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ABSTRACT 

An evacuation scheduling algorithm is developed for optimal planning of large-scale, complex settings to 

minimize total delay plus time in transit across residents. The algorithm is applied to the 8-county 

Houston-Galveston region and land use setting under the 2017 Hurricane Harvey scenario, with multiple 

shelters as destinations, far from the Gulf of Mexico. Autonomous vehicle (AV) use under central 

guidance is also tested, to demonstrate the evacuation time benefits of AVs. Having a higher share of 

AVs delivers more efficient evacuation performance, due to greater reliability on routes selected, lower 

headways, and higher road capacity. 100% AV use delivers lower overall evacuation costs and network 

clearance times (from 89 hr. to 68 hr. network clearance time, assuming 1.88 vehicles per household) and 

lower uncertainty in travel times (from reduced standard deviation of 12 hr. to 9 hr.). Other scenarios 

were also tested. For example, a 3% to 5% compressed network clearance time added 10% to 25% 

longer travel times and network congestion. A 6% longer network clearance time reduced residents’ 

total travel time and network congestion by 10%, but increased the evacuation cost, demonstrating the 

benefits of scheduling (and enforcing) evacuations across residents and neighborhoods more 

thoughtfully. Optimal combination of departure times by neighborhood and household helps balance 

these conflicting objectives. 
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BACKGROUND 

Disasters like hurricanes, wildfires, flooding, and hazardous material releases are major threats to life and 43 
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property in populated settings. Well-timed and directed evacuation is a key response to impending or live 1 

disasters, but the complexity of large metropolitan areas makes such a response quite challenging. To tackle 2 

this question, different evacuation strategies for different types of natural disasters (Takabatake et al., 2017; 3 

Takagi et al., 2016), contraflow operations on network links (Pyakurel et al., 2017) and strategic sheltering 4 

(Liu & Lim, 2016) have been studied. This paper emphasizes departure time scheduling and use of 5 

autonomous vehicles (AVs) before and during hurricanes. 6 

Heavy winds and rainfall tend to follow a hurricane’s trajectory, affecting the location and time of flooded 7 

streets and highways. Smart destination choices, departure time choices, and route choices can make the 8 

difference between life and death, as well as comfortable versus overly congested, stressful and/or 9 

dangerous travel to safe zones. In the future, communities may also be able to call on fleets of shared AVs 10 

to rescue their most vulnerable populations and/or ensure that evacuation is orderly. Centrally controlled 11 

AVs can be directed in real time, with recourse in routing, which is helpful. With faster driving-response 12 

times, AVs may also deliver shorter headways and higher capacity flow that proves very valuable during 13 

evacuations. Having large shares of AVs in our traffic streams is a long way off, due to technology, cost, 14 

adoption rates, and regulatory challenges, so this paper focuses primarily on conventional-vehicle 15 

evacuations. 16 

Evacuee behaviors and willingness to depart (as well as route and destination choices) are impacted by 17 

social bonds with others, including strength of tie (family, friend, pet, or colleague, for example), contact 18 

frequency (daily or monthly), and geographical proximity (Sadri et al., 2017). Cell phone communications, 19 

Internet sites, and smartphone apps are also now common for social interaction during evacuations. For 20 

example, Twitter response reached its peak during the pre-impact and preparedness phase of Florida’s 21 

Hurricane Matthew landfall in 2016 (Martín et al., 2017). Interactions also include public agency 22 

information and official warnings. Once a mandatory evacuation is ordered, the response to the warning 23 

messages can vary among population groups (Huang et al., 2016; Morss et al., 2016) and result in different 24 

outcomes. In the case of inconsistent evacuation orders, the public can misinterpret the severity of the 25 

hazards and refuse to leave (Elder et al., 2007). Thus, evacuation orders must be carefully designed to elicit 26 

coordinate, effective and timely responses of households and businesses in the affected areas. 27 

A generally held belief is that the evacuees should avoid the threat as soon as possible. This results in heavy 28 

early evacuation demands, which are likely to fall over hours or days, forming an S-shaped curve (Li et al., 29 

