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ABSTRACT 

This paper uses the land use model SILO’s implementation in the Austin, Texas six-county 

region over a 27-year period in an aim to understand the impacts of the full adoption of self-

driving vehicles on the region’s residential land use. SILO was integrated with MATSim for 

the Austin region. Land use and travel results were generated for a business-as-usual case (BAU) 

of 0% self-driving or “autonomous” vehicles (AVs) over the model timeframe versus a 

scenario where households’ value of travel time savings (VTTS) is reduced by 50%, to reflect 

the travel-burden reductions of no longer having to drive. A third scenario is also compared and 

examined against BAU to understand the impacts of rising vehicle occupancy (VO), and/

or higher roadway capacities, due to dynamic ride-sharing (DRS) options in shared AV (SAV) 

fleets. Results suggest an 8.1% increase in average work trip times when VTTS falls by 50% and 

VO remains unaffected (the 100% AV scenario), and a 33.3% increase in the number of 

households with “extreme work trips” (over 1 hour, each way) in the final model year (versus 

BAU of 0% AVs). When VO is raised to 2.0 and VTTS falls instead by 25% (the “Hi-DRS” 

SAV scenario), average work trip times increase by 3.5% and the number of households with 

“extreme work trips” increase by 16.4% in the final model year (versus BAU of 0% AVs). The 

model also predicts 5.3% fewer households and 19.1% more available, developable land in the 

City of Austin in the 100% AV scenario in the final model year relative to the BAU scenario’s 

final year, with 5.6% more households and 10.2% less developable land outside the City. In 

addition, the model results predict 5.6% fewer households and 62.9% more available 

developable land in the City of Austin in the Hi-DRS SAV scenario in the final model year 

relative to the BAU scenario’s final year, with 6.2% more households and 9.9% less 

developable land outside the City. 
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INTRODUCTION & MOTIVATION 

 

American cities have formed and transformed contemporaneously with transportation 

technologies. The suburbanization, or urban sprawl, of U.S. cities can be mainly attributed to cars 

and highway infrastructure. Muller (2017) has shown that, through time in American cities, the 

built-up urban area has maintained a rather constant 45-minute time-radius from the center. Each 

transportation technology has made travel easier and has therefore extended the distance of this 

time-radius, allowing for cheaper suburban residential areas to be unlocked. From walking 

horsecars in the nineteenth century to electric streetcars in the early twentieth century to the 

mainstream adoption of automobiles and the build-out of freeways in the mid-twentieth century, 

major expansions of cities have been a by-product (Muller, 2017).  

 

A new era of urban centralization is beginning as planners find that building more freeways 

is either not a solution or not an option (Muller, 2017). Transportation technologies are also 

changing faster than ever before (Dowling & Morgan, 2019). In contrast to this era of 

centralization, self-driving “autonomous” vehicle (AV) technology is on the horizon which is 

certain to alter cities and regions significantly (Muller, 2017). Transportation economists remarks 

that travelers would prefer to pay less for their travel and, if they can get it for less, they will tend 

to travel more. These new transportation technologies, namely AVs, have the opportunity to reduce 

the time cost of travel compared to other travel modes because they remove the burden of driving, 

allowing productive time to be spent in one’s vehicle. Thus, any change in transportation 

technology that affects travel costs will also impact land use, and changes in land use impacts 

travel patterns, creating a cycle of change (Dowling & Morgan, 2019). For example, it has been 

shown that households will tend to move to more distant regions when they have access to AVs, 

which has impacts on travel and land use behavior (Huang et al., 2019).  

 

The advent of AVs makes for an interesting new transportation era because of the relatively 

long lead time to plan and prepare for the technology before it is expected to become widely 

implemented. Note that the Society of Automotive Engineers defines five levels of automation. 

