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Abstract 
Traffic congestion is challenging most world cities, and one way to avoid traffic delays is to 

take to the sky, using vertical take-off and landing craft or “VTOL”. This study examines 

opportunities, costs, and energy impacts for eVTOL (electrically-powered VTOL) supply and 

demand across the Austin, Texas region. Using different demand levels and VTOL sizes (4 

and 8 seaters - separately and in combination), we estimate per-person CBD trip 

minimum costs averaging $15.55 using 4-seaters, while a combination of 4 and 8-seaters 

offering the greatest energy and greenhouse gas savings, based on the Texas power 

grid’s current feedstock.  

Keywords: electric vehicles, vertical take-off and landing, air taxis, urban vertiports, short-

distance flights, life-cycle analysis, greenhouse gases 
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 Introduction 1.
Many companies have suggested air taxis as a means to address urban-area congestion and air 

pollution. For example, Bell Flight is hoping that the U.S.’s first air taxi services will be 

between the Dallas-Ft Worth airport, the city of Frisco, and Arlington, Texas’ baseball and 

football stadia in year 2025 (CBSDFW, 2018). Their current plan is to have 500 air-taxis, 

initially with human pilots, so passengers feel more comfortable (rather than autonomously 

managed aircraft). In collaboration with Uber, they are working on building vertical takeoff 

and landing aircraft (VTOL) to avoid ground congestion. VTOLs are not a wholly new 

technology, since helicopters are capable of vertical takeoff and landing, but their intended 

use in cities, with electrified propulsion (to reduce tailpipe emissions and noise), or eVTOL, 

is a new concept. 

Using technology to solve problems is popular, though not always successful. A 

“technological fix” using low-cost but inappropriate technology can create more problems 

than it solves (Rosner, 2013). One way to avoid bad outcomes is to plan ahead, rigorously 

evaluating new options long before investment begins. One method for recognizing and 

mitigating emissions and energy effects of new technologies is application of life-cycle 

assessment/analysis (LCA). LCA is defined as “a tool to assess the potential environmental 

impacts and resources used throughout a product’s life-cycle, i.e. from raw material 

acquisition, via production and use stages, to waste management”. (Bjørn et al., 2018, p. 18). 

While LCAs for similar products can reach somewhat different conclusions (GDRC, 2016), 

such analyses are very valuable in identifying important environmental issues and suggesting 

directions for improvement. Since the 1960s, pollution, energy use, and material scarcity 

have been major drivers of LCA, with focus evolving from material waste, to pollution, to 

energy demand and greenhouse gas (GHG) emissions today.  

Uber’s recent VTOL report (Holden and Goel, 2016) claims that on-demand aviation has the 

potential to radically improve urban mobility, giving people back time lost in their daily 

commutes. Based on their proposals and the air taxi services that Bell Labs (CBSDFW, 2018) 

has proposed, use of VTOLs may be coming soon, to certain cities around the globe. Aside 

from the travel-time and roadway-congestion advantages that VTOL may offer, reduced 

tailpipe emissions and energy use may also be feasible, depending on how these vehicles are 

designed and used. To this end, this research evaluates different eVTOL scenarios’ effects on 

environmental and cost factors, as a function of flight speed, passenger capacity, fuel 

consumption and weight, assuming a stable demand level between various origin-destination 

pairs in the Austin, Texas region.   

 VTOL Literature Review 2.
Since VTOLs are a relatively new technology that have not been used in urban settings for 

regular public and personal use, there are few to no evidence-based studies regarding their 

performance characteristics. The majority of existing publications emphasize the potential for 

VTOL applications, and their associated requirements. For instance, Holden and Goel’s 

(2016) paper about VTOLs for Uber concludes that current technologies are capable of 

delivering VTOLs cost-effectively at scale. They recognize that safety, low noise, low 

emissions, and high vehicle performance are keys for successful deployment. And they 

believe that distributed electric propulsion and autonomous operation technologies are vital 

features of such operations. 
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Holden and Goel (2016) also believe that most cities do not currently have the necessary 

takeoff and landing sites to readily host VTOL transport. Yet many cities have hospital and 

other heli-pads, as well as underused parcels and open spaces, which may enable limited 

initial VTOL operations. 

In a recent NASA report, Antcliff et al. (2016) identified the inside of larger freeway 

cloverleaf ramps as ideal locations for vertiports and vertistops, recognizing that surrounding 

freeway noise renders the sound issue rather moot, and interchanges may enable very ready 

vehicle access, along with ready-ownership of such existing infrastructure by public 

transportation agencies. The feasibility and practicality of VTOL technology in urban areas 

can justify their infrastructure-intensive demands. Considering inherent infrastructure needs, 

Holden and Goel (2016) suggest that VTOLs are not meant for door-to-door travel, like 

driving and ride sharing apps enable. Like most public transit trips, walking or car use will be 

necessary for the first and last miles (or blocks) of most trips. Of course, walking out of a 

freeway interchange is simply not feasible, so those settings will probably require car or bus 

access.  

Holden and Goel (2016) also identified VTOL flight altitude/height as an implementation 

barrier that requires aircraft-specific and setting-specific investigation. A dramatic increase in 

aerial operational activities is likely if on-demand urban VTOLs succeed. VTOL navigation 

systems also must be improved, and NASA’s unmanned aircraft system traffic management 

(UTM) can be the beginning.  Aside from air traffic issues, weather is another source of 

VTOL-related performance issues, due to wind and driving rain or snowstorms’, which 

hamper passenger safety and comfort. 

Antcliff et al. (2016) claim that for aircraft design studies, VTOL concept must meet these 

criteria to be feasible. For feasibility purposes, noise must be reduced by more than 20dB. 