2013). Many evacuation experts find that designing strategic delays in departure times delivers faster 30 

evacuation overall, by avoiding unnecessary congestion delays (Lämmel & Klüpfel, 2012; Madireddy et 31 

al., 2015). Asking and/or forcing subsets of evacuees in low-risk areas to delay their departures can improve 32 

performance dramatically (Madireddy et al., 2015). Metering of evacuation flows and/or implementing 33 

phased evacuation strategies are also possible interventions or controls (Lämmel & Klüpfel, 2012). 34 

However, multi-stage evacuations should be carefully designed, since too many stages can cause lower 35 

discharge rates and longer total evacuation than desired (Chien & Korikanthimath, 2007). 36 

Key variables are the departure time schedule, total evacuation time span, arrival times at shelters, and total 37 

time spent en route by evacuees. The departure time schedule is the distribution of individual evacuees’ 38 

departure times over time, as embodied in the slope or flow rate of the S-shaped departure curve. The 39 

evacuation time span defines how long the evacuation order should last; it is the time duration of the region’s 40 

S-shaped departure curve. If the evacuation time span is too short, internal gridlock effects can cause 41 

excessive delays and some drivers may be unable to evacuate the network in due time (Tamminga et al., 42 

2011). Therefore, an efficient evacuation plan should consider both the departure time of each individual 43 

evacuee according to individual’s condition, and the total time span for all evacuees to depart the 44 

endangered area or zones. This can be structured as a bi-level optimization problem, where a local 45 

government issues temporal evacuation orders, and the citizens in a network evacuate considering the risk, 46 

traffic conditions, and infrastructure (Abdelgawad et al., 2010; Apivatanagul et al., 2012).  47 
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METHODOLOGY 1 

One can view the evacuation problem as a type of bi-level game, with a strategic leader (e.g., local 2 

government) making evacuation orders first (upper level) and evacuees moving sequentially in space (lower 3 

level). The leader can update the strategy dynamically, as desired (e.g., in response to local flooding of 4 

streets or higher than expected demand or lower than expected capacity on certain links). This paper 5 

assumes that the leader orders evacuation timing for all evacuees’ vehicles with the objective to minimize 6 

the average evacuation cost per vehicle needed to finish the evacuation, recognizing that evacuees will 7 

decide their destinations and routes. Here, evacuees have access to real-time travel times and can re-route 8 

every 5 minutes. This work uses the Simulation of Urban Mobility (SUMO) code (Lopez et al., 2018), along 9 

with bi-level optimization, reflecting interactions between the leader and evacuees. 10 

Evacuation Orders (Upper Level) 11 

In the upper level optimization, the departure time schedule, 𝑝 (where 𝑝 is the set of 𝑝𝛾 and 𝑝𝛾 is the 12 

portion of vehicles departing in the discrete time interval 𝛾 defined in Eq. (1)), and the evacuation time 13 

span, T (e.g., 24 hours), are adjusted sequentially to seek an optimal strategy. Discrete vehicles depart 14 

according to a Poisson random number generator within each time interval. Late arrivals at shelters is not 15 

desirable for most evacuees, since long travel times are undesirable for most evacuees. Nonetheless, many 16 

evacuees will prefer having sufficient time before departing from their homes to pack more items and better 17 

prepare for their life away from home. When every evacuee decides to evacuate as soon as possible (e.g., 18 

𝑝1  = 1.0), shelter arrival times may be relatively early, but travel times will be long for most due to 19 

excessive network congestion. The travel time can be shorter when the evacuation order is made uniformly 20 

to maintain low network congestion (e.g. 𝑝𝛾 = 0.2, ∀𝛾 ∈ [1,5] ), but, in this case, some evacuees may 21 

evacuate too late or the network clearance time can be unnecessarily long. Also, it is not guaranteed that 22 

uniformly distributed departure time schedules will result in optimum evacuation cost. 23 

𝑝 = (𝑝1, 𝑝2, 𝑝3, 𝑝4, 𝑝5)                                                            (1) 24 

𝑠. 𝑡.   T ∈ [0,24] in hours, ∑ 𝜇𝑡

5

𝑡=1

= 1 25 

Even though the departure time schedule is designed optimal across the evacuation time span, 𝑇 , the 26 

network congestion can be excessive if 𝑇 is not large enough. On the other hand, with an excessively large 27 

evacuation time span, some evacuees may evacuate too late resulting in low evacuation performance. 28 

