

- 15 the SC scenario is \$94.6M net positive annually (15.1% savings relative to current state).
- 16

The focus of this study was to develop a Smart Charging framework that could be used to increase the practicality of heavily-renewable-dependent electricity grids by using electrified transportation

as a buffer to the grid. Our case study applied this framework to the Austin bus transit fleet, which

is limited in capability and scope. This framework could be applied to a wider range of electrified
 systems including school buses, trash and recycling trucks, mail delivery trucks, and even personal

EVs and other forms of battery storage systems. If more electrified systems are included in this

analysis in the future, the response to fluctuations in renewable generation could be even more
 effective. In addition, with this increase in capacity, the methodology could go further in using
 electrified transportation systems to counteract daily cyclic power differences as well.

26

# 27 AUTHOR CONTRIBUTIONS

28

The authors confirm contribution to the paper as follows: study conception and design: T. Wellik,
J. Griffin, M. Mohamed; data collection: T. Wellik; analysis and interpretation of results: T.
Wellik, J. Griffin; draft manuscript preparation: T. Wellik, K. Kockelman. All authors reviewed
the results and approved the final version of the manuscript.

33

# 34 ACKNOWLEDGEMENTS

35

The authors are grateful for funding support by the NSF-supported Sustainable Healthy Cities Network and to the City of Austin for the publicly available data on the bus transit system and the

38 electricity grid. Wellik is also grateful for funding from the U.S. DOT DDETFP Program.

|   | REFERENCES                                                                                                                                                                                                                                                                                                                |
|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | Austin Energy A. (2018). Austin Energy Annual Report Fiscal Year 2018. Retrieved from https://austinenergy.com/wcm/connect/fc5e5028-8309-49f0-aae3-67db46bff892/2018corporate-                                                                                                                                            |
|   | annual-report.pdf?MOD=AJPERES&CVID=mFlnbMl.                                                                                                                                                                                                                                                                               |
| ] | Austin Energy B. (2018). Performance Report. Retrieved from<br>https://data.austintexas.gov/stories/s/82cz-8hvk.                                                                                                                                                                                                          |
|   | Austin Energy. (2017, October 7). Austin Energy Resource, Generation and Climate Protection<br>Plan to 2027. Retrieved from <u>https://austinenergy.com/wcm/connect/6dd1c1c7-77e4-43e4-8789-</u><br>838eb9f0790d/2027+Austin+Energy+Resource+Plan+20171002 pdf2MOD=AIPERES&CVID=                                          |
|   | IXv4zHS.                                                                                                                                                                                                                                                                                                                  |
|   | Biswas, S., Verma, V., Schauer, J. J., & Sioutas, C. (2009). Chemical speciation of PM emissions from heavy-duty diesel vehicles equipped with diesel particulate filter (DPF) and selective catalytic reduction (SCR) retrofits. <i>Atmospheric Environment</i> , 43(11), 1917-1925. doi:10.1016/j.atmosenv.2008.12.040. |
|   | BYD. (2015). BYD Electric Vehicles. Retrieved from<br>https://www.theicct.org/sites/default/files/BYD%20EV%20SEDEMA.pdf.                                                                                                                                                                                                  |
|   | BYD-40E. (2014). Federal Transit Bus Test: BYD-40E Testing in Service-Life Category 12Year/500,000 Miles. <i>Transport (Ed.)</i> , The Thomas D. Larson Pennsylvania Transportation Institute, Pennsylvania.                                                                                                              |
|   | CapMetro. (2019). CapMetro GTFS. Retrieved from: <u>https://data.austintexas.gov/widgets/r4v4-</u> vz24.                                                                                                                                                                                                                  |
|   | Carpenter, S. (2019, June 04). Country's Largest Transit Bus System on Electric Buying Spree. Retrieved from <u>https://www.trucks.com/2017/10/17/la-metro-electric-bus-buying-spree/</u> .                                                                                                                               |
|   | ERCOT. (2019). Wind Power Production. Retrieved from:<br>http://mis.ercot.com/misapp/GetReports.do?reportTypeId=13071&reportTitle=Wind.                                                                                                                                                                                   |
|   | Green Car Congress. (2014, January 25). Initial results from first phase of road trails for 40-ft BYD electric bus in Canada. Retrieved from <u>https://www.greencarcongress.com/2014/01/20140125-byd.html</u> .                                                                                                          |
| , | Gurobi Optimization, Inc. (2019). Gurobi Optimizer (Version 8) [Computer software].                                                                                                                                                                                                                                       |
|   | Institute for Energy Research (IER). (2009, June 1). The Facts About Air Quality and Coal-Fired Power Plants. Retrieved from <u>https://www.instituteforenergyresearch.org/fossil-fuels/coal/the-</u>                                                                                                                     |
|   |                                                                                                                                                                                                                                                                                                                           |

