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ABSTRACT 1 

This study investigates pedestrian-involved crashes across Texas from 2010 through 2019. 2 

Crashes were mapped to over 708,738 road segments, along with road design, land use, transit, 3 

hospital, rainfall and other location features. Negative binomial model results show how total 4 

and fatal pedestrian-crash rates and counts rise with a segment’s number of lanes, transit stops, 5 

population and job densities, as well as proximity to schools and hospitals, while greater median 6 

and shoulder widths provide some protection. Higher speed limits are associated with lower 7 

crash frequencies but more fatalities. A heteroskedastic ordered probit (HOP) model for injury 8 

severity demonstrates how pedestrian crashes are more likely to be severe and fatal at night (8 9 

PM – 5 AM), without overhead lighting, and when the pedestrians or drivers are intoxicated. Use 10 

of light-duty trucks (including SUVs, pickup trucks, CUVs, and vans) also significantly 11 

increases the risk of pedestrians being severely injured or killed. While newer vehicle safety 12 

features may be argued to lower crash severity, newer crash-involved vehicles in Texas are not 13 

found to deliver less pedestrian injury. However, being a younger or female pedestrian, on a 14 

straight segment, off the state (and interstate) highway system, in the presence of a traffic control 15 

device (stop sign or signal) lowers the likelihood of pedestrian injury, when one does become 16 

involved in such a crash. 17 

Keywords: Pedestrian safety; crash counts; injury severity; Negative Binomial (NB) model; 18 

Ordered Probit (OP) model; Heteroskedastic Ordered Probit (HOP) model. 19 

 20 

INTRODUCTION 21 

Increasing numbers of U.S. pedestrian injuries and deaths have become a major issue in traffic 22 

safety. The number of U.S. pedestrian fatalities rose 53% between 2009 and 2018, while total 23 

U.S. traffic deaths rose 8%. The share of pedestrian deaths, as a percentage of all U.S. crash 24 

fatalities, rose from 12% to 17% (GHSA, 2020), even though pedestrians make up less than 1% 25 

of all person-miles traveled in the nation (NHTS 2017). In the State of Texas, pedestrian 26 

fatalities rose by a stunning 86%, and their share of deaths went from 12% to 19%. While 27 

Americans are walking more, their walking distances cannot explain these numbers: National 28 

Household and Travel Survey (NHTS) data suggest that from 2009-2017, walking-miles traveled 29 

(WMT) per capita rose 13% and walking-trips per capita rose 6%. In contrast, pedestrian 30 

fatalities per capita rose 46%. In 2017, 10.4% of U.S. person-trips were walking-related, but 31 

pedestrian deaths were 16% of all traffic fatalities (FHWA, 2018). The soft, 25-lb to 250-lb 32 

frame of a pedestrian cannot compete with the higher speed, 2500-lb (and up) mass, and hard 33 

metal of motorized vehicle bodies. So, pedestrians experience dramatically higher risk than those 34 

seated inside such vehicles.  35 

Development of effective crash countermeasures requires a comprehensive understanding of 36 

factors that influence both crash frequency and severity. Previous studies have found that certain 37 

roadway attributes, demographic and land use characteristics influence pedestrian crash 38 

frequency (Wang and Kockelman, 2013; Weir et al., 2009; Ukkusuri et al., 2012; Ukkusuri et al., 39 

2008; Schneider et al., 2010). The spatial unit of analysis of those studies ranges from zone-level 40 
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counts (at the census tract, zip code, county, or state level, for example) to segment and 1 

intersection counts. Weir et al. (2009) estimated how commercial land use shares, employment, 2 

population, and persons living below the poverty line have a positive impact on pedestrian crash 3 

frequency, at the U.S. Census tract level, while higher shares of persons over 65 years in age 4 

comes with lower counts of pedestrian crashes (presumably, in large part, because older persons 5 

tend to walk less distance outside). Ukkusuri et al. (2012) used both Census tract and zip code-6 

level data to estimate how the shares of commercial and industrial land uses, and the numbers of 7 

schools and transit stops increase pedestrian crash frequency. The authors found different results 8 

depending of the level of data aggregation (census tract vs zip code) and concluded that more 9 

disaggregate data (for census tracts, in their case) provides more consistent results. 10 

While zone-level data sets readily capture certain land use and built environment characteristics 11 

at the same scale of aggregation, micro-level studies can more effectively control for local design 12 

details and presumably better assess the benefits of many different countermeasure or safety 13 

improvement options. Schneider et al. (2010) analyzed pedestrian crash risk at 81 intersections in 14 

Alameda County, California and found that those with more right-turn-only lanes and those 15 

without raised medians on intersecting streets had more pedestrian crashes. While several studies 16 

have analyzed segment-level data for motor vehicle crashes (Xu et al., 2014; Aguero-Valverde 17 

and Jovanis, 2008; Ma et al., 2008; Kockelman et al., 2006), no such studies for pedestrian 18 

crashes were identified in this work.  19 

Another important issue considering pedestrian safety is injury severity. Previous studies show 20 

that the variables associated with injury severity include: pedestrian and driver characteristics 21 

such as age, gender, intoxication, vehicle characteristics, roadway, and environmental factors 22 

(Lee and Abdel-Aty, 2005; Siddiqui et al., 2006; Kim et al., 2008; Kim et al., 2010; Aziz et al., 23 

2013; Mohamed et al., 2013; Halem et al., 2015; Pour-Rouholamin and Zhou, 2016; Islam et al., 24 

2016; Liu et al., 2019).  Lee and Abdel-Aty (2005) used an ordered probit model for analyzing 25 

pedestrian crash data from Florida over 4 years (1999-2002). The study found that older (age 65 26 

and over) and intoxicated pedestrians, high vehicle speed, heavy vehicles (van, pick up, bus) and 27 

reduced visibility increases the likelihood of injury severity. Kim et al. (2008) used a 28 

heteroskedastic model to address the individual-specific variance in crash severity analysis. 29 