Additionally, safety must be comparable to that of automobile safety, and have a price 

competitive with the average Uber ride (costing about $2 per mile in the U.S.). Demand 

studies should consider the current user trends of various transportation modes and 

demonstrate the VTOLs’ market value costs, fleet size, service area, and vehicle utilization 

rates from hour to hour and day to day. It also is important to anticipate mode choices and 

connectivity of modes for these inter-modal trips: aside from walk-time and distance-cost 

penalties, VTOL route choice, and vertiport and (smaller) vertistop capacity constraints must 

be considered. Aside from all the demand and mode choices, costs of operation, noise, and 

other challenges, an aerospace study is necessary to show routes and trajectories without 

conflicts in each region, which may differ from existing studies’ evaluations.  

In an earlier NASA report, Alonso et al. (2014) demonstrated a mid-term solution for vertical 

takeoff and landing called Hoppers. Hoppers may be feasible with electric motors for 

regional or metropolitan aerial transportation systems. This study was conducted to evaluate a 

possible aerial transport network across the San Francisco Bay Area, served by three vehicle 

sizes (6-, 15- and 30-passenger vehicles), of which the latest design was a tandem helicopter 

with electric propulsion. Phase 1 of this study focused on design of battery-powered 

helicopters capable of carrying up to 30 passengers for 65 nautical miles. In Phase 2, tandem 

helicopters with different propulsion systems were examined, by evaluating tradeoffs 

between power and energy (Alonso et al., 2014).  

Airbus, Boeing, and other corporations are devoting money and time to design and operate 

VTOLs. For instance, Airbus’ Vahana A
3
 made its first unmanned flight at the Oregon 

regional airport in 2018. The Opener Blackfly (manufactured in Palo Alto, California) and 
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many other prototypes had their first manned flights in 2018 and earlier, as described at 

http://evtol.news/evtol-timeline/. 

2.1. Life-cycle Analysis Literature 
Bjørn et al. (2018) argue that life-cycle analysis has become a vital systematic method to 

analyze the environmental implications associated with products, processes and services 

through different stages of a product’s life including design, materials and energy usage, 

transportation, construction, operation, maintenance and salvation. Since 1990 there has been 

an ambitious effort to quantify all the impacts imposed on the environment by products under 

study. The efforts culminated in the development of multiple databases adequate for life-

cycle inventory. Although, due to inconsistency of different data bases, the results were not 

similar. The newest database which is used for life-cycle analysis and quantifying impacts on 

environment is “ecoinvent” which is a not-for-profit association founded by several institutes 

of the ETH domain and is aimed for consistent data standards and quality (Ecoinvent, 2019). 

The previously mentioned data base was process based which means to account for material 

and energy, emission, pollution and solid waste consumed and generated in the life-cycle of a 

product. There is another approach which is a top – down procedure to inventory the effects 

based on national statistics of trade between sectors leading to environmental input/output 

analysis. Although there are multiple standards and ISOs for LCA analysis, Chester (2008) 

claims four main LCA stages can be assumed, as follows:  

- Define goals and scope to define boundaries and obstacles; 

- Inventory analysis involving data collection and calculation of environmental burden; 

- Assess human health effects in relative to scope of study, global or regional; and 

- Assess effects of uncertainty, using sensitivity analysis on final results. 

Chester (2008) notes how lifecycle analysis has been neglected in many areas of 

transportation research, design, and operations. For example, before his 2008 publication, 

there were no formal comparisons of passenger transportation modes (car, bus, high-speed 

rail, light-rail, and air travel). Although due to inclination toward personal vehicles there are 

many studies assessing its impacts. As an illustration, MacLean and Lave (2003) studied light 

vehicle duties in contexts of three sustainability axioms based on Anastas and Zimmerman 

(2003)’s 12 green design principles. They determined that despite some advancement toward 

greener LVDs but there is a tradeoff between acceptance of vehicles by people and getting 

greener. Lave et al. (2000) examined the economic and environmental consequences of the 

fuels and propulsion technologies that will be available for powering a large portion of the 

light-duty fleet (cars, vans, SUVs, and light trucks). Lave and MacLean (2002) compared the 

second generation of the first commercial hybrid electric vehicle (HEV), the Toyota Prius, to 

Toyota’s conventional (internal combustion engine) Corolla. They concluded that for Prius to 

be financially attractive for US consumers the gasoline must be at least three times more 

expensive than now. Spatari et al. (2005) developed an LCA model to estimate the 

environmental implications of the production and use of ethanol in automobiles in Ontario, 

Canada.  

LCAs of personal and commercial vehicles will continue, with  Chester and Horvath (2009) 

using 79 distinct components to estimate the life-cycle energy and emissions impacts of 

different transportation modes. Their vehicle-based components can be separated into two 

operational and non-operational subcategories. For each component in the mode’s life-cycle, 

environmental performance was computed and then normalized per passenger-kilometer 

traveled (PKT). The energy and emissions occurring over each component’s lifetime were 

annualized or discounted to a present value for consistent comparisons. They showed how 

http://evtol.news/evtol-timeline/
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each vehicle’s powertrain was most important for its lifecycle energy consumption, although 

non-operational components for the automobile and bus modes also accounted for a 

significant lifetime share, due to use of power and steel during production and manufacture. 

They concluded that Urban Diesel buses consume the most operational energy per PKT 

served (in the San Francisco Bay Area case study they used), at 4 Megajoules per PKT during 

non-peak hours. The second most-consuming mode in operational activities was the 

conventional gasoline pickup truck, using 3.5 MJ/PKT.  

Chester and Horvath (2009) also estimated commercial aircraft operations to account for 69 

to 79 percent of their life-cycle energy demands, making them the transportation mode with 

the highest ratio of operational to (total) life-cycle energy demand (for typical California-

focused usage levels). While aviation had the biggest share, energy estimates for small, 

midsize and large aircraft were estimated to be just 1.8, 1.5, and 1.4 MJ/PKT, respectively. 

They also estimated airlines to exhibit the lowest sensitivity in energy use (per PKT) across 

typical passenger loads.  