- 1 Kane, M. (2016, February 22). New Flyer Electric Bus Completes 1,150-Mile Demonstration in
- Florida. Retrieved from <u>https://insideevs.com/news/327838/new-flyer-electric-bus-completes-</u>
   <u>1150-mile-demonstration-in-florida/</u>.
- 4
- 5 Kennedy, C. (2015). Key threshold for electricity emissions. *Nature Climate Change*, 5(3), 179-6 181. doi:10.1038/nclimate2494.
- Matthews, H. S., Hendrickson, C., & Horvath, A. (2001). External Costs of Air Emissions from
  Transportation. *Journal of Infrastructure Systems*, 7(1), 13-17. doi:10.1061/(asce)10760342(2001)7:1(13).
- 11
- Mitchell, A. (2017, July 11). Proterra and Greenville team up in \$5.8M bus bid. Retrieved from
   <u>https://www.greenvilleonline.com/story/money/2017/07/11/proterra-and-greenville-team-up-5-8-</u>
   <u>m-bus-bid/463964001/</u>.
- 15
- Mohamed, M., Farag, H., El-Taweel, N., & Ferguson, M. (2017). Simulation of electric buses on
  a full transit network: Operational feasibility and grid impact analysis. *Electric Power Systems Research*, 142, 163-175. doi:10.1016/j.epsr.2016.09.032.
- 19
- 20 Mohamed, M., Garnett, R., Ferguson, M., & Kanaroglou, P. (2016). Electric buses: A review of 21 alternative powertrains. *Renewable and Sustainable Energy Reviews*, 62, 673-684.
- 22 doi:10.1016/j.rser.2016.05.019
- 23

Muncrief, R. (2016, December). NO<sub>X</sub> emissions from heavy-duty and light-duty diesel vehicles in
 the EU: Comparison of real-world performance and current type-approval requirements. Briefing
 prepared by the International Council on Clean Transportation. Retrieved from

- 27 http://www.theicct.org/sites/default/files/publications/Euro-VI-versus-
- 28 <u>6 ICCT\_briefing\_06012017.pdf</u>.
- 29
- 30 New Flyer-XE40. (2015, July). Federal Transit Bus Test: New Flyer-XE40 Testing in Service-
- Life Category 12Year/500,000 Miles. *Transport (Ed.)*, The Thomas D. Larson Pennsylvania
   Transportation Institute, Pennsylvania.
- 33
- NREL. (2016, December 2). NREL Fuel Cell Bus Analysis Finds Fuel Economy to be 1.4 Times
   Higher than Diesel. Retrieved from <a href="https://www.nrel.gov/news/program/2016/nrel-fuel-cell-bus-">https://www.nrel.gov/news/program/2016/nrel-fuel-cell-bus-</a>
- 36 <u>analysis-finds-fuel-economy-to-be-14-times-higher-than-diesel.html</u>.
- 37
- 38 Phuangpornpitak, N., & Tia, S. (2013). Opportunities and Challenges of Integrating Renewable
- 39 Energy in Smart Grid System. *Energy Procedia*, 34, 282-290. doi:10.1016/j.egypro.2013.06.756.
- 40

- 41 Proterra. (2019). The Proterra Catalyst 40-foot transit vehicle. Retrieved from
- 42 <u>https://www.proterra.com/products/40-foot-catalyst/</u>.
- 44 Proterra A. (2018, May 7). Proterra introduces new high power interoperable EV charging
- 45 technology. Retrieved from <u>https://www.proterra.com/press-release/proterra-introduces-new-</u>
   46 high-power-interoperable-ev-charging-technology/.