Therefore, the optimal combination of  𝑝  and 𝑇 is needed to maximize the evacuation performance. The 29 

objective of the upper level optimization is to minimize the average evacuation cost per evacuee with the 30 

two decision variables, departure time schedule (𝑝) and evacuation time span (𝑇). The evacuation cost is 31 

determined by the sum of travel time and the difference between departure time and the disaster onset time. 32 

Excessive travel time will adversely affect the evacuation performance by increasing the uncertainties from 33 

the traffic congestion and possible threats on the roads during the evacuation. Unnecessarily early departure 34 

may cause the evacuees to not have enough time to prepare their evacuation, while considerably late 35 

departure may threaten their evacuation. 36 

Upper-level optimization is achieved by a genetic algorithm using real numbers. A genetic algorithm is 37 

useful for the minimization of average evacuation cost because it avoids being trapped in a local optimal 38 

solution, and its structure facilitates parallel computing to effectively search the solution. A summary of the 39 

upper level optimization is shown in Eq. (2). 40 

𝐶𝑣𝑖𝑗𝑡 = Ψ𝑣𝑖𝑗𝑡 + |𝛷𝑖 − Δ𝑣𝑖𝑗|                                                       (2) 41 
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𝑎𝑟𝑔 𝑚𝑖𝑛
𝑝, 𝑇 

∑ ∑ ∑ ∑
𝐶𝑣𝑖𝑗𝑡

𝑛
𝑡∈𝑇

 

𝑗∈𝐽𝑖∈𝐼𝑣∈𝑉

 1 

V: Set of evacuating vehicles; 𝑣 ∈ 𝑉 2 

𝐼: Set of origins; 𝑖 ∈ 𝐼 3 

J: Set of destinations (pre-defined by the local government); 𝑗 ∈ 𝐽 4 

𝑇: Evacuation time span, where 𝑡 = 1,2,3 … , 𝑇 5 

Ψ𝑣𝑖𝑗𝑡: Travel time of vehicle 𝑣 departing from 𝑖 to 𝑗 at time 𝑡, subject to lower level problem 6 

 𝛷𝑖: The time when the disaster began 𝑖, subject to lower level problem 7 

Δ𝑣𝑖𝑗: The departure time of vehicle 𝑣 departing from 𝑖 to 𝑗, subject to lower level problem 8 

𝐶𝑣𝑖𝑗𝑡: The Evacuation cost of vehicle 𝑣 departing from 𝑖 to 𝑗 at time 𝑡 9 

𝑛: Number of evacuating vehicles 10 

Transportation Simulation (Lower Level) 11 

In the lower level optimization, discrete vehicles depart according to the evacuation order from a Poisson 12 

random number generator within each time interval 𝑝𝛾 until time 𝑇. After every vehicle has arrived at the 13 

destination, the average evacuation cost will be estimated to evaluate the evacuation performance of the 14 

given 𝑝 and 𝑇 combination.  15 

SUMO, with a Python API named TraCI for customization, is used for simulating transportation during 16 

evacuation. SUMO’s mesoscopic simulation option is implemented, since a coarser model for vehicle 17 

movements had an advantage in simulation time over detailed microscopic models in a large-scale network. 18 

In this setting, each link is divided into homogenous cells, and the flow across the cells is determined by a 19 

function of traffic density threshold. An A-Star (A*) algorithm is used to find the shortest path, and a one-20 

shot assignment of re-routing each vehicle in every 5 minutes is applied. Two different vehicle classes, 21 

human-driven vehicle (HV) and autonomous vehicle (AV) are simulated. AVs’ short reaction time and 22 

communication capability may allow increased road capacity obtained from smaller spacing between 23 

vehicles. The road capacity (𝑞𝑚𝑎𝑥) with respect to the vehicle penetration rate (𝑅𝑚) is calculated with Eq. 24 

(3) obtained from (Levin & Boyles, 2016), and converted it to the time headway (3600/𝑞𝑚𝑎𝑥  second) 25 

needed for mesoscopic simulation. Assuming a free flow speed (𝑢𝑓) of 60 mi/h, vehicle length (𝑙) of 20 ft., 26 

HV’s reaction time (𝛤𝐻𝑉) 1 s, and AV’s reaction time (𝛤𝐴𝑉) 0.5 s, the headway between vehicles is 1.23 s 27 