Note that the previously mentioned normalization makes similar transportation modes in 

different situations, like urban bus in off-peak and peak hours, comparable but lacks the 

required consistency for comparison between two distinct modes - like pickup trucks and 

urban buses. Since the pickup truck is not intended to move people, it is better to normalize 

its energy consumption by the amount of freight it moves or the total traveled distance of the 

vehicle not including the passengers. Sen et al. (2017) compared substitute truck fuels’ 

emission externalities across the truck’s life-cycle, by monetizing emissions damages in 

dollars. Owen (2006) quantified electric-power generation’s externalities, which is important 

when powering electric vehicles, like eVTOL. And Nichols et al. (2015) compared emissions 

costs of electric and non-electric passenger vehicles in Texas, with the EVs performing 

better, even with that state’s past power grid in place. 

Vehicles using substitute fuels are key example transportation LCA. Samaras and Meisterling 

(2008) estimated life-cycle GHG emissions from plug-in hybrid electric vehicles (PHEVs), 

using a combination of economic input-output models and process-based LCA methods. 

They concluded that PHEVs may or may not enjoy lower GHG emissions than HEVs, over 

their life-cycles, depending on where the vehicle gets its power and how long it is used for 

(before crashing or being otherwise scrapped). Karabasoglu and Michalek’s (2013) related 

work explored driving patterns’ impacts on HEV and plug-in EV life-cycle costs and 

emissions. Instead of using US federal test cycle efficiency estimates, they recommend real-

world driving cycles for better cost and emissions estimates. They used the New York City or 

NYC driving cycles to better reflect low-speed urban driving conditions, with frequent stops, 

and this lowered their HEV’s life-cycle costs by up to 20 percent and its GHG emissions by 

up to 60 percent. Using highway-driving engine loads (with speeds up to 60 mph) suggested 

that more conventional vehicles offer lower life-cycle costs and GHG emissions. Note that 

the life-cycle GHG emissions for a vehicle, used in latter study, are from sources in 2007 

which seems to be pessimistic toward the car industry. 

Hawkins et al. (2013) estimated a 10 to 24 percent decrease in GHG emissions via battery-

only electric vehicles based on the EU’s power plant electricity mix, thanks to much more 

efficient drivetrains and motors. They note that electric vehicles may also cause a significant 

increase in freshwater eco-toxicity, freshwater eutrophication, and metal depletion, due to 

battery and vehicle manufacture processes and inputs. Efforts made to capture the sensitivity 

of these results show more variation for electric vehicles with respect to lifetime. Assuming 

an electric vehicle lifetime of 200,000 km increases the potential toward decrease of global 
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warming to 27 and 17 percent for gasoline and diesel vehicles, respectively. The 

environmental benefit relative to diesel vehicles would be indistinguishable assuming a 

lifetime of 100,000 km for electric vehicles. 

Furthermore, Tessum et al. (2014) demonstrated that the lifetime air quality impacts of 

electric vehicles on human health are not always lower than those of conventional vehicles or 

those with substitute biofuels. Considering the source of energy, electric vehicles with coal as 

their main energy supply (electricity plants powered by coal) is the worst case. Similarly, the 

vehicles operating on corn ethanol are the second worst vehicles regarding this metric. 

Similar concerns were investigated by Messagie et al. (2014) developing a range-based 

modeling system that enables a more robust interpretation of the LCA results. After assuming 

a possible range for weight, fuel consumption and different values of emission, a Monte 

Carlo simulation is used to evaluate the life-cycle effects and costs of different car 

technologies. The analyzed components are the effects on climate change, respiratory effects, 

acidification, and mineral resource depletion considering them for driving 230,500 km in 

13.7 years. Although the previously mentioned manuscript is unable to provide any insight on 

the effects of their decision based on one-point estimation, it provides a variation of results 

for different vehicles with different fuels.  

To eliminate the variation of possible differences due to location and condition of 

implementing new technologies and their effects and costs through their lifetime, Nichols et 

al. (2015) evaluated the effects of electric vehicle adaptation in Texas. They take into account 

the impacts of battery-charging decisions and power plant energy sources across Texas. They 

convert a plug-in electric vehicle (PEV) demands to emissions over time and space from all 

the possible sources related to PEVs. The emissions impacts are evaluated relative to 

conventional passenger vehicles (CVs). They concluded that PEV’s emission benefits, 

normalized to 12,000 annual miles of driving, would be lost if more than 25 percent of the 

power plants use coal as their fuel.  

As new technologies continue to emerge, and connected autonomous vehicles (CAVs) are 

introduced, the potential to decrease transportation externalities has led to additional LCA 

research. Gawron et al. (2018) estimated that passenger vehicle primary energy use and GHG 

emissions could rise by 3 to 20 percent due to more power consumption from added weight, 

drag, and data transmission needs on CAVs, versus human-driven vehicles. But CAVs’ 

potential operational benefits, including eco-driving, platooning, and intersection capacity 

improvements may more than address such issues – in the near to long terms. Sharing right-

sized electric AVs (rather than relying on the typical utility vehicle many Americans buy, for 

example) and sharing rides together (to fill seats) offers even greater benefits. The LCA work 

of Fagnant et al. (2015) on shared AV (SAV) fleets found dramatic reductions in cold start 

emissions, though distances traveled rose (unless dynamic ride-sharing is heavily used), due 

to empty-vehicle driving between travelers. Lee and Kockelman’s (2019) evaluations of 

CAVs’ various energy impacts (which reflect the added demand that comes with making 

“driving” easier) note how critical CAV drivetrain electrification will be, to offset such added 

demands for motorized travel.  

 Methodology 3.
There are three major components of LCA for VTOLs: energy consumed, environmental 

externalities, and operational costs. The energy consumed has two distinct phases, the first 

from manufacturing VTOLs and the second from operation. The environmental externalities, 

including pollution emission, also has similar distinct phases in which the operational phase’s 
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environmental costs, due to electricity usage, are assumed to be solely due to recharging 

batteries as there is no tailpipe emission. 

In order to deliver realistic estimates here, we consider the source code and assumptions of a 

sizing study for Airbus’ Vahana A3 (Lovering, 2016). That study compared electric 

helicopters to 8-fan tilt-wing VTOLs. The code was used to design low-cost, single-passenger 

electric VTOL capable of serving many people (Lovering, 2016) and was adjusted here to 

allow for more seats and more flying weight.  