These levels range from minor driver assistance features such as cruise control at Level 1, to fully 

self-driving vehicles at Level 5 (SAE International, 2018). In this study, when the term AV is used, 

the reference is to Level 4, where the vehicle is fully self-driving, but it must remain on the road 

infrastructure. Driverless testing on public roads has already begun in several states for major 

players such as Waymo of Google and Cruise Automation of General Motors (National 

Conference of State Legislatures, 2019). If these major players are able to reduce travel costs 

significantly below the conventional human-driven taxi services (about $3/mile) there is expected 

to be a major adoption of AVs by the greater public. This adoption would significantly impact 

travelers’ value of travel time savings (VTTS). This is expected to increase the distance many are 

willing to travel, as well as have other land use impacts such as a decreased need for parking 

facilities (Dowling & Morgan, 2019). Engineers, planners, and policymakers alike can use this 

time to ensure a successful implementation by making use of models to understand land use, 

energy, and transportation implications, allowing them to assess the role of policy and its impacts 

on these attributes. 

 

The interaction between transportation and land use patterns are important and reinforcing. 

According to Hawkins and Habib (2018), the use of integrated transport and land use models 
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(ITLUMs) are crucial to understanding and evaluating the impacts of the implementation of AVs 

on transportation demand, transportation supply, and residential development. Most studies expect 

AVs to increase urban sprawl because of more efficient driving and the decreased VTTS associated 

with removing the burden of driving. Modeling these impacts for the Austin, Texas six-county 

region is the focus of this section, but it is important to note that there are conflicting expectations 

on the relationship that AVs will have for urban land use. Some have claimed that shared AV fleets 

(SAVs) have the possibility to re-urbanize cities because parking will no longer be a necessary 

dwelling consideration, making more central, downtown areas more desirable (Hawkins & Habib, 

2018). A limitation of the present study is that these effects are not considered. Interestingly, one 

recent study showed that 10% of survey recipients who were likely to move in the next few years 

said the availability of AVs and SAVs would mean that they would be likely to move further from 

the city center and 15% of survey recipients indicated that the availability of AVs and SAVs would 

mean that they would likely move closer to the city center (Quarles and Kockelman, 2019). So, 

this study limitation is a significant one. 

 

More recent ITLUMs have focused on agent-based microsimulation modeling techniques, 

in contrast to traditional gravity models or econometric models. SILO (Simple Integrated Land-

Use Orchestrator) was the chosen microsimulation land use model (LUM) because of its relative 

simplicity compared to other microsimulation LUMs, leading to reasonably short run times, 

lowered data requirements, and its ease of integration with the well-established agent-based 

microsimulation transportation model MATSim (Hawkins & Habib, 2018). 

 

LITERATURE REVIEW 

 

Transportation and land use development are in a constant feedback cycle; each informs 

the other and when one alters, the other adjusts, and vice versa. Because of this relationship, 

ITLUMs improve the reasonability of model results compared to standalone transport models. 

ITLUMs are not new, but there has been a new wave of interest in them because of upcoming 

transportation trends and technologies, such as AVs, that are expected to significantly impact land 

use (Dowling & Morgan, 2019). The most common concern in using an ITLUM is the intensity of 

data needs, which is one reason why SILO was chosen for this study. SILO integrated with 

MATSim is less data-intensive relative to similar ITLUMs (Moeckel, 2018a). 

 

SILO is a simplified microsimulation model with a focus on time and budget constraints 

as opposed to utility maximization (Moeckel, 2019a). There is a trend towards microsimulation in 