Compared with a Multinomial Logit Model (MNL), the study showed a better fit for the 30 

heteroskedastic model. The unobserved effect (error term) varies more widely as the age of 31 

pedestrians increases over 65. Notable factors that increase the risk of pedestrian fatalities 32 

include pedestrian age, a driver that is male and intoxicated, speeding vehicles, dark conditions 33 

without streetlights, and vehicle types – particularly, SUVs and trucks. The study shows that 34 

intoxicated drivers increase the likelihood of pedestrian fatalities by 2.7 times. 35 

Although previous studies have dealt with different pedestrian safety issues, those studies are 36 

few in number compared to the large volume of research devoted to crashes that only involve 37 

motor vehicles. No studies have been conducted on pedestrian crashes specifically in Texas. This 38 

study investigates 78,497 pedestrian-involved crashes in Texas over a 10-year period of time 39 

from 2010 to 2019. The study analyzes the relationship between segment-wise pedestrian crash 40 

counts and a variety of factors such as roadway characteristics, traffic attributes, demographic 41 
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and environmental factors using a negative binomial (NB) model. Furthermore, the ordered 1 

probit models also investigate various driver, pedestrian, traffic, temporal and environmental 2 

characteristics that influence pedestrian injury severity. Findings from this research predict risk 3 

factors, help in understanding mitigations in infrastructure and vehicle design, motivate better 4 

data collection, and can be used to prioritize micro-level studies. 5 

DATA DESCRIPTION 6 

A key source of data for this study is the Texas Department of Transportation (TxDOT) Crash 7 

Records Information System (CRIS) (Texas Department of Transportation, 2020). These records 8 

come from police reports among all 254 Texas counties and hundreds of municipalities therein. 9 

Variables within the database characterize crashes according to time, location, severity, and road 10 

conditions. Crash records are not guaranteed to have all variables defined, and many of these 11 

data are not provided. A relevant aspect not captured by CRIS records involving pedestrians is 12 

whether each pedestrian is experiencing homelessness. 13 

Although these characteristics of CRIS provide challenges when performing an analysis on 14 

crashes, CRIS remains a valuable resource, and offers suitable sample sizes for creating useful 15 

prediction models. From the year 2010 through 2019: 16 

• 5,631,223 crash records exist 17 

• 9,875,257 roadway vehicles are explicitly recorded among all crashes 18 

• 4,756,671 crash records have geographic coordinates, either from GPS latitude/longitude 19 

written in the crash record, or geocoded from street names or addresses 20 

• 78,497 are determined to involve collisions or avoidances of pedestrians 21 

• 72,243 total pedestrians are explicitly recorded among all crash records 22 

• 5,674 pedestrian fatalities are reported 23 

Road-specific attributes were obtained from the TxDOT Roadway Inventory database (Texas 24 

Department of Transportation, 2018). The horizontal curves (GEO-HINI) database was spatially 25 

matched with the road inventory database to map road geometry. Census tract level population 26 

and job data were obtained from the 2010 population census and Longitudinal Employer-27 

Household Dynamics (LEHD), respectively. Road segments were matched with the closest 28 

census tract centroid using the ArcGIS spatial join routine. All data were normalized by the area 29 

of census tracts. Other data sources include annual rainfall data (1981-2010) from the Texas 30 

Water Board, school locations from the Texas Education Agency, hospital locations from the 31 

Homeland Infrastructure Foundation-Level Data and transit stop locations from OpenStreetMap 32 

(OSM). Numbers of transit stops and Euclidean distances from each road segment to the nearest 33 

schools and hospitals were calculated using ArcGIS Spatial Analysis tools.  34 
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FIGURE 1: MAP SHOWING TEXAS ROADWAY SEGMENTS (LEFT); HISTOGRAM SHOWING THE 
DISTRIBUTION OF SEGMENT LENGTH (RIGHT) 
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TABLE 1: SUMMARY STATISTICS OF VARIABLES FOR ROAD SEGMENTS 1 
ACROSS TEXAS 2 

 Mean Std. dev Min Median Max 
Number of pedestrian crashes 0.0796 0.6530 0 0 115 
Number of fatal pedestrian 
crashes 0.0068 0.1024 0 0 10 
Segment length (in miles) 0.4338 0.8142 0.001 0.186 44.24 
Number of lanes 2.2341 0.7835 1 2 14 
Median width (in feet) 1.7407 11.789 0 0 519 
Average shoulder width (in feet) 1.4066 3.6213 0 0 42 
On system road 0.2246 0.4173 0 0 1 
Indicator of curvature 0.1098 0.3126 0 0 1 
Curve length (in meter) 21.676 125.77 0 0 9630.572 
Curve angle (degrees) 3.5376 12.954 0 0 331.8 
ADT per lane 888.35 2366.1 0 165 92090 
Percentage of truck ADT 5.9598 7.2173 0 3.200 95.8 
DVMT 1035.4 7319.4 0 54.418 793941.6 
Speed limit (mph) 20.998 28.687 0 0 85 
Rural (pop <5000) 0.4072 0.49130 0 0 1 
Small urban (pop:5000-49999) 0.0977 0.2970 0 0 1 
Urbanized (Pop:50000-199999) 0.0915 0.2883 0 0 1 
Large urbanized (Pop: 200000+) 0.4036 0.4906 0 0 1 
Population density (per sq mile) 1671.5 2274.9 0 635.830 55239.7 
Job density (per sq mile) 805 3285.3 0 139.642 130011.1 
Average yearly precipitation 
(1981-2010) (inches) 36.481 11.516 8 37 61 
Distance to nearest hospital 
(miles) 6.8216 7.2760 0.0018 3.968 98.208 
Distance to nearest school 
(miles) 2.0839 3.0864 0.01 0.741 53.952 
Presence of transit stop within 
100-meter buffer 0.0057 0.0753 0 0 1 
Number of transit stops within 
100-meter buffer 0.0114 0.2003 0 0 27 

  3 
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METHODOLOGY 1 

ANALYSIS OF PEDESTRIAN CRASH COUNTS 2 

The CRIS data were spatially matched with the road segments along with land use, population, 3 

job, rainfall and other location features (schools, hospitals, transit stops) to examine the 4 

association between pedestrian crash counts and various contributing factors along Texas roads. 5 

A total of 708,738 road segments were included in the analysis (Figure 1). Table 1 shows the 6 

summary statistics of the roadway segments.  7 

A negative binomial (NB) model was used to predict pedestrian crash count along roadway 8 

segments. The expected number of counts 𝐸(𝑌𝑖) along ith segment is expressed as follows: 9 