| 1<br>2<br>3      | Proterra B. (2018, May 30). Proterra Catalyst Platform Introduction. Presentation to Plug-in NC Spring Summit. Retrieved from <a href="http://www.pluginnc.com/wp-content/uploads/2018/06/Proterra.pdf">http://www.pluginnc.com/wp-content/uploads/2018/06/Proterra.pdf</a> . |
|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4<br>5<br>6<br>7 | Proterra. (2017). Proterra 40 foot bus drivetrain performance. Retrieved from <u>https://www.proterra.com/wp-content/uploads/2017/10/DT_PERF_HC-1.pdf</u> .                                                                                                                   |
| 8                | Proterra, (2016). Catalyst: 40 foot bus specifications. Retrieved from                                                                                                                                                                                                        |
| 9                | https://www.proterra.com/wp-content/uploads/2016/08/Proterra-Catalyst-Vehicle-Specs.pdf                                                                                                                                                                                       |
| 10               |                                                                                                                                                                                                                                                                               |
| 11<br>12<br>13   | Proterra-E40. (2015). Federal Transit Bus Test: Proterra-E40 Testing in Service-Life Category 12Year/500,000 Miles. <i>Transport (Ed.)</i> , The Thomas D. Larson Pennsylvania Transportation Institute, Pennsylvania.                                                        |
| 14               |                                                                                                                                                                                                                                                                               |
| 15               | Reuters. (2010, December 21). BYD focusing on electric buses and taxis. Retrieved from                                                                                                                                                                                        |
| 16               | https://web.archive.org/web/20130310211205/http:/motoring.asiaone.com/Motoring/News/Story                                                                                                                                                                                     |
| 17               | <u>/A1Story20101221-253971.html</u> .                                                                                                                                                                                                                                         |
| 18               |                                                                                                                                                                                                                                                                               |
| 19               | Sargent, J. (2018, February 26). Ten Years of Analyzing the Duck Chart. Retrieved from                                                                                                                                                                                        |
| 20               | https://www.nrel.gov/news/program/2018/10-years-duck-curve.html.                                                                                                                                                                                                              |
| 21               |                                                                                                                                                                                                                                                                               |
| 22               | United States Energy Information Administration (U.S. EIA). (2016, November). Capital Cost                                                                                                                                                                                    |
| 23               | Estimates for Utility Scale Electricity Generating Plants. Retrieved from                                                                                                                                                                                                     |
| 24               | https://www.eia.gov/analysis/studies/powerplants/capitalcost/pdf/capcost_assumption.pdf.                                                                                                                                                                                      |
| 25               |                                                                                                                                                                                                                                                                               |
| 26               | Van den Bergh I & Botzen W (2015) Monetary valuation of the social cost of CO <sub>2</sub> emissions:                                                                                                                                                                         |
| 20               | A critical survey <i>Ecological Economics</i> 114 33-46 doi:10.1016/j.ecolecon.2015.03.015                                                                                                                                                                                    |
| 28               | 11 ended survey. Leological Leonomics, 114, 55 40. doi:10.1010/j.ecolecoli.2015.05.015                                                                                                                                                                                        |
| 20               | Van den Bergh K & Delarue E (2015) Cycling of conventional power plants: Technical limits                                                                                                                                                                                     |
| 20               | and actual costs. Energy Conversion and Management, 07, 70, 77                                                                                                                                                                                                                |
| 30<br>21         | and actual costs. Energy Conversion and Management, 97, 70-77.                                                                                                                                                                                                                |
| 20               | doi:10.1010/j.enconman.2013.05.020                                                                                                                                                                                                                                            |
| 32               |                                                                                                                                                                                                                                                                               |
| 33               | Yasar, A., Haider, R., Tabinda, A. B., Kausar, F., Khan, M. (2013). A Comparison of Engine                                                                                                                                                                                    |
| 34               | Emissions from Heavy, Medium, and Light Vehicles for CNG, Diesel, and Gasoline Fuels. Polish                                                                                                                                                                                  |
| 35               | Journal of Environmental Studies, 2, 1277-1281.                                                                                                                                                                                                                               |
| 36               |                                                                                                                                                                                                                                                                               |
| 37               | Yuksel, T., & Michalek, J. J. (2015). Effects of Regional Temperature on Electric Vehicle                                                                                                                                                                                     |
| 38               | Efficiency, Range, and Emissions in the United States. Environmental Science & Technology,                                                                                                                                                                                    |
| 39               | 49(6), 3974-3980. doi:10.1021/es505621s.                                                                                                                                                                                                                                      |