LUMs and in travel demand models (TDMs). Benefits of microsimulation include that it is more 

flexible to a higher level of population detail, and the model is easier to explain because agents are 

modeled explicitly, and true decision-making is modeled more closely. These benefits come with 

the limitations of longer run times as well as variations in the same model runs because of the 

stochastic nature of the model (Moeckel, 2018a). SILO is simplified in its methodology, which 

decreases its data requirements and its run times. In contrast to many LUMs, SILO does not assume 

agents are always fully knowledgeable in making decisions (for example, they will not know 

information on all of the vacant dwellings in the region when looking to move). Rather than 

maximizing utility, agents look to satisfy requirements, within time and money constraints, that 

may be biased or based in habit. Further, SILO has also been integrated with MATSim in previous 

studies, making it a good choice of ITLUM for our needs (Hawkins & Habib, 2018). 
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The integration of SILO and MATSim was first published in 2016 for the Maryland study 

region. Because SILO and MATSim are both written in Java, integration was reported to be 

relatively seamless (Ziemke et al., 2016). In addition, both models are microsimulation agent-

based models, so a fully agent-oriented ITLUM was proven and reasonable results were found 

through this methodology. Congestion levels and patterns were simulated well, even though 

MATSim was created based on OpenStreetMaps (OSM) data that were never altered or calibrated 

(Ziemke et al., 2016). 

 

This study looks to identify land use impacts of AVs using the ITLUM of SILO and 

MATSim, and so similar research in this realm was reviewed. Of note is a study on congestion and 

accessibility impacts of AVs by Cohen and Cavoli (2019). They looked at traffic flow and 

accessibility implications for a range of government intervention (or non-intervention) scenarios. 

Using surveys and extensive literature reviews, the authors supported what many had 

hypothesized: that if the free market is left alone to deal with the adoption of AVs, we are likely 

to see a scenario that does not maximize social welfare. The authors looked at varying categories 

of policy intervention, including land use policies such as zoning, regulation policies such as 

banning the empty running of AVs, infrastructure policies such as adding walking or biking paths. 

They looked at nineteen interventions and determined the corresponding implications for traffic 

flow and accessibility, but they did not reach a final conclusion on what combination of 

government interventions serve the best chance at mitigating negative impacts of AV penetration 

(Cohen & Cavoli, 2019). 

 

It is also important to review literature that looks at the land use-transport relationship as 

it pertains to AVs. A paper by Soteropoulos et al. (2019) reviewed modeling studies that looked at 

impacts of AVs on travel behavior and land use. The authors looked at studies between 2013 and 

2018 that contained keywords of AVs, transport, land use, and modeling. Most of the studies cited 

examined travel behavior implications of AVs, though several examined land use impacts, mainly 

through the use of ITLUMs. Studies varied in whether they investigated full replacement of 

vehicles or a small share of vehicle trips that were modeled in an AV. A common assumption is 

the reduction of VTTS in AVs due to an increased productivity or comfort. Increases in roadway 

capacity due to AVs is another recurring assumption made in these models. For the most part, 

studies used vehicle miles traveled (VMT) or vehicle hours traveled (VHT) as indicators for travel 

changes, and varying land use impacts are analyzed, from parking needs to location choices of 

households and employment. Studies mostly found an increase in VMT, while VHT impacts vary 

based on study assumptions. In looking at the effects of AVs on households and employment, 

studies mostly predict that there will be an increase of population in well-connected outer regions. 

This is especially the case in studies with high discounts of VTTS or large increases in road 

capacity. It is noted that studies that examine land use impacts of AVs generally have low spatial 

detail, tending to only distinguish between urban and suburban areas, for example. This is the point 

that this study is meant to build on, to place more weight and attention to the more complicated 

land use patterns that could not be interrogated in previous models (Soteropoulos et al., 2019). 

 

  



Wellik and Kockelman 

  5 

MODEL FRAMEWORK 

 

There are three components of the modeling framework: (1) the creation of the synthetic 

population for the six-county Austin, Texas Metropolitan region, (2) the LUM SILO, and (3) the 

transport model MATSim. The synthetic population is created before any model run begins and is 

updated after each model year that SILO completes. Running an LUM and a TDM each year and 

updating each is ideal but rarely achieved. Because of long runtimes, the TDM or LUM or both 

are run for selected years only (Moeckel, 2018b). In this case, SILO is run every year and MATSim 

is run every tenth model year. 