𝐸(𝑌𝑖) = 𝑉𝑀𝑇𝑖
𝛼exp(𝛽0 +∑𝑥𝑖𝑘𝛽𝑘 + 𝜀𝑖

𝐾

)(1) 10 

VMT denotes vehicle miles traveled along ith segment; parameter 𝛼 shows potential non-linear 11 

relation between crash count and VMT. 𝛽𝑘 is kth covariates, 𝜀𝑖 is random error which follows 12 

gamma distribution 𝜀𝑖~gamma(𝛾, 𝛾). 𝑌𝑖 represents crash counts with mean 𝐸(𝑌𝑖) = 𝜇𝑖 =13 

𝑉𝑀𝑇𝑖
𝛼exp(𝛽0 + ∑ 𝑥𝑖𝑘𝛽𝑘 + 𝜀𝑖)𝐾  and variance Var(𝑌𝑖) = 𝜇𝑖 + 𝜌𝜇𝑖2. Here, 𝜌 is the dispersion 14 

parameter which collapses to a Poisson model when 𝜌 = 0.  15 

ANALYSIS OF PEDESTRIAN INJURY SEVERITY 16 

Injury severity was analyzed at the individual crash level. Both standard ordinal probit (OP) and 17 

heteroskedastic ordered probit (HOP) models were used to account for the ordinal nature of 18 

injury severity. The model specification follows a latent variable framework: 19 

𝑦𝑖
∗ = 𝛽𝑋𝑖 +𝜀𝑖(2) 20 

𝑦𝑖
∗ is the underlying continuous latent variable representing injury severity of the ith pedestrian. 21 

𝑋𝑖 is the vector (k×1) of explanatory variables; 𝛽 is the vector (k×1) of unknown parameters to 22 

be estimated associated with explanatory variables; 𝜀𝑖 is the random error term which is 23 

unobserved. In probit, 𝜀𝑖 is assumed to be normally distributed with mean zero and unit variance.  24 

In any given pedestrian crash, we only observe the injury severity 𝑦𝑖as reported by police in 25 

crash records. The relationship between the observed discrete variable 𝑦𝑖 and the latent variable 26 

𝑦𝑖
∗ is expressed as follows:  27 

𝑦𝑖 =

{
 
 

 
 
0, 𝑖𝑓𝑦𝑖

∗ ≤ 0(Notinjured)

1, 𝑖𝑓0 < 𝑦𝑖
∗ ≤ 𝜇1(Possibleinjury)

2, 𝑖𝑓𝜇1 < 𝑦𝑖
∗ ≤ 𝜇2(Non-IncapacitatingInjury)

3, 𝑖𝑓𝜇2 < 𝑦𝑖
∗ ≤ 𝜇

3
(Suspectedseriousinjury)

4, 𝑖𝑓𝜇3 < 𝑦𝑖
∗ ≤ ∞(Killed)



 28 

𝜇0 = 0 and 𝜇𝑗 (𝑗 = 1,2,3) are threshold parameters (to be estimated) which determines among 29 

five observed values of injury severity, 𝑦𝑖. In general, the probability of 𝑦𝑖 taking on injury 30 

severity j on ith pedestrian can be expressed as follows: 31 
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Pr(𝑦𝑖 = 𝑗|𝑋𝑖) = 𝛷 (
𝜇𝑗 − 𝛽𝑋𝑖

𝜎𝑖
) − 𝛷 (

𝜇𝑗−1 − 𝛽𝑋𝑖
𝜎𝑖

)(3) 1 

𝛷 is the standard normal cumulative distribution function, and 𝜎𝑖 is variance of the error term. In 2 

standard ordered probit models, it is assumed that variance of error term is constant across all 3 

observations. However, error term can vary across observations: for instance, there can be 4 

unobserved heterogeneity in terms of vehicle attributes such as vehicle type, weight and footprint 5 

(Wang and Kockelman, 2005; Chen and Kockelman, 2012; Lemp, Kockelman and 6 

Unnikrishnan, 2011) and in terms of pedestrian characteristics (health, weight and initial 7 

response to crashes) (Kim et al., 2010). Failure to account for heteroskedasticity can lead to 8 

biased parameter estimates in probit analysis. To overcome this limitation, a heteroskedastic 9 

ordered probit (HOP) was used where variance of the error term is allowed to vary. We follow a 10 

flexible specification for HOP model where 𝜎𝑖is determined as a function of observed attributes 11 

associated with variance as the following equation (Wang and Kockelman, 2005): 12 

𝜎𝑖= exp(𝑍𝑖𝛾)  (4) 13 

𝛾 is the coefficient for variable 𝑍𝑖 .If 𝛾 is not significantly different from zero for all 𝑍𝑖, then it 14 

implies no heteroskedasticity and HOP takes the form of OP. On the other hand, if 𝛾 is 15 

significantly different from zero, it shows the presence of heteroskedasticity for that particular 16 

variable.  17 

The parameters in Equation 3 were estimated by maximizing the log-likelihood function, that for 18 

a sample consisting of n observations: 19 

L(β, μ, γ) = ∑∑𝐼(𝑦𝑖 = 𝑗) ln (𝛷 (
𝜇𝑗 − 𝛽𝑋𝑖
exp(𝑍𝑖 , 𝛾)

) − 𝛷(
𝜇𝑗−1 − 𝛽𝑋𝑖
exp(𝑍𝑖 , 𝛾)

))

𝑗=𝐽

𝑗=0

𝑛

𝑖=1

(5) 20 

RESULTS AND DISCUSSION 21 

PEDESTRIAN CRASH OCCURRENCE 22 

Table 2 shows the parameter estimates of the NB models. Two models were estimated, one for 23 
all pedestrian crashes, and another for fatal pedestrian crashes. The dispersion parameters, 𝜌 for 24 

both models are greater than zero, implying that the data are over-dispersed (the variance 25 
exceeds the mean of crash counts), and the NB model is preferred over the Poisson regression 26 

model.  27 

The association between VMT and pedestrian crash frequencies is positive and non-linear 28 
(exponents α =0.7390 for all pedestrian crashes and α= 0.8730 for fatal pedestrian crashes), 29 
consistent with the expectation that crash frequencies increase with VMT but crash rate 30 
effectively falls as VMT of the segment rises. Among highway design variables, on-system roads 31 