Vahana’s open-source code is capable of calculating design values based on maximum 

takeoff weight, size and cruise speed by optimizing the operating cost, which includes 

acquisition, insurance, facility, energy, battery and motor replacement, servomechanism or 

“servo” (an on-board computer) replacement, and labor costs (Lovering, 2016). Based on that 

study, energy consumed in the eVTOL and vertiport infrastructure manufacturing phase has 

already been changed to dollars and enters here as price, so there is no need for further 

elaboration in this regard. Additionally, operating costs consisting of electricity consumed, 

platform rentals, and maintenance labor have been converted to US dollars ($). Note that 

these assumptions and values can change over time, due to new technologies and economies 

of scale in production processes. Therefore, the sensitivity analysis of results based on some 

changes that are more probable in near future should be considered. 

3.1. Externality Assumptions 
The main parts of the body, aside from the motor and battery, are assumed to be made from a 

material a little heavier than carbon fiber. Since carbon fiber is used in vehicle industries for 

many nonstructural parts, it makes sense to compare the elements surface unit weights with 

carbon fiber. Lovering’s (2016) Vahana trade study assumes material plus assembly cost for 

each pound to be $100. This may be a conservative assumption considering a 2014 Reuters 

study reported the average cost of light-weight carbon fiber parts to be $64 per lb (Reuters, 

2018). Besides the material cost, in this study tooling cost is assumed $300 per cubic feet.  

Batteries are assumed to be $700 per kilowatt hour they produce, and the battery output is 

assumed to be 104 watt-hours per each pound of its mass. Thus, the battery cost per pound is 

assumed to be 74 dollars per pound. Although Next-battery Corporation (Next-Battery, 2019) 

quotes from Bloomberg new energy finance that by 2030 the batteries would cost $300 for 

each kilowatt hour they provide, which will reduce the battery cost of our VTOL to $32 per 

pounds. The current Tesla Battery Pack is $260 per each KWH which further reduces the 

battery cost to 30 dollars per pound. The number of cycles in battery life are assumed to be 

2000. Although the regular lithium ion batteries’ number of cycles throughout their lifetime is 

between 400 and 1200, Tesla’s Battery pack has 7,500 cycles. Therefore, the assumed cycles 

in a battery life is reasonable.  

One really important aspect of using batteries is the time it requires to recharge from 20 

percent (the reserve value for emergency during mission). The Opener Blackfly eVTOL has 

reported four different charging times based on input current and used voltage. It is shown 

that charging an 8 kWh battery with a voltage of 120V and input current of 20A would take 

up to 5.5 hours (Opener, 2018). That would definitely restrict VTOL usage and dramatically 

increase costs. Tesla’s Superchargers are able to charge a 100 kWh battery (model S of Tesla 

cars) in half an hour from 20 to 80 percent of capacity, as charging slows down to protect the 

battery after passing 80 percent of capacity (PodPoint, 2019). Therefore, assuming this 

amount of time for charging 100 kWh of battery may provide a more reasonable charging 
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time. The fact that batteries would not be completely discharged after each eVTOL flight will 

help to reduce the time required to prepare each eVTOL for its next destination. 

The Vahana team suggests $70 per kilogram for propulsion motor. They also add $800 for 

each servo and $30,000 for avionics costs on each eVTOL. 14 servos are required for an 8-

fan tilt wing eVTOL, as used here.The motors are assumed to be capable of generating 5 kW 

per kilogram. The motor and servo lifetimes are assumed to be 6,000 hours, which enables 

estimation of motor and servo replacement costs. Labor required for maintenance and battery 

swap inspection is assumed to be 0.1 person-hours per flight-hour (Lovering, 2016). 

The average electricity cost in US is 12 cents per kWh but the value for Texas is less than 11 

cents per kWh (ComparePower, 2018).  Due to losses during charge, the charge efficiency is 

assumed to be 0.9 which is optimistic regarding lithium ion batteries. The electricity cost is 

used to evaluate the energy consumed from VTOL operation. 

The facility rental cost is assumed to be 20% larger than the vehicle footprint, which equals 

(8 x rotor radius + 1) * (4 x rotor radius + 3), in order to enable maintenance access. The 

Vahana code’s base platform-rental cost assumption is $2 per square feet per month. The area 

then required for operations, passenger access, waiting areas and personnel activities around 

VTOL (for maintenance and such) is assumed to be 10 times greater. Insurance costs per year 

are assumed to be 6.5 percent of the value of product or total acquisition cost. Other, less 

important assumptions, that do not directly affect cost calculations, are the weights of each 

seat (assumed to be 30 pounds), avionics (30 pounds), each servo (just 1.3 pounds), each 

wing tilt actuator (8 pounds), and the ballistic recovery system (32 pounds). Since landing 

gear is about 2 percent of a helicopter’s maximum takeoff weight (Lovering, 2016), a similar 

assumption is made here for each eVTOL. Such assumptions help with estimation of VTOL 

manufacturing and operating costs.  

Environmental externalities from eVTOL use include battery and vehicle parts disposal, 

noise, power and manufacture and maintenance emissions; and these are addressed here. 

Safety concerns due to hacking or pilot harm or even sexual assault of passengers are 

sometimes mentioned but are not addressed here, due to lack of data. Shaheen et al. (2018) 

also note that VTOL passengers generally cannot stand up in or even change their seats in 

these small aircraft.  

Environmental externalities due to recharging batteries come mainly from power plant 

operations and emissions. Nichols et al. (2015) estimated the air quality impacts of using 

electric vehicles in Texas based on the Electric Reliability Council of Texas (ERCOT) 

emissions rates, as shown in the first part of Table 1. More recent Texas power plant emission 

rates based on the US EPA’s (2016) eGRID data, provided in Table 1’s second half, show 

emissions improvements per MWH of coal-generated power, but higher emissions from 

ERCOT’s natural gas power plants, per MWH. Aside from that, the eGRID average emission 

rate for CO2 equivalent for the State of Texas (ERCOT sub region of eGRID) is 1054.6 

pounds of CO2e per MWH produced.  