 

Synthetic Population 

 

Before any model runs begin, the Census Public Use Micro Sample (PUMS) 5% dataset is 

used to create a synthetic population for the base year, 2013 (U.S. Census Bureau, 2018). The 

SILO synthetic population generator, using information from the PUMS, creates a simplified 

microscopic representation of the actual Austin population. It is simplified in that it only includes 

attributes deemed important to land use modeling and it is microscopic in that every person and 

household is represented individually. It is not identical to the actual population of Austin, but it 

matches various statistical distributions of the actual population, and so it is close enough for 

modeling purposes (Moeckel, 2015).  

 

The U.S. version of SILO’s synthetic population generator uses the Public Use Microdata 

Sample (PUMS). SILO uses the 5% PUMS sample, which provides less household characteristic 

details in exchange for more spatial detail, as compared to the 1% PUMS. Since these household 

details are sufficient for the modeling purposes, the 5% PUMS is chosen to increase spatial 

resolution. The spatial resolution of the 5% PUMS are called PUMAs (Public Use Microdata 

Areas). Besides household details, PUMS also provides information of each person in each 

household and the dwellings that the households live in. PUMS includes an expansion factor which 

describes how many households of the true population each PUMS record represents. These 

expansion factors are used in SILO’s synthetic population generator and they were calculated 

specifically to match the actual population of each PUMA (Moeckel, 2018a). 

 

By expanding household records, we also expand synthetic persons and dwellings at the 

same time. Once expanded, the total number of persons and households matches the actual 

population of the region. In addition, the PUMS data includes information on vacant dwellings, 

and so this expansion should also represent a complete set of dwellings in the region, split into five 

different dwelling categories: single family detached (SFD), single family attached (SFA), multi-

family dwellings with up to four families (MF234), multi-family dwellings with five or more 

families (MF5plus), and mobile homes (MHs). The PUMS data over-represented vacant dwellings 

by a large margin, perhaps over-representing unoccupied households when they did not respond 

to the surveys. The PUMS data estimated vacancy rates to be 9.8% which is much higher than 

most estimates that put vacancy rates around 5% (Department of Numbers, 2017). Because of this, 

vacant household were randomly removed from the synthetic population until a vacancy rate of 

5% was achieved. 
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PUMS data give dwelling locations at the PUMA level. Next, dwellings need to be 

allocated to model zones. Capital Area Metropolitan Planning Organization (CAMPO) zonal data 

was used to proportionally allocate dwellings to zones, using zonal population as a proxy for 

dwelling allocation. Workplace locations are disaggregated similarly; PUMS data provides work 

locations by PUMAs, and CAMPO zonal data was used to proportionally allocate jobs by zonal 

employment data (Moeckel, 2018a). In order to simulate job openings in the region, a random 5% 

sample was taken of all jobs in the region, and those were duplicated but marked as available or 

vacant jobs. 

 

The synthetic population generator creates four different files: one each for households, 

persons, dwellings, and jobs. Each person is part of a specific household and each household is 

matched to a certain dwelling. In addition, each working person in the synthetic population is 

matched with a specific job. People are assigned workplaces by drawing jobs located within their 

Census-specified working PUMA (Moeckel, 2018a). Note that there are also vacant jobs and 

dwellings that are not matched to persons or households. Extensive review of the synthetic 

population was completed to ensure it closely matched the Census. 

 

Simple Integrated Land Use Orchestrator (SILO)  

 

SILO is an open-source microscopic discrete choice land use model where each person, 

household, and dwelling are treated as individual objects. All spatial decisions, such as household 

relocation or dwelling development, are modeled with Logit models. Other non-spatial decisions, 

such as getting married or divorced, giving birth, or upgrading an existing dwelling, are modeled 

with Markov models by applying transition probabilities (Moeckel, 2018a). Each model year, 

SILO simulates many events that occur to persons, households, and dwellings. The events SILO 

simulates are summarized in Table 1 below. To avoid path dependency, events are modeled in 

random order. 