(state-maintained arterials), median width, shoulder width and speed limit were found to be 32 
practically significant. On-system roads show strong association with fatal crashes: 42.81% 33 

increase of all pedestrian crashes vs 136.53% increase of fatal crashes only. As per CRIS data, 34 

two-thirds of all fatal pedestrian crashes in Texas (2010-2019) occurred on on-system roads. 35 
Other variables, such as shoulder width, median width and speed limit are negatively associated 36 
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with pedestrian crashes. Higher speed limit roadways usually have fewer pedestrian activities 1 
which might contribute to lower numbers of pedestrian crashes; however pedestrian crashes on 2 
high speed segments are associated with more severe injuries, discussed later in the injury 3 

severity analysis.  4 

Surprisingly, ADT per lane is estimated to have negative effects on pedestrian crashes when 5 
other variables are controlled (population and job density). Percentage of Truck ADT, however, 6 
shows positive association. This might be due to the fact that the impact of high ADT per lane is 7 
captured by population density and job density. Previous studies also found weak effect of ADT 8 

on pedestrian crashes when other variables are controlled (Huang et al., 2017; Pandey and 9 
Abdel-Aty; 2009; Zajac and Ivan, 2003).  10 

Population density, job density and types of urban areas were used as proxies of land use. All of 11 
these variables were found to be strong predictors of pedestrian crashes. Pedestrian crashes 12 
including fatal crashes increase with population and job density, with very high crash rate 13 

percentage change (35.78% for population density and 11.06% for job density). This might be 14 
partly due to high variance-to-mean ratios for both of these variables; thus one-SD change 15 
implies a substantial shift. The effect of urbanization should be interpreted with urbanized areas 16 
having a population of 50,000-200,000 as a baseline. Compared to the baseline, large urban areas 17 
with populations greater than 200,000 are expected to have 23.05% and 14.63% more pedestrian 18 

crashes and fatal pedestrian crashes, respectively. By contrast, small urban areas and rural areas 19 

have fewer numbers of crashes. This is consistent with expectations because more dense 20 
locations in large urbanized areas usually have higher traffic volumes and pedestrian activities, 21 
thus increasing the exposure of pedestrian crashes.  22 

Climate, proximity and transit-related variables such as rainfall, distance to the closest schools 23 

and hospitals, and the number of transit stops were also included in the model. Among these 24 

variables, distance to the closest schools, distance to the closest hospitals and the presence of 25 
transit offer practical significance although these variables are rarely considered in pedestrian 26 
safety literature. Results from the model estimation show that 1 SD decrease in nearest school 27 
distance (1 SD= 2.72 miles) is associated with a 52.45% increase in pedestrian crashes and a 28 
22.92% increase in fatal pedestrian crashes. Similarly, hospital distance also shows strong 29 

association (except fatal crashes) but less significant than school distance. Finally, the presence 30 
of transit stops along the segments was found to be strongly significant (95.54% increase in 31 
pedestrian crashes and 53.46% increase in fatal pedestrian crashes), presumably due to high 32 
pedestrian activity near transit stops.  33 

 34 

 35 

  36 
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TABLE 2: ESTIMATION RESULTS OF NB FOR ALL PEDESTRIAN CRASHES AND FATAL 1 
PEDESTRIAN CRASHES 2 

 
All Ped Crashes Fatal Ped Crashes % Of Change 

 
Coeff Std. Error Pr>|z| Coeff Std. Error Pr>|z| All ped 

crashes 
Fatal ped 
crashes 

Ln (VMT) 0.7390 0.0039 0.000 0.8730 0.0115 0.000 
  

Highway Design Variables 
 

 
 

 
 

 

 

Number of lanes 0.0316 0.0060 0.000 0.0459 0.0121 0.000 2.50% 3.60% 

Median width -0.0052 0.0005 0.000 -0.0033 0.0007 0.000 -5.93% -3.86% 

Shoulder width -0.0187 0.0020 0.000 -0.0164 0.0036 0.000 -6.55% -5.76% 

On system roads 0.3564 0.0273 0.000 0.8678 0.0617 0.000 42.81% 136.53% 

Indicator of curvature 0.0064 0.0281 0.820 -0.0576 0.0524 0.272 0.64% -3.65% 

Curve angle -0.0047 0.0008 0.000 -0.0028 0.0014 0.044 -5.95% -2.88% 

Speed limit -0.0093 0.0004 0.000 -0.0024 0.0012 0.037 -23.46% -6.43% 

Traffic Attributes 
 

 
 

 
 

 

 

ADT per lane -5.5E-05 2.25E-06 0.000 -3E-05 3.84E-06 0.000 -12.26% -6.95% 

% of truck AADT 0.0054 0.0012 0.000 0.0056 0.0024 0.020 3.95% 4.14% 

Land Use Variables 
 

 
 

 
 

 

 

Population density 0.0001 0.0000 0.000 0.0001 4.89E-06 0.000 35.78% 17.46% 

Job density 3.19E-05 7.35E-07 0.000 0.0000 2.07E-06 0.001 11.06% 2.35% 

Rural (pop<5000) -0.6061 0.0321 0.000 -0.6200 0.0746 0.000 -45.45% -46.20% 

Small urban (pop:5000-
49999) 

-0.1213 0.0278 0.000 -0.1917 0.0774 0.000 -11.42% -17.44% 

Large urbanized (Pop: 
200000+) 

0.2074 0.0199 0.000 0.1366 0.0545 0.000 23.05% 14.63% 

Ref: Urbanized (pop: 50000- 199999)        

Climate And Proximity Factors  
 

 
 

 
0.098 

Rainfall -0.0041 0.0005 0.000 0.0024 0.0014 0.000 -4.63% 2.80% 

Distance to the nearest 
school 

-0.2730 0.0083 0.000 -0.0958 0.0137 0.604 -52.45% -22.92% 

Distance to nearest hospital -0.0227 0.0021 0.000 0.0022 0.0043 0.000 -15.24% 1.70% 