(AV 0%), 0.98 s (AV 50%), and 0.73 s (AV 100%) in each AV market penetration scenario. 28 

𝑞𝑚𝑎𝑥 = 𝑢𝑓
1

𝑢𝑓 ∑ 𝑅𝑚𝛤𝑚+𝑙𝑚∈{𝐴𝑉,𝐻𝑉}
                                                         (3) 29 

The destination of each vehicle is determined by the negative exponential of volume-to-capacity ratio 30 

(𝑒𝑥𝑝 (− 𝑉𝑗/𝐶𝑗)) of the shelter 𝑗 from the shelter set 𝐽. Before a vehicle decides to leave the origin, the 31 

performance of every shelter 𝑗 will be estimated, and the probability to select a certain shelter 𝑗 will be 32 

estimated (𝑃𝑟(𝑗)) according to the shelter’s performance. The destination choice will be made by following 33 

this shelter probability distribution shown in Eq. (4). 34 

𝑃𝑟(𝑗) =  
𝑒𝑥𝑝 (− 𝑉𝑗/𝐶𝑗)

∑ 𝑒𝑥𝑝 (− 𝑉𝑠/𝐶𝑠)𝑠∈𝐽
                                                              (4) 35 

A disaster simulation is performed with the transportation simulation, so that certain links will be under risk 36 
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from the natural disaster. The evacuation demand is assumed to be proportional to the risk level of the origin, 1 

and a link is closed according to the risk level within its traffic analysis zone (TAZ). If a link is closed, this 2 

link will be penalized to have a travel time close to infinity to prevent it from being used during the route 3 

search process. Therefore, the transportation network in this model is changing over time (time-varying 4 

network) depending on the disaster scenario.  5 

Model Summary 6 

The evacuation simulation is posed as a bi-level optimization. The upper level problem determines the 7 

evacuation order of departure time schedule and evacuation time span. The departure time schedule refers 8 

to the temporal distribution of evacuation demand, and the evacuation time span is the length of time needed 9 

for all evacuees to depart from their origins. The lower level problem simulates the natural disaster, route 10 

choice, and traffic congestion according to the evacuation order. Discrete vehicles will be departing under 11 

the evacuation order from a Poisson random number generator within each time interval 𝑝𝛾 until time 𝑇. 12 

Disaster simulation affects the evacuation demand and the network infrastructure. The objective of the 13 

simulation is to minimize the average evacuation cost, and a genetic algorithm is used for the optimization. 14 

Figure 1 shows the flowchart of the proposed evacuation simulation. 15 

 16 

Figure 1. Evacuation Simulation Flowchart 17 

EVACUATION SIMULATION 18 

The developed evacuation model can be used for any transportation network and any type of disaster (e.g., 19 

firestorm, nuclear meltdown, terrorist attack, tsunamis, and volcanic activities) if the network configuration 20 



6 

 

and disaster data are provided. This paper simulates evacuation from a flood in Houston, TX to evaluate 1 

the model performance.  2 

Flood Modeling 3 

In 2017, Hurricane Harvey touched down on the Texas Gulf Coast, US, and caused $125 billion in damages. 4 

These damages were the most extensive of any natural disaster in US history, other than Hurricane Katrina. 5 

Nearly one third of Houston was flooded, and 40,000 people had to evacuate to shelters (Blake & Zelinsky, 6 

2018). Houston Metropolitan Area with 8 counties (Brazoria, Chambers, Fort Bent, Galveston, Harris, 7 

Liberty, Montgomery, and Waller) is simulated in this paper.  8 

The flood modeling requires the data of time, location, and depth of flooding. The simulation date is Aug. 9 

27, 2017, with the flood data from the United States Geological Survey – National Water Information 10 

System (USGS-NWIS) (USGS, 2020), and Federal Emergency Management Administration (FEMA) 11 

(FEMA, 2018). Aug. 27 was chosen for the evacuation scenario because the flooding started around this 12 

date and lasted until early September. USGS-NWIS provides the gage height of US surface-water sites 13 