Production of a Lithium-ion battery is another source of eVTOL externalities. Romare and 

Dahllöf (2017) estimated that the batteries’ production process generates 37 to 87 pounds of 

CO2equiv per kilowatt-hour of capacity. 
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TABLE 1. AVERAGE ERCOT (TEXAS POWER GRID) EMISSIONS RATES (LB/MWH) 

Values of 

2012 

Fuel NOx SO2 CH4 N2O CO2eq PM2.5 CO VOC 

Coal 4.04 19.2 284.7 422.3 6,537.5 0.11 2.97 0.03 

Natural Gas 0.28 0.006 52.6 5.4 671.8 0.04 0.12 0.02 

Other 0.11 1.8 28.1 41.2 641.6 - - - 

Biomass 2.06E-4 1.41E-5 0.276 0.037 0.004 - - - 

ERCOT 

Values of 

2016 

Fuel NOx SO2 CH4 N2O CO2eq - CO2 - 

Coal 1.19 2.95 0.27 0.04 2,330.5 - 2312.74 - 

Natural Gas 0.45 0.01 0.02 0.00 865.17 - 864.37 - 

Note: PM2.5 is particulate matter less than 2.5 microns in effective diameter and VOC is volatile organic 

compounds. Powerplant SO2 regularly forms PM2.5 downwind. Nuclear reactors, wind and solar sources also 

exist for power generation but offer no operating emissions, so they are not shown here.  

Note that high concentration of SO2 gasses can produce multiple health and environmental 

issues because they are a major precursor of PM2.5. SO2 gasses are formed when fuel 

containing sulfur, like coal, is burned (EPA, 2018). 

Pollution emitted during manufacture and construction is another important feature of LCA. 

Sullivan et al.’s (2010) detailed life-cycle energy and CO2 results for a generic 3,370-pound 

passenger car are considered here. For instance, the amount of emitted CO2 during stamping 

is estimated to be between 0.06 and 0.88 pounds for each kilogram of stamped material. In 

many cases CO2 is calculated from listed energy assumed to be natural gas and grid 

electricity; for example, energy for stamping is 5.1 mega Joules, which is converted to the 

emitted CO2.  

These VTOL calculations use carbon fibers (or a mixture of carbon fiber and other light 

materials), with an estimate of 20 tons of CO2 emitted per ton of carbon fiber manufactured. 

This is justified by the assumption that 22 million tons of CO2 will be eliminated in car and 

aircraft life-cycles thanks to tailpipe emissions reductions (Torayca, 2019).  

Considering the amount of GHG emissions, the only part that can be changed is the Material 

Transformation. Based on de Beer et al.’s (2003) work, production of one ton of Iron results 

in 0.6 to 2.2 tons of CO2 using manufacturing technologies of that era. Assuming the 

prototype weight of the Vahana VTOL used in flight and the comments Zach (Lovering, 

2018) made on the proportion of carbon fiber used in their design to be 400 pound, the carbon 

fiber percentage would be 37% of empty weight. Although these calculation and assumptions 

seem rational, we won’t consider these emissions in our calculations because of increasing 

industry efficiency and the age of assumed values. 

3.2. Life-cycle Analysis 
Here, demand for eVTOLs is assumed to be two and five percent of the Austin area’s 

personal vehicle trips between each vertiport. Assuming the eVTOL’s main purpose is to 

bypass congestion, a notional network is assumed to connect all vertiports directly – with 

Euclidean routing or straight lines. Figure 1’s proposed vertiport locations are based on 

important destination choices, current trip patterns and physical possibility of building a 

vertiport. As previously discussed, vertiports can be placed on top of tall buildings or in large 

parking lots and are not restricted to emergency uses like hospital helipads.  

There are three different buffer radii used in Figure 1: these are 0.5, 2 and 5 miles, and 

believed to be adequate for those walking and biking, busing, and/or driving to the vertiports, 

respectively. Those with 0.5-mile radius are used for Austin’s downtown locations, with 

scarce parking but high trip-origin and –destination densities that motivate people to walk or 
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bike or e-scooter to these vertiports. The 5-mile buffer is used only for the Georgetown City 

station, far from the regional core, where population and jobs densities are relatively low and 

parking much less expensive or freely available. The remaining vertiports are assumed to 

serve people from a 2-mile radius. There is only one vertiport for which the demand is 

assumed to be derived from people living in the San Antonio CBD; this is outside the 6-

county Austin regional boundary, but can capture many trips between the two cities and those 

at the southern edge of Austin. The maximum distance between this network’s OD pairs is 

62.3 miles (between Georgetown and San Antonio’s CBD). The minimum is 1.33 miles, 

between the University of Texas campus and Austin Convention Center. The average 

distance is 22 miles and there are 81 OD pairs considered. 

 

FIGURE 1. PROPOSED VERTIPORT LOCATIONS AND AFFECTED TAZs 

 Results 4.
The required number of eVTOLs and each traveler’s trip time is calculated for afternoon-

peak-period service after assuming that demand is uniform during afternoon peak hours, 

cruise speed is at least 125 mile/hr (200 km/hr), each takeoff and landing or “hover 

transition” takes 3 minutes, and boarding of and alighting from eVTOLs take 1 and 2 

minutes, respectively, for 4- and 8-passenger eVTOLs. Demand varies across 3 other broad 

times of day (AM peak, mid-day, and overnight periods, during a typical Austin-region 

weekday), and those are computed as well, for a 24-hour “typical day” LCA.  

Two methods for flight scheduling are used here, with both methods having the same system 

layout and demands, but different vehicle configurations. VTOL flights are scheduled only 

for scenarios that with sufficient demand to ensure 50 percent or higher eVTOL occupancy 
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levels. The first method uses just one vehicle design or configuration, in terms of passenger 

capacity, and is tested for 4-seater and then 8-seater aircrafts separately. The second method 

uses more efficient (and cost-effective) combinations of 4- and 8-seater eVTOL to schedule 

flights between various origins and destinations. Method one is labeled “single eVTOL 

service” while Method two is called “Multiple eVTOL service”. 