Transit stop indicator 0.6706 0.0484 0.014 0.4290 0.1116 0.339 95.54% 53.46% 

Number of transit Stops 0.0372 0.0151 0.000 0.0269 0.0281 0.000 0.75% 0.53% 

(Intercept) -7.3860 0.0448 0.000 -11.7900 0.1237 0.000   

No. of observations 708738        

Dispersion Parameter: 𝜌  2.01   1.39     

McFadden's R2: 0.278   0.335     

LR chi2 89206   17945     

Prob > chi2 0.0000   0.0000     

2 x log-likelihood -231909.99   -35603.96     

Continuous variables show the % change for 1 SD increase. Binary variables show the % change from 0 to 1. 3 
Bolded percentages indicate more practically significant variables  4 
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PEDESTRIAN INJURY SEVERITY 1 

Both the ordered probit (OP) and heteroskedastic ordered probit (HOP) were estimated using the 2 

“oglmx” package in R (Carroll, 2017). Results from the likelihood ratio test suggest that 3 

heteroskedasticity exists (χ2 = 2561.7; P<0.0001), and therefore the HOP model was preferred 4 

over the OP model (Table 3). The coefficients of both models show consistent estimates; 5 

however, the main difference is observed in terms of variance components. The HOP model 6 

shows significant variance for pedestrian age, gender, speed limit, vehicle type, traffic control 7 

type, population of the area, time of day and lighting condition, suggesting that these variables 8 

can affect the spread of latent severity 𝑦𝑖∗. Other variables which do not show significant impacts 9 

are discarded from the variance equation.  The following section discusses details about the 10 

impacts of explanatory variables on pedestrian injury severity.   11 

Among different vehicle types, pick-up trucks, sports utility vehicles (SUVs), vans, heavy-duty 12 

trucks and buses significantly increase pedestrian injury severity in pedestrian-motor vehicle 13 

crashes (Table 3). Previous studies also reported similar findings, particularly high injury 14 

severity associated with light-duty trucks (SUVs, pickup trucks and vans) (Lefler & Gabler, 15 

2004; Pour-Rouholamin and Zhou, 2016; Anarkooli et al., 2017; Liu et al., 2019). These vehicles 16 

pose higher risks due to heavy mass, higher bumpers and a more geometrically blunt frontal 17 

profile (Lefler & Gabler, 2004). The model also predicts significant variance for vehicle types, 18 

suggesting that impacts of unobserved attributes are associated with vehicle types (e.g. shape, 19 

stiffness, frontal profile) which increase the range of injury severity prediction. Marginal effects 20 

(Table 4) show that compared to passenger cars, light-duty trucks (pickup trucks, SUVs and 21 

vans) increase the probability of being killed or seriously injured by 13.9%. According to CRIS 22 

data, the number of light-duty vehicles involved in pedestrian deaths is increasing at a fast rate in 23 

Texas: during 2010-2018, the number of cars involved in fatal pedestrian crashes increased by 24 

64.7%, while the number of SUVs and pickup trucks involved in fatal pedestrian crashes 25 

increased by 98.6% and 92.9%, respectively. Growing popularity of SUVs, pickup trucks and 26 

vans partly explains high injury severity associated with these vehicles. From 2009 to 2016, the 27 

share of cars to the total number of light duty vehicles purchased in the USA dropped from 28 

60.5% to 43.8%, while during the same time period, share of SUVs, pickup trucks and vans 29 

increased from 39.4% to 56.2% (EPA, 2017).  30 

Improved vehicle safety features contribute to pedestrian safety, and thus can reduce injury 31 

severity sustained by pedestrians in motor-vehicle crashes. These features include vehicle shape 32 

and stiffness, particularly, car front-end design – bumper height, bonnet leading edge, bonnet 33 

length and windscreen (Liu et al., 2002; Nie and Zhou, 2016; Li et al., 2018). Studies show that 34 

after the New Car Assessment Programs (Euro NCAP) in Europe, the newer car models exhibit 35 

safer front design (less bottom depth, flatter and wider bumpers) which significantly reduced 36 

pedestrian injury severity (Nie and Zhou, 2016; Li et al., 2018). In this study, we included 37 

vehicle model year in the injury severity model to understand if newer car models lead to less 38 

severe injury for pedestrians when struck by vehicles. However, the result does not show any 39 

significant impact of newer models (model year 2011 or later compared to those earlier than 40 

2005) on pedestrian injury severity. This indicates that although newer vehicles models in the 41 

USA have succeeded in reducing injury severity for drivers and occupants (Chen and 42 
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Kockelman, 2010; Islam et al., 2016; Anarkooli et al., 2017), safety technology features have not 1 

improved much for pedestrians.   2 

Pedestrian characteristics – both age and gender are found to be significant. Injury severity 3 

increases with pedestrians’ age, suggesting that older people are vulnerable for more 4 

consequential outcomes. An increase of pedestrian age by one SD increases the risk of fatality by 5 

1.69% and serious injury by 3.16%. Male pedestrians are also more likely to sustain severe 6 

injury than female counterparts. CRIS data shows that 72.38% of the pedestrians killed in motor-7 

vehicle crashes in Texas from 2010-2019 were male. The effect of pedestrian age and gender on 8 

injury severity is consistent with the previous findings of Kim et al. (2008), Zhu et al. (2013), 9 

Pour-Rouholamin and Zhu (2016). The model also predicts significant heteroskedasticity for 10 

pedestrian gender and age. The unobserved effects of pedestrians on injury severity vary more 11 

widely as the age of the pedestrian increases.  12 

Drivers’ characteristics also affect pedestrian injury severity. Younger drivers (aged less than 24) 13 

significantly increase the risk of pedestrian injury compared to drivers of the middle-age group 14 

(25-64). Male drivers are also more likely to be involved in pedestrian crashes than female 15 

drivers. Previous studies also had similar findings regarding male and younger drivers (Kim et 16 

al., 2008, Kim et al., 2010; Pour-Rouholamin and Zhu, 2016); however, the effect of older 17 

drivers (aged 65 or above) is mixed (Kim et al., 2008; Siddiqui et al., 2006; Mohamed et al., 18 