(rivers and creeks) over time, so that the exact time of flooding can be identified. FEMA provides the flood 14 

depth map to estimate an individual link’s risk level. 15 

In this paper, when a surface-water site from USGS-NWIS is identified as flooded, the site’s nearby traffic 16 

analysis zones (TAZs) are also assumed to be flooded. When a TAZ is flooded, every link in this TAZ is 17 

also assumed to be flooded. The initial USGS-NWIS data show 37 sites were flooded from Aug. 26 to Aug. 18 

28, 2017, and an additional 3 sites near the coastline were assumed to be flooded from the beginning of the 19 

simulation due to the storm surge. Although the time and location of flooded links can be identified from 20 

the USGS-NWIS data, the severity of the disaster and the flood depth should be obtained from FEMA’s 21 

Harvey Flood Depth Grid data. FEMA provides a gridded flood depth map of Hurricane Harvey, and only 22 

the study area of 8 counties is used in this paper. From the gridded flood depth map, a link’s flood depth 23 

can be determined by its nearest grid’s flood depth. Figure 2 and Table 1 shows the details of the flood data. 24 

 25 

Figure 2. USGS-NWIS Data Points (Blue Dots) and FEMA Flood Data (Contour Map) 26 
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Table 1. USGS-NWIS Data and Evacuation Scenario 1 

Site 

ID 
Site Name 

Time of 

Flooding from 

Data 

Scenario 

1A Panther Br at Gosling Rd, The Woodlands 

Aug. 26, 11:15 

- 

1B E Fk San Jacinto Rv, New Caney 

1C Cypress Ck at House-Hahl Rd, Cypress 

1D Greens Bayou at Cutten Rd, Houston 

1E Cedar Bayou, Crosby 

1F San Bernard Rv, Boling 

1G Bastrop Bayou at CR 288, Lake Jackson 
Aug. 26, 11:15 

(assumed) 
1H Moses Lk-Galveston Bay, Texas City 

1I E Fk Double Bayou at Carrington Rd, Anahuac 

2 Lk Houston, Sheldon Aug. 26, 12:00 

3 Chocolate Bayou, Alvin Aug. 26, 12:15 

4 Brazos Rv, Hempstead Aug. 26, 13:30 

5 Peach Ck at Splendora Aug. 26, 21:00 

6 Brickhouse Gully at Costa Rica St, Houston Aug. 26, 21:45 

7 Buffalo Bayou at Piney Point Aug. 26, 22:30 

8 Vince Bayou at Pasadena Aug. 26, 23:45 

9A Cypress Ck at Katy-Hockley Rd nr Hockley 

Aug. 27, 00:00 

All residents in flooded 

areas must evacuate from 

Aug. 27, 00:00 

9B Little Cypress Ck, Cypress 

9C Cypress Ck at Grant Rd, Cypress 

9D Cypress Ck at Stuebner-Airline Rd, Westfield 

9E Cypress Ck, Westfield 

10 Halls Bayou at Houston Aug. 27, 01:00 

Evacuate according to 

flood severity 

11 Garners Bayou, Humble Aug. 27, 01:15 

12 Keegans Bayou at Roark Rd, Houston Aug. 27, 01:30 

13 Greens Bayou at Ley Rd, Houston Aug. 27, 02:00 

14 Whiteoak Bayou at Alabonson Rd, Houston Aug. 27, 03:00 

15 Luce Bayou abv Lk Houston, Huffman Aug. 27, 03:15 

16 Buffalo Bayou at Houston Aug. 27, 06:00 

17A Hunting Bayou at IH 610, Houston Aug. 27, 06:45 

17B Sims Bayou at Houston Aug. 27, 06:45 

18 Greens Bayou, Houston Aug. 27, 07:00 

19 Menard Ck, Rye Aug. 27, 11:15 

20 Caney Ck, Splendora Aug. 27, 12:00 

21A E Fk San Jacinto Rv nr Cleveland Aug. 27, 15:45 

21B Brazos Rv nr Rosharon Aug. 27, 15:45 

22 Trinity Rv at Liberty Aug. 27, 19:15 

23 W Fk San Jacinto Rv, Conroe Aug. 27, 23:30 

24 Trinity Rv at Romayor Aug. 28, 16:45 
Everyone must evacuate 

at Aug. 28, 00:00 
25 Langham Ck nr Addicks Aug. 30, 07:00 

26 Buffalo Bayou at W Belt Dr, Houston Aug. 30, 17:30 

 2 

The evacuation demand induced from the flood is proportional to the flood depth of its origin link. A link 3 

will be closed by the probability derived from the ratio of the link’s flood depth and the deepest depth 4 

recorded in its TAZ. If a link is closed, a value close to infinity will be assigned for the link’s travel time, 5 
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so that this link will be penalized in the route searching process. Only the vehicles departing from the closed 1 

link can leave this link without travel time penalties.  2 

Simulation Setting 3 

The transportation network used in this paper is for the 8-county Houston Metropolitan Area of Texas, with 4 