 
Table 1: Summary of events simulated by SILO (from Moeckel, 2018a) 

Household events Person events Dwelling events 

Household relocation Aging Construction of new dwellings 

Buy or sell household vehicle Leave parental household Renovation 

 Marriage/Divorce Deterioration 

 Death Demolition 

 Find a new job/ Get laid off Increase or decrease of price 

 

SILO is a simplified model with an emphasis on budget constraints as opposed to the 

traditional emphasis on utility maximization (Hawkins & Habib, 2018). There are three main 

constraints that SILO represents. First is the housing cost constraint, representing the fact that, 

though housing budgets can be exceeded in the short-term, household income must harmonize 

with their housing budget in the long run. The second main constraint modeled in SILO is the work 

trip travel time constraint, a major consideration for household location choice (Moeckel, 2015). 

In the Austin, Texas region, the average work trip time is 26.8 minutes, which is quite similar to 

the national average work trip time of 26.4 minutes in 2017 (United States Census Bureau, 2017). 

When households are in the market to relocate, the job location of all workers in the household are 

considered, and dwellings that are far from the workers’ employment locations are given a low 

utility. The third and final main constraint modeled in SILO is the household budget constraint. 
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According to the Consumer Expenditure Survey from the Bureau of Labor Statistics, households 

spend an average of 13% of their pre-tax income on transportation, and low-income households 

spend as much as 28% (U.S. Department of Labor, 2019). For more information on the inner 

workings of SILO, the authors recommend that readers look through Moeckel’s 2015 paper.  

 

Multi-Agent Transport Simulation (MATSim) 

 

MATSim is an open-source, agent-based, dynamic transportation simulator that was used 

to track travelers across the six-county Austin metropolitan region for this research (Horni et. al., 

2016). The network for this region is obtained from OSM and converted to a network file to be 

used by MATSim (OpenStreetMaps, 2019). It is agent-based in that each traveler and vehicle is 

represented individually and seeks utility maximization. Each agent has a plan, which is a tentative 

itinerary for the day. Agents can improve their plan by altering activity start and end times, they 

can change their route, or they can change the mode they take to travel, in order to maximize their 

utility (Simoni et. al., 2018). It uses queue-based dynamic traffic assignment as opposed to 

aggregated static assignment typical of traditional four-step models. Queue-based means cars on a 

link are in a queue that employs first-in first-out methodology, meaning it assumes one lane where 

vehicles cannot overtake one another. The link capacity varies road-to-road to account for more 

lanes, higher speed limits, etc (Horni et al., 2016). Because of the high computational power 

needed to run this detailed agent-based simulation, five percent of the population is used to allow 

for reasonable run times, and then link capacities are scaled down accordingly. 

 

Neither MATSim nor SILO generate travel demand, so in order to simply assess congestion 

impacts across the region, travel demand is simulated by sending all workers from home to work 

between the morning peak hours of 6am to 9am. Of course, this is a simplification that is not truly 

representative of the vehicles on the road, because not everyone goes to work every day; some 

people are sick, are on vacation, or are working from home. In addition, non-workers are found on 

the roads during these hours running errands or transporting their children. All things considered, 

it has been shown that this simulates true congestion fairly well, where congested links under this 

simplification replicate congested links found on Google Maps during peak travel hours (Ziemke 

et al., 2016). 

 

Transferring Information between SILO and MATSim 

 

SILO provides information on dwelling and workplace locations for each agent, which 

needs to be communicated to MATSim to create trips. MATSim provides travel times between 

each zone pair which must be fed back to SILO to be considered for relocation decisions. Once 

SILO has finished a model year in which MATSim will run, a random sample of 5% of agents are 

chosen, conditional on the fact that the chosen agents are employed in a location within the Austin 

six-county region and that they have a car. Home and work zones of these persons are taken from 

SILO and random coordinates within these zones are assigned as the persons’ home and work 

locations. To determine start and end times for work trips, a uniform distribution from 6 to 9am is 

used to randomly select times for