2013). The results show that drivers aged 65 or above increase injury severity for pedestrians; 19 

however, it should be noted that the effect size is small. Wood et al (2014) found that older 20 

drivers (age range 63–80) recognize pedestrians at approximately half the distance required for 21 

younger drivers (age range 18-38) which gives less response time to pedestrians.  22 

Among different explanatory variables in the model, intoxication (in drivers and pedestrians) is 23 

found to have the strongest effect on pedestrian injury severity. Alcohol- or drug- related crashes 24 

are more likely to result in serious injury or deaths for pedestrians. According to CRIS data, 25 

alcohol and/or drugs were involved in 37.6% of pedestrian deaths. In most of these cases 26 

(33.38% of pedestrian deaths), pedestrians were tested positive in alcohol and/or drug screens. 27 

88.84% of alcohol/drug-related pedestrian deaths were at dark. Walking under the influence, 28 

particularly at night, is one of the major causes of pedestrian fatalities.  29 

With regard to time of day, crashes occurring from 8:00 PM – 5AM showed an increase in the 30 

probability of severe pedestrian injuries. 79.22% of pedestrian deaths occur at nighttime. This 31 

finding is consistent with previous studies (Pour-Rouholamin, 2016; Aziz et al., 2013; Kim et al., 32 

2008). The results also show higher risk of severe injuries in early morning hours (5AM-7AM). 33 

There might be several possible explanations: during these time periods (late night and early 34 

morning hours), traffic is lighter than usual which might cause both pedestrians and drivers to 35 

ignore safety rules (drivers might travel at reckless speeds while pedestrian might choose to cross 36 

roads abruptly). Moreover, pedestrian activities early in the morning (walking, jogging, physical 37 

exercise) and alcohol/drug involvements at night (discussed earlier) combined with darkness 38 

might also contribute to high injury severity during overnight hours. Although the effect of 39 

darkness is controlled by the time of the day, lighting conditions also have a separate and 40 

significant influence. It is found that compared to daylight conditions, dark conditions increase 41 
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the probability of severe injuries, however, a difference in probabilities of severe injuries 1 

between lighted roads and unlighted roads is also observed. Roads without streetlights at dark 2 

significantly increase the risk of pedestrian fatalities.  3 

Roads with higher speed limits lead to more severe pedestrian injuries. Table 4 shows the change 4 

in predicted probabilities by injury severity levels due to one SD increase of speed limit. The 5 

positive association between speed limit and injury severity is consistent with previous studies 6 

(e.g. Halem et al., 2015; Chen and Fan, 2019). Although the posted speed limit usually 7 

influences vehicle speed on roads, a more appropriate indicator would be the actual speed of the 8 

vehicle at impact, which is difficult to obtain for a large number of cases. Speed limit increases 9 

the variance and outcome uncertainty: the unobserved effect varies more widely as the speed 10 

limit increases.   11 

Hit-and-run crashes increase injury severity levels. 19.4% of pedestrian deaths are hit-and-run 12 

cases. Fleeing drivers increase the risk of pedestrian fatality because this often causes a delay in 13 

emergency service arrival and there is also the possibility that a pedestrian might get hit again by 14 

another vehicle after the first impact.  15 

With regard to roadway characteristics, it is found that compared to city streets, there is a higher 16 

risk of severe pedestrian injury if a crash takes place on Interstate, US and State highways, 17 

county roads and other types of roads not classified. Generally, city streets accommodate speed 18 

limits and traffic controls, which reduces pedestrian crash severity. Analyzing CRIS data, we 19 

find that Interstate highways account for 5.5% of pedestrian crashes but 20.6% of pedestrian 20 

fatalities in Texas. This percentage becomes higher when restricted to major urban areas. For 21 

instance, IH-35 alone accounts for 28.2% of pedestrian deaths in Austin over the last ten years. 22 

Higher speeds, poor lighting conditions, pedestrians entering onto the highways, and lack of 23 

countermeasures might contribute to the severity of crashes on highways. Road geometry also 24 

affects crash severity. It is found that curved roads are more likely to result in severe injuries 25 

than straight roads at level. The marginal effect shows that curved roads increase the probability 26 

of fatal crashes by 4.7% and serious injury by 8.1%.  27 

The location of the crash affects the type of injury. Crashes that occur at an intersection are 28 

associated with less severe injuries. Most pedestrian fatalities (89.16%) occur at non-intersection 29 

locations. The probability of less severe injury increases when the crash takes place off-roadways 30 

(e.g. parking lots, driveways), shoulders and medians, compared to on-roadways. Vehicle impact 31 

speed is usually lower in these locations, therefore there is less likelihood of severe injury.  32 

The presence of traffic controls, such as traffic signals, reduces the probability of fatal and severe 33 

injuries. Pedestrians and drivers are better informed of each other’s right of way and expected 34 

movements when there are traffic signals or traffic signs. As seen in studies on traffic calming in 35 

urban areas, drivers are usually more cautious and drive at lower speeds compared to places 36 

where there are no such controls (Ewing, 1999).   37 
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TABLE 3: INJURY SEVERITY RESULTS: ORDERED PROBIT VS 1 

HETEROSKEDASTIC ORDERED PROBIT (OP vs HOP) MODELS 2 

 OP HOP 
         Estimate P-value    Estimate P-value 
Vehicle Type     

Pickup trucks 0.0945 0.000 0.1559 0.000 
SUV 0.1042 0.000 0.1566 0.000 

Heavy-Duty Truck 0.0479 0.029 0.1054 0.001 
Van 0.0927 0.000 0.1435 0.000 
Bus 0.1883 0.000 0.2665 0.001 

Motorcycle -0.1497 0.011 -0.1452 0.124 
Others (ambulance, fire truck, police 

vehicle etc.) 
0.0159 0.404 0.0262 0.270 

(Reference vehicle = Passenger Car)     
Model Year     

After 2016 0.0268 0.200 0.0268 0.315 
2011-2015 0.0245 0.045 0.0296 0.056 
2005-2010 0.0818 0.000 0.1099 0.000 
Unknown 0.0492 0.000 0.0579 0.001 

(Reference Data = Before 2005)     
Pedestrian Age 0.0071 0.000 0.0083 0.000 
Pedestrian Gender (1=Male) 0.1218 0.000 0.1537 0.000 
Driver Age     