36,120 links, 18,448 nodes, and 10 shelter locations, as shown in Figure 3. Table 2 shows the number of 5 

evacuating passenger vehicles, 4,346,151 vehicles in total, estimated from the population, household size 6 

per county, and passenger vehicle ownership statistics (FHA, 2017; Bureau, 2019). Other vehicle types (e.g., 7 

heavy-duty trucks, buses, and motorcycles) and public transit services are not included in this paper. The 8 

number of vehicles evacuating each TAZ is assumed to be proportional to the daily number of trips 9 

originating in that TAZ, with TAZ links randomly selected for the home location of each household.  10 

Table 2. Evacuation Demand Estimation 11 

County 
Population 

(US Census Bureau, 2019) 

Persons / Household 

(US Census Bureau, 2019) 
# of Households 

Brazoria 37,426 2.88 12,995 

Chambers 43,837 2.96 14,810 

Fort Bend 811,688 3.18 255,248 

Galveston 342,139 2.69 127,189 

Harris 4,713,325 2.88 1,636,571 

Liberty 88,219 2.85 30,954 

Montgomery 607,391 2.86 212,374 

Waller 55,246 3.07 17,995 

Sum 6,699,271 - 2,308,137 

# of Households 
Vehicle Ownership per 

Household (FHA, 2017) 
# of Vehicles 

2,308,137 1.88 4,346,151 

 12 

In Figure 3, 10 high schools outside of the Texas State Highway Beltway-8 are chosen for shelters. Each 13 

shelter j’s capacity is assumed to be 10% of the total demand, and evacuees will choose their destination by 14 

the shelter’s volume-to-capacity ratio. The shelter’s volume can exceed the capacity, but it will be penalized 15 

by having a high volume-to-capacity ratio as stated in Eq. (3). The parameter settings for genetic algorithm 16 

are population size to 10, ranking selection with 60% survival rate, 10% mutation rate and 50 iterations. In 17 

the simulation, only 0.1% of the total number of vehicles estimated in Table 2 are used due to the high 18 

computational cost. The capacity of roads is reduced proportional to the sampling rate to preserve traffic 19 

congestion characteristics. 20 

 21 
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 1 

Figure 3. Transportation Network and Shelter Locations (A to J) 2 

Simulation Results 3 

Figure 4 shows the optimization results of 3 AV scenarios (AV 0%, AV 50%, and AV 100%). The genetic 4 

algorithm minimized the evacuation cost, and the evacuation cost after optimization is smaller with more 5 

AVs in the simulation. This is considered to be the impact of AVs’ improved driving performance that allows 6 

for smaller spacing and shorter reaction time. The improvement in driving performance may reduce traffic 7 

congestion, thereby lowering travel time. The low traffic congestion in the AV scenario enabled the 8 

evacuees to determine their departure time flexibly, which resulted in lower evacuation cost.  9 

 10 

Figure 4. Evacuation Cost Minimization  11 

Table 3 shows the optimization results of departure time schedule (𝑝) and evacuation time span (T). For 12 
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example, in AV 50% departure time schedule, 45% of the total vehicles depart from t=0 to t=21/5 hr., 20% 1 

depart from t=21/5 to t=42/5 hr., and so forth, until the last vehicle departs at the end of evacuation time 2 

span (t=21 hr.). The evacuation time span (T) is not sensitive to the AV penetration rate in the network, 3 

which represents that it is more subject to the flood timeline. Figure 5 shows the transportation simulations 4 

of each AV scenario’s optimization results with departure and arrival curves. In Figure 5-(c), the AV 100% 5 

scenario, a sharp increase is observed in the early stages of the departure curve, indicating more vehicles 6 

can be loaded into the network with AVs. 7 

Table 3. Optimization Results 8 

 AV 0% AV 50% AV 100% 

Departure 

Time 

Schedule 

(𝑝) 

(52%, 8%, 18%, 8%, 14%) (45%, 20%, 16%, 4%, 15%) (60%, 13%, 14%, 3%, 10%) 

Evacuation 

Time Span  

(T) 

23.3 hr. 21 hr. 22.2 hr. 