Since eVTOL craft’s range has significant effects on usability and costs (Table 2), different 

types of eVTOLs are assigned to different OD pairs routes to keep costs low. eVTOL ranges 

rise with battery and motor size, so Table 2’s data are for the distances of the Austin system 

evaluated here. 

Assuming 10 years for each eVTOL’s life-cycle and demand change pattern for trips 

throughout the year, similar to Hallenbeck et al. (1997) findings, Table 3 presents total 

passenger-mile covered by eVTOLs using both scheduling methods. Table 3 shows how 

eVTOLs suitable for mid-distance flights (31.25 to 50 miles) carry the most PMT. Due to fact 

that motor, servo and battery life-cycles are shorter than an eVTOL’s life-cycle, their usage is 

calculated separately, with replacement costs included. Table 4 presents the estimated 

numbers of required batteries, motors and servos, based on the externality assumptions 

discussed above, using Vahana Airbus source code. 

 

TABLE 2. VTOL TYPES USED AND CHARACTERSITICS FOR EACH OD PAIR 

# 

Passengers 

Payload 

(lb)* 

Range 

(miles) 

Maximum 

Takeoff Weight 

(lb) 

Acquisition 

Cost ($US) 

Station Costs 

($US) per Year 

Energy Used per 

Flight (kWh) 

Energy Costs 

($US) per Flight 

4 pax. 1000 lb 

6.25 mi 2,609 lb $146,843 $ 324,900 10.2 kWh $1.40 

12.50 mi 2,713lb $ 153,753 $ 316,571 11.1 kWh  $1.48 

18.75 mi 2,823 lb $ 161,167 $ 315,099 11.6 kWh $1.55 

25.00mi 2,937 lb $ 168,927 $ 317,820 12.2 kWh $1.63 

31.25 mi 3,054 lb $ 176,969 $ 323,333 12.7 kWh $1.70 

37.50 mi 3,177 lb $ 185,273 $ 330,897 13.3 kWh $1.77 

43.75 mi 3,300 lb $ 193,840 $ 340,148 13.8 kWh $1.84 

50.00 mi 3,428 lb $ 202,675 $ 350,793 14.4 kWh $1.91 

56.25 mi 3,560 lb $ 211,796 $ 362,727 14.9 kWh $1.98 

62.50 mi 3,696 lb $ 221,219 $ 375,839 15.4 kWh $2.06 

8 pax. 2000 lb 

6.25 mi 4,717 lb $ 221,767 $ 520,659 19.0 kWh $2.53 

12.50 mi 4,875 lb $ 232,232 $ 507,165 19.9 kWh $2.65 

18.75 mi 5,047 lb $ 243,779 $ 503,937 20.8 kWh $2.77 

25.00 mi 5,227 lb $ 256,084 $ 507,118 21.6 kWh $2.89 

31.25 mi 5,416 lb $ 269,010 $ 514,656 22.5 kWh $3.00 

37.50 mi 5,612 lb $ 282,512 $ 525,534 23.4 kWh $3.12 

43.75 mi 5,817 lb $ 296,584 $ 539,067 24.3 kWh $3.24 

50.00 mi 6,028 lb $ 311,233 $ 554,903 25.2 kWh $3.36 

56.25 mi 6,248 lb $ 326,498 $ 572,881 26.1 kWh $3.48 

62.50 mi 6,477 lb $ 342,420 $ 592,832 27.0 kWh $3.60 

* Each passenger with his/her associated luggage is assumed to weight 250 lb (114 kg). 
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TABLE 3. VTOL TOTAL PASSENGER MILES OVER LIFTIME (M PAX-MI) 

Method Single eVTOL Service Multiple eVTOL Service 

Demand Scenario 2% of nearby trips 5% of nearby trips 2% of nearby trips 5% of nearby trips 

Number of Passengers 4 pax 8 pax 4 pax 8 pax 4 pax 8 pax 4 pax 8 pax 

VTOL Range 

(miles) 

6.25 mi 
7.81 M 

pax-mi 

7.62M pax-

mi 

19.07M 

pax-mi 

19.03M 

pax-mi 

0.19 M 

pax-mi. 