Driver Age (<24 years) 0.1550 0.000 0.2139 0.000 
Driver Age (>65 years) 0.0357 0.013 0.0493 0.006 

Driver Gender (1=Male) 0.1477 0.000 0.1861 0.000 
Pedestrian/Driver Intoxicated 1.4382 0.000 2.8614 0.000 
Speed Limit (mi/hr) 0.0171 0.000 0.0215 0.000 
Hit-and-Run (1=Yes) 0.1353 0.000 0.1381 0.000 
Crash Took Place At Intersection 
(1=Yes) 

-0.1146 0.000 -0.1369 0.000 

Road Type     
County Road 0.1097 0.000 0.1560 0.000 

Farm To Market 0.1247 0.000 0.1597 0.000 
Interstate 0.1087 0.000 0.1556 0.000 

Non Trafficway 0.1005 0.000 0.1846 0.000 
Other Roads 0.4114 0.000 0.5482 0.000 

Tollway/Toll bridge -0.4073 0.000 -0.3737 0.011 
US State 0.1460 0.000 0.1867 0.000 

(Reference type = City Streets)     
Crash Location     

Off Roadway -0.1564 0.000 -0.0758 0.005 
Shoulder -0.1876 0.000 -0.1338 0.024 

Median -0.4384 0.000 -0.4544 0.000 
(Reference location = On Roadway)     

Road Geometry     
Straight Grade 0.1426 0.000 0.2149 0.000 

Curved 0.1939 0.000 0.2763 0.000 
(Reference = Straight & Level)     

Control Type     
Traffic Sign 0.0224 0.044 0.0423 0.003 

Traffic Signal -0.0786 0.000 -0.0887 0.000 
Other (human control, rail gate etc.) -0.0131 0.556 -0.0034 0.896 

(Reference = No Control)     
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 OP HOP 
         Estimate P-value    Estimate P-value 
 
Area Population     

<5000 0.2085 0.000 0.2833 0.000 
5000-9999 0.1466 0.000 0.1942 0.000 

10000-24999 0.1394 0.000 0.2009 0.000 
25000-49999 0.1132 0.000 0.1474 0.000 
50000-99999 0.1012 0.000 0.1389 0.000 

(Reference = 100000+)     
Crash Time     

5AM-7AM 0.3164 0.000 0.3959 0.000 
7AM-11AM 0.1837 0.000 0.2190 0.000 

4PM-8PM 0.1963 0.000 0.2349 0.000 
8PM-11PM 0.2559 0.000 0.3166 0.000 
11PM-5AM 0.2863 0.000 0.3799 0.000 

(Reference = 11 AM-4PM)     
Lighting Condition     

Dark Lighted 0.1152 0.000 0.1329 0.000 
Dark Not Lighted 0.2721 0.000 0.3599 0.000 

(Reference = Daylight)     

     
HOP’s Variance Equation     
Pedestrian Age (years)   0.0008 0.000 
Pedestrian Gender (Male)   0.0515 0.000 
Crash Speed Limit (mi/hr)   0.0052 0.000 
Pickup Truck Indicator   0.0601 0.000 
SUV   0.0337 0.000 
Heavy-Duty Truck   0.1458 0.000 
Van   0.0277 0.079 
Bus   0.1966 0.000 
Motorcycle   0.1717 0.000 
Other Vehicle Type    -0.0161 0.223 
Intersection   -0.0506 0.000 
Traffic Sign   -0.0186 0.037 
Traffic Signal   -0.0450 0.000 
Other Control Type   -0.0258 0.140 
Population: <5000 persons   0.0814 0.008 
Population: 5000-9999   0.0678 0.004 
Population: 10000-24999   0.0535 0.001 
Population: 25000-49999   0.0007 0.966 
Population: 50000-99999   -0.0666 0.000 
Time: 5 AM- 7 AM   0.0687 0.000 
Time: 7 AM-11 AM   -0.0246 0.024 
Time: 4 PM-8 PM   0.0061 0.532 
Time: 8 PM-11 PM   0.0217 0.132 
Time: 11 PM-5 AM   0.0415 0.006 
Dark & Lighted   0.0456 0.000 
Dark & Not Lighted   0.0972 0.000 
Threshold Parameters     

𝜇0 0 - 0 - 
𝜇1 1.1813 0.000 1.4569 0.000 
𝜇2 2.2264 0.000 2.7943 0.000 
𝜇3 3.1568 0.000 4.1406 0.000 
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 OP HOP 
         Estimate P-value    Estimate P-value 

     
Number Of Observations 66,419  66,419  

 
Model Fit Statistics OP  HOP  

Log-Likelihood -88505.78  -87224.93  
Mcfadden's R2: 0.0601  0.0737  

AIC 177111.6  174603.9  
LR Test Χ2 = 2561.7 (P<0.0001)   

     
 1 

TABLE 4: MARGINAL EFFECTS (HOP) 2 

 No Injury 
Possible 
Injury 

Non-
Incapacitating 
Injury 

Suspected 
Serious 
Injury Killed 

Car vs Vehicle Type      
Pickup Truck -0.0034 -0.0305 -0.0172 0.0277 0.0234 
SUV -0.0084 -0.0299 -0.0080 0.0277 0.0186 
Heavy-Duty Truck 0.0190 -0.0256 -0.0470 0.0168 0.0368 
Van -0.0081 -0.0271 -0.0068 0.0251 0.0169 
Bus 0.0139 -0.0500 -0.0632 0.0328 0.0665 
Motorcycle 0.0541 0.0049 -0.0612 -0.0170 0.0192 
Others -0.0056 -0.0042 0.0065 0.0039 -0.0007 
Model Year: 2005/Older Model Vs Newer Model    
After 2016 -0.0044 -0.0085 0.0014 0.0079 0.0035 
2011-2015 -0.0049 -0.0094 0.0015 0.0088 0.0039 
2005-2010 -0.0170 -0.0348 0.0038 0.0327 0.0154 
Unknown -0.0093 -0.0183 0.0027 0.0172 0.0078 
Pedestrian Age 
(One SD Increase) -0.0148 -0.0338 0.0000 0.0316 0.0169 
Pedestrian Gender (1=Male) -0.0053 -0.0315 -0.0121 0.0294 0.0196 
Driver Age: 25-65 Years Vs Other Age Groups  
Driver Age (<24) -0.0303 -0.0677 0.0015 0.0635 0.0330 
Driver Age (>65) -0.0079 -0.0156 0.0023 0.0146 0.0066 
Driver Gender (1=Male) -0.0288 -0.0588 0.0063 0.0552 0.0261 
Pedestrian/Driver Intoxicated -0.0497 -0.2467 -0.2673 0.0059 0.5578 
Crash Speed Limit 
(One SD Increase) -0.0174 -0.0682 -0.0174 0.0634 0.0397 
Hit And Run (1=Yes) -0.0208 -0.0438 0.0037 0.0411 0.0199 
Crash Took Place At Intersection 0.0040. 0.0289 0.0117 -0.0271 -0.0175 
City Street Vs Road Types     
County Road -0.0226 -0.0495 0.0022 0.0464 0.0234 
Farm To Market -0.0231 -0.0507 0.0022 0.0475 0.0240 
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 No Injury 
Possible 
Injury 