 9 
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 1 

Figure 5. Departure-Arrival Curve by AV Scenario 2 
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Evacuation Performance by AV Scenario 1 

Figure 6 shows the evacuation performance by repeating the transportation simulation 5 times under each 2 

scenario’s optimization results. In Figure 6-(a), the average evacuation cost per vehicle (hr./veh) decreases 3 

with more AVs in the network, where the AV 100% scenario shows a 30% reduction (from 16.8 to 12 hr.) 4 

in average evacuation cost compared to the AV 0% scenario. The standard deviation of evacuation cost 5 

between evacuees also decreases as there are more AVs in the network. Based on these results, more 6 

efficient, safe, and reliable evacuation may be possible with AV adoption. 7 

According to Figure 6-(b), the average and standard deviation of travel time follow the same trend as the 8 

evacuation cost estimates. The AV 100% scenario shows around a 30% and 20% reduction of average and 9 

standard deviation, respectively, in travel time compared to the AV 0% scenario. With shorter travel times, 10 

more evacuees can avoid possible threats until they reach the shelter, and the infrastructure flexibility can 11 

be improved to actively respond to the evacuation demand. 12 

Figure 6-(c) quantifies the network congestion by demonstrating congestion as the ratio between the 13 

vehicles’ travel time and the free-flow time expected when traveling on a route at the speed limit. This value 14 

becomes closer to 1 when the vehicle is traveling in free flow, and it increases when the vehicle experiences 15 

congestion. As expected from the travel time analysis, increasing the number of AVs results in less 16 

congestion.  17 

The network clearance time after simulating each scenario 5 times, as shown in Figure 6-(d), represents the 18 

time when the last evacuee arrived at the shelter and no more vehicles are left in the network. The results 19 

suggest that it will take 3 to 4 days, even with full AV adoption, to evacuate everyone across the 8-county 20 

Houston region. Considering the fact that everyone chose to leave within the first 21 to 23 hours as 21 

calculated from the evacuation time span, the total time needed to finish the evacuation takes 3 to 4 times 22 

longer due to traffic congestion. Therefore, additional operational methods (e.g., lane reversal, shared 23 

vehicles) should be combined with AV adoption to further reduce the clearance time. 24 
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 1 

Figure 6. Evacuation Performance by AV Scenarios 2 

Evacuation Time Scenario Analysis 3 

The evacuation time scenario analysis evaluates the impact of different departure time schedules and 4 

evacuation time spans using the AV 0% scenario. The second column of Table 4 analyzes the impact of 5 

departure time schedule while fixing the evacuation time span to the optimal value (23.3 hr.). The panic 6 

departure time schedule demonstrates a panic case of everyone departing at once during the first interval 7 

regardless of the disaster. Compared to the optimal scenario (first column), the network clearance time is 8 

shorter (-4%), but all other estimates are higher (e.g., +20% travel time and +25% congestion). When 9 

residents are panicked and depart as early as possible, the clearance time may be shorter due to the earlier 10 

departure times, but the excessive congestion in the network results in higher evacuation cost and longer 11 

travel times. 12 

Another evacuation time scenario analysis is performed by changing the evacuation time span while 13 

departure time schedule is fixed to the optimal value. According to the third column of Table 4, with a 14 

shorter evacuation time span, the result is similar to the panic case. The evacuees will be departing earlier 15 

than the optimal case, resulting in shorter clearance time (-5%), but the evacuees will experience longer 16 

travel time (+10%) and more congestion (+15%).  17 

On the other hand, with a longer evacuation time span as shown in the fourth column, the travel time and 18 



14 

 

congestion will decrease since the evacuation will occur during a more dispersed time span. However, this 1 

scenario will experience longer clearance time (+6%), so that some evacuees may be faced with possible 2 

threats during the evacuation. Moreover, none of the scenarios have a smaller evacuation cost compared to 3 

the optimal combination of evacuation time span and departure time schedule. Therefore, it is essential to 4 

schedule the evacuation by considering the combination of evacuation time span and departure time 5 

schedules. 6 

Table 4. Evacuation Time Scenario Analysis 7 

AV 0% 

Optimal Evacuation Time Span 

(23.3 hr.) 