7.62M  

pax-mi 

0.54M  

pax-mi 

19.03M 

pax-mi 

12.50 mi 
17.30M 

pax-mi 

16.77 M 

pax-mi 

41.74 M 

pax-mi 

41.74 M 

pax-mi 

0.54 M 

pax-mi 

16.77 M 

pax-mi 

1.25 M 

pax-mi 

41.74 M 

pax-mi 

18.75 mi 
7.74 M 

pax-mi 

5.85 M 

pax-mi 

19.18M 

pax-mi 

18.97M 

pax-mi 

1.89M  

pax-mi 

5.85M  

pax-mi 

5.03M 

 pax-mi 

18.97M 

pax-mi 

25.00 mi 
3.40M  

pax-mi 

0.22M 

 pax-mi 

9.17M 

 pax-mi 

8.38M  

pax-mi 

3.18M 

 pax-mi 

0.22M  

pax-mi 

8.69M  

pax-mi 

8.38M 

 pax-mi 

31.25 mi 
22.47M 

pax-mi 

20.17M 

pax-mi 

64.52M 

pax-mi 

58.10M 

pax-mi 

2.30M pax-

mi 

21.77M 

pax-mi 

14.72M 

pax-mi 

62.22M 

pax-mi 

37.50 mi 
22.28M 

pax-mi 

21.91M 

pax-mi 

53.77M 

pax-mi 

53.77M 

pax-mi 

0.30M  

pax-mi 

23.46M 

pax-mi 

0.74M  

pax-mi 

57.55M 

pax-mi 

43.75 mi 
21.18M 

pax-mi 

20.08M 

pax-mi 

52.24M 

pax-mi 

52.24M 

pax-mi 

1.05M  

pax-mi 

19.32M 

pax-mi 

2.51M 

 pax-mi 

50.14M 

pax-mi 

50.00 mi 
7.51M 

 pax-mi 

6.39M  

pax-mi 

18.38M 

pax-mi 

18.38M 

pax-mi 

1.27M 

 pax-mi 

7.65M 

 pax-mi 

3.02M  

pax-mi 

21.65M 

pax-mi 

56.25 mi 
7.81M  

pax-mi 

7.62M  

pax-mi 

19.07M 

pax-mi 

19.03M 

pax-mi 
0.00 0.00 0.00 0.00 

62.5 mi 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Sum 
112.94M 

pax-mi 

102.25M 

pax-mi 

286.10M 

pax-mi 

278.64M 

pax-mi 

10.72M 

pax-mi 

102.66M 

pax-mi 

36.51M 

pax-mi 

279.66M 

pax-mi 

Total 113.39M pax-mi 316.17M pax-mi 

 

TABLE 4. VTOL MOTOR, SERVO, AND BATTERY REPLACEMENT COST DURING LIFETIME 

# 

Pax. 

Payload 

(lb) 

Range 

(mile) 

Battery 

Mass (lb) 

Motor 

Mass (lb) 

# 

Flights 

before 

Recharg

ing 

Single eVTOL service Multiple eVTOL service 

#Required 

Motors & 

Servo Package 

#Required 

Batteries 

#Required 

Motors & Servo 

Package 

#Required 

Batteries 

2% 5% 2% 5% 2% 5% 2% 5% 

4 pax 1000 lb 

6.25 448.8 173.8 3 11 23 112 253 0 1 3 6 

12.50 521.4 182.6 3 13 30 100 225 0 1 3 8 

18.75 596.2 193.6 4 5 11 20 43 1 3 5 13 

25.00 671 202.4 4 2 5 6 15 2 5 6 15 

31.25 745.8 211.2 4 10 31 26 77 1 9 4 24 

37.50 822.8 220 5 2 23 18 40 0 0 1 1 

43.75 902 228.8 5 2 22 16 37 0 1 1 2 

50 981.2 237.6 5 0 8 5 11 1 1 1 2 

56.25 1062.6 246.4 5 2 0 0 0 0 0 0 0 

62.5 1146.2 255.2 6 0 3 2 3 0 0 0 0 

8 pax 2000 lb 

6.25 732.6 314.6 3 7 15 60 133 7 15 60 133 

12.50 844.8 330 3 8 18 56 122 8 18 56 122 

18.75 957.0 343.2 3 2 6 11 32 2 6 11 32 

25.00 1073.6 358.6 4 0 3 1 8 0 3 1 8 

31.25 1190.2 371.8 4 5 15 12 35 5 16 13 37 

37.50 1311.2 387.2 4 6 13 13 26 6 14 13 28 

43.75 1432.2 402.6 4 5 13 10 25 5 12 10 24 

50 1557.6 415.8 5 2 5 3 7 2 6 3 8 

56.25 1687.4 431.2 5 0 0 0 0 0 0 0 0 

62.5 1819.4 446.6 5 1 2 1 2 0 0 0 0 
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The numbers of charging cycles are calculated based on number of trips (i.e. number of 

flights) required to cover demand. Table 6Error! Reference source not found. Error! 

Reference source not found.provides recent GHG (CO2 equivalent) emissions per kWh by 

powered plants in Texas’s ERCOT power grid for both methods. Checking the emission 

results for single and multiple eVTOL service show the weighted average of total emissions 

for multiple eVTOL service is lower than single eVTOL service, per PMT, for both the 4- 

and 8-seater configurations. Weighted averages for total emissions rates do not vary much, so 

it should be better to use larger eVTOL aircraft in order to have lower GHG emissions, 

assuming demand warrants it. But service frequency (aided by more, smaller aircraft) may be 

preferred by passengers. 

In order to estimate GHG emission for battery-only, plug-in hybrid electric vehicles and 

conventional cars the US EPA (2019) online emissions website is used here. EPA estimates 

for Chevrolet’s Spark EV, Ford’s Focus Electric EV and Tesla’s Model X AWD are 140,160 

and 200 grams of CO2e per traveled mile in Austin CBD for the year 2016. Checking for the 

emission of PEHVs, the emission rate of CO2e per traveled mile in Austin CBD for 

Chevrolet’s Volt PEHV and Ford’s fusion energy PEHV are 180 and 240 respectively. The 

reported ICE average emission rate of CO2e per traveled mile of the EPA online emission 

website is 410.Assuming average vehicle occupancy of 1.5 persons, CO2e emissions rates are 

93.3, 106.7 and 133.3 grams per PMT for mentioned EVs, 120 and 160 for PEHVs 

respectively. Therefore, eVTOL neither helps nor makes the environment polluted with respect to 

current EVs. 

 

TABLE 5. CO2E EMISSIONS USING ERCOT 2016 RATES EVTOL LIFE-CYCLES (OZ) 

Methods Single eVTOL Service Multiple eVTOL Service 

Demand Scenarios 2% of nearby trips 5% of nearby trips 2% of nearby trips 5% of nearby trips 

4-Pax eVTOL 4.30 OZ (121.84 gr) 3.99 OZ (113.22 gr) 3.33 OZ (94.33 gr) 3.46 OZ (98.21 gr) 

8-Pax eVTOL 4.15 OZ (117.75 gr) 3.68 OZ (104.38 gr) 4.17 OZ (118.09 gr) 3.69 OZ (104.61 gr) 

Total (ounces per traveled Passenger Mile) 4.09 OZ (115.85 gr) 3.66 OZ (103.87 gr) 

 

The total cost of eVTOLs operation and used energy for both scheduling methods per 

passenger flight, per mile and per passenger mile are presented in Tables 6 and 7, for each 

demand scenario. Costs do not include the costs due to emissions. Table 6 shows increase in 

demand would lead to lower average prices for scheduling methods. Using multiple eVTOL 

service will not lower cost. Beside that the average cost using 4-seater eVTOLs would be 

lower than 8-seater eVTOLs in all demand scenarios considered here for single eVTOL 

Service method. An interesting finding based on the average costs of different eVTOLs is the 

significant difference between eVTOL with 25 mile range of fly and others’ average cost per 

passenger flight. The only possible reason for this significant difference can be because of the 

form of network. 