Non-
Incapacitating 
Injury 

Suspected 
Serious 
Injury Killed 

Interstate -0.0226 -0.0494 0.0023 0.0463 0.0233 
Non Trafficway -0.0269 -0.0585 0.0030 0.0549 0.0276 
Other Roads -0.0531 -0.1612 -0.0541 0.1470 0.1214 
Tollway/Tollbridge 0.0881 0.1023 -0.0592 -0.0995 -0.0318 
Us State -0.0269 -0.0592 0.0024 0.0555 0.0282 
On Roadway Vs Other Location    
Off Roadway 0.0136 0.0236 -0.0061 -0.0221 -0.0090 
Shoulder 0.0254 0.0409 -0.0130 -0.0386 -0.0148 
Median 0.1143 0.1175 -0.0795 -0.1168 -0.0355 
 
Curvature + Grade + Traffic Control    
Straight Grade -0.0295 -0.0680 -0.0004 0.0637 0.0341 
Curved -0.0355 -0.0869 -0.0058 0.0813 0.0469 
Traffic Sign -0.0076 -0.0071 0.0079 0.0067 0.0002 
Traffic Signal 0.0002 0.0194 0.0120 -0.0183 -0.0132 
Other (human control, rail gate etc.) -0.0046 0.0019 0.0090 -0.0019 -0.0044 
Population   
<5000 -0.0101 -0.0509 -0.0265 0.0449 0.0425 
5000-9999 -0.0051 -0.0363 -0.0208 0.0323 0.0299 
10000-24999 -0.0084 -0.0374 -0.0157 0.0341 0.0274 
25000-49999 -0.0133 -0.0275 0.0028 0.0258 0.0122 
50000-99999 -0.0268 -0.0221 0.0282 0.0212 -0.0005 
Crash Time: 11 AM-4 PM vs Other Times of Day   
5 am-7 am  -0.0210 -0.0701 -0.0245 0.0633 0.0523 
7 am-11 am -0.0240 -0.0411 0.0129 0.0384 0.0138 
4 pm-8 pm -0.0208 -0.0438 0.0034 0.0411 0.0201 
8 pm-11 pm -0.0240 -0.0587 -0.0038 0.0548 0.0317 
11 pm-5 am -0.0253 -0.0694 -0.0123 0.0642 0.0427 
Lighting Conditions    
Dark + Lighted -0.0041 -0.0262 -0.0124 0.0241 0.0185 
Dark + Not Lighted -0.0142 -0.0652 -0.0305 0.0581 0.0518 

CONCLUSION 1 

This study identified major risk factors associated with pedestrian crashes in Texas. Crash 2 

frequencies were analyzed at road segment level and injury severities were analyzed at the 3 

individual crash level. A rich database was constructed, including 10 years of crash records from 4 

CRIS along with road attributes, road geometry, and an extensive list of demographics, job, land 5 

use, climate variables, and important location features such as schools, hospitals and transit 6 

stops.   7 
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Findings from the NB model indicate the practical significance of micro-level variables in 1 

predicting pedestrian crashes. Proximity to schools, hospitals and presence of transit are 2 

associated with higher crash frequencies, although these variables are rarely included in 3 

pedestrian crash frequency models. Total crash rates and fatal crash counts rise with number of 4 

lanes, population and job densities, while greater median and shoulder widths provide some 5 

protection. Higher speed limits are associated with lower crash frequencies, but increase the 6 

likelihood of more severe injuries, as shown by the HOP model. 7 

Results from the HOP model identified several risk factors at pedestrian, driver, roadway and 8 

vehicle levels that significantly affect pedestrian injury severity. Crashes occurring at night (8 9 

PM – 5 AM), without overhead lighting, involving intoxicated pedestrians or drivers, and light-10 

duty trucks (SUVs, pickup trucks, CUVs, and vans) are associated with more severe injuries. In 11 

contrast, being a younger and female pedestrian, on a straight segment off the state (and 12 

Interstate) highway systems, in the presence of a traffic control device (stop sign or signal) 13 

lowers the likelihood of pedestrian injury. Vehicles from more recent model years were not 14 

found to lower pedestrian injury, rather growing numbers of SUVs and CUVs being purchased in 15 

recent years further raises concerns about pedestrian safety. Findings from this study underscore 16 

the importance of enhanced vehicle safety features for pedestrians, campaigns against driving 17 

and walking while intoxicated, improved roadway design, enforcement of safety 18 

countermeasures near schools and bus stops and installment of additional traffic controls and 19 

streetlights where there are more pedestrian activities.  20 

The study is not without some limitations. These data rely on reported and recorded crashes only; 21 

crashes with no injury or light injury often go unreported or unrecorded. Moreover, injury 22 

severities rely on police officers’ initial assessments. Publicly available crash records do not 23 

include certain crash details due to privacy issues. Detailed police reports and hospital records 24 

may offer useful information about victims and motorists, including blood-alcohol levels, for 25 

example. More in-depth case studies, by specific crash site, vehicle dimensions and weight, 26 

hospital records, prior health issues, vehicle movements, pedestrians’ position and action, 27 

homelessness and other unobserved factors are relevant, but require more digging. 28 
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