Optimal Departure Time Schedule 

(52, 8, 18, 8, 14) 

Optimal Departure 

Time Schedule 

(52, 8, 18, 8, 14) 

Panic Departure 

Time Schedule 

(100, 0, 0, 0, 0) 

Shorter Evacuation 

Time Span 

(14 hr.) 

Longer Evacuation 

Time Span 

(30 hr.) 

Evacuation Cost 

Average per 

Veh. 

16.8 hr./veh 
21.1 

(+25.6%) 

17.4 

(+3.57%) 

17.3 

(+2.98%) 

Evacuation Cost 

Std. Dev. per 

Veh. 

12.4 hr./veh 
13.8 

(+11.3%%) 

12.3 

(-0.8%) 

13 

(+4.8%) 

Travel Time 

Average per 

Veh. 

13.1 hr./veh 
15.7 

(+19.9%) 

14.4 

(+9.9%) 

11.9 

(-9.2%) 

Travel Time Std. 

Dev. per Veh. 
11.8hr./veh 

12.5 

(+5.9%) 

12 

(+1.7%) 

11.5 

(-2.5%) 

Clearance Time 88.9 hr. 
85.8 

(-3.5%) 

84.8 

(-4.6%) 

94 

(+5.7%) 

Congestion 

(Travel Time / 

Free-flow Time) 

21.7 
27 

(+24.4%) 

24.9 

(+14.8%) 

19.4 

(-10.6%) 

(Values in parentheses show percentage change compared to optimal case) 

CONCLUSIONS 8 

This paper develops an evacuation time scheduling algorithm for both departure time scheduling and 9 

evacuation time span. The evacuation is posed as a bi-level game, where the upper level problem organizes 10 

evacuation time scheduling, and the lower level performs transportation and flood simulations. The 11 

developed algorithm is applied to the Houston network with a realistic flood simulation demonstrating 12 

Hurricane Harvey in 2017. AV adoption is combined with the evacuation time scheduling algorithm to 13 

evaluate the impact of AVs on the evacuation. However, the developed model can be applied to any 14 

transportation network and any type of disaster as long as the network configuration and disaster data are 15 

provided.  16 

It is shown that the departure time schedule and evacuation time span are not sensitive to the penetration 17 

rate of AVs. The evacuation schedule is more sensitive to the timeline of the flood. However, more AVs in 18 

the network results in a smaller evacuation cost, leading to a more desirable evacuation performance. This 19 

is due to the increased capacity obtained from the quicker reaction time and headway of AV fleets. The 20 

evacuees will experience around 30% less evacuation cost, shorter travel time, reduced congestion, and 21 

shorter network clearance time with the adoption of AVs. This benefit is also applied to the standard 22 

deviation of evacuation cost and travel time, so that evacuees can expect more reliable evacuation in AV 23 

scenarios. 24 
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According to a scenario analysis of various evacuation time schedules, evacuees’ panic or shorter 1 

evacuation time span may lead to shorter clearance time but will result in higher evacuation cost and severe 2 

congestion compared to the optimal scenario. On the other hand, a longer evacuation time span may reduce 3 

congestion but will result in a longer network clearance time than the optimal scenario. Therefore, the 4 

combination of departure time scheduling and evacuation time span is essential in improving evacuation 5 

performance. 6 

Nonetheless, the simulation results suggest that it will take 3 to 4 days, even with the AV adoption, to 7 

completely evacuate everyone in the Houston network. The evacuees will spend 10 to 13 hours traveling 8 

on roads without adequate protection from disasters, due to traffic congestion. This suggests that additional 9 

operational methods, including contraflow (Wolshon, 2001), prioritization or tolling (Lee & Kockelman, 10 

2019), and dynamic ride-sharing (Fagnant & Kockelman, 2018), should be combined with AV adoption and 11 

evacuation time scheduling to reduce network congestion. 12 
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