  



Khavarian and Kockelman 

TABLE 6. VTOL AVERAGE COST PER PASSENGER FLIGHTS OVER LIFTIME ($) 

Methods Single eVTOL Service Multiple eVTOL Service 

Demand 

Scenario 
2% of nearby trips 5% of nearby trips 2% of nearby trips 5% of nearby trips 

# Pax 4 pax 8 pax 4 pax 8 pax 4 pax 8 pax Combo 4 pax 8 pax Combo 

VTOL 

Range 

(miles) 

6.25 mi $27.76 $34.75 $15.55 $18.96 $368.65 $33.42 $38.72 $159.89 $15.16 $22.06 

12.50 

mi 
$37.44 $39.95 $20.28 $27.68 $120.67 $37.44 $39.76 $135.15 $17.00 $30.18 

18.75 

mi 
$42.10 $86.02 $23.19 $37.38 $114.12 $84.74 $91.78 $190.21 $29.85 $49.51 

25.00 

mi 
$90.64 $2054.12 $34.68 $59.43 $98.09 $2054.12 $232.06 $234.03 $61.13 $86.79 

31.25 

mi 
$87.08 $123.70 $37.30 $54.90 $254.20 $118.48 $132.69 $90.71 $45.24 $73.24 

37.50 

mi 
$34.36 $53.79 $36.68 $31.79 $45.39 $50.37 $50.31 0 $23.14 $45.89 

43.75 

mi 
$43.79 $71.12 $40.32 $38.91 $282.03 $67.62 $78.47 $146.65 $29.46 $52.95 

50.00 

mi 
$42.09 $74.64 $34.55 $29.93 $282.48 $74.64 $104.17 $146.89 $29.74 $43.98 

56.25 

mi 
0 0 0 0 0 0 0 0 0 0 

62.5 mi 0 0 0 0 0 0 0 0 0 0 

Total Average $42.55 $48.55 $25.15 $31.28 170.41 $56.46 $64.31 $165.87 $35.19 $40.00 

 

TABLE 7. FLIGHT COSTS     

Methods Single eVTOL Service Multiple eVTOL service 

Demand Scenarios (%) 
2% of nearby 

trips 

5% of nearby 

trips 

2% of nearby 

trips 

5% of nearby 

trips 

Cost per Passenger Flight ($) 
4-passenger VTOL $42.55 $25.15 $170.41 $165.87 

8-passenger VTOL $48.55 $31.28 $56.64 $35.19 

Average Cost Per Passenger Flight ($) $64.31 $40.00 

Cost per Flight-Mile ($) 
4-passenger VTOL $9.72 $5.95 $27.19 $22.89 

8-Passenger VTOL $20.98 $13.98 $24.36 $15.81 

Average Cost per Mile of flight ($) $24.83 $11.78 

Cost per Passenger-Mile ($) 
4-passenger VTOL $2.74 $1.60 $8.01 $7.13 

8-Passenger VTOL $3.22 $2.01 $3.74 $2.25 

Average Cost per Passenger-Mile of flight ($) $4.15 $1.79 

 

 Conclusions 5.
This paper estimates eVTOL implementation costs for application across the Austin, Texas 

region. Airbus’ Vahana A
3
 group eVTOL-sizing programs are used, and costs reflect energy 

consumed, materials, electricity and vertiport facilities required. Operational emissions are 

calculated separately based on the Texas ERCOT power grid’s current average emission 

rates, and two demand scenarios are considered in a notional network with 9 vertiport 
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locations, each absorbing passengers with a radius of 0.5 to 2 or 5 miles, depending on 

location. 

At least 50 percent of VTOL seat capacity is used to provide passenger service, with different 

aircraft sizing assumptions. One method uses only 4- or 8-seater VTOLs, while the other uses 

a mixture to better reflect demand. Comparing cost and emissions estimates does not suggest 

a clear winner between driving and flying the inter-vertiport distances. eVTOL service 

appears to be a costly solution, with minimum CBD flight cost (and zero profit) of nearly 

$15.55 per passenger. The longest possible considered trip with eVTOL lowest cost per 

passenger is about $29.93 which is not covering the longest assumed fly in the notional 

network. The demand serving policy (to only provide service for a demand that is at least 50 

percent of eVTOL capacity) prevents us to serve the most distant vetriports, those that are 

more than 50 miles apart. The lowest case of average cost for scheduling methods’ provided 

service per passenger is $42.55 for absorbing just 2 percent of nearby trips and $25.15 for 

absorbing 5 percent of the demand. The both cases are the cost of 4-seaters in single eVTOL 

service. As a point of comparison, The Uber Copter (a private flight service) from Manhattan 

to JFK Airport charges passengers $200 to $250, while providing ground transport at each 

end of the flight (Curley, 2019).  Aside from that, as was mentioned in literature review part 

the eVTOL must be cheap enough to be an alternative for ground transportation, and a $2 per 

mile was mentioned as the average price using Uber. Regarding our analysis, the maximum 

average cost per mile using each type of eVTOL and each scheduling method would be $4.15 

while the lowest is $1.60 which both is comparable to previously mentioned Uber cost. Note 

that using eVTOL: in most cases requires ground transportation in both ends which would 

impose more costs  

Regarding emissions the best-case emissions scenario recommends use of combination of 

larger (8-passenger) eVTOLs together with 4-seaters for both demand scenarios. Much more 

detailed looks at different markets, and production and supply costs, with survey data on 

consumer willingness to pay for specific port locations and allow for eVTOL aircraft flying 

overhead, will be needed to better anticipate the introduction of this new mode in real 

settings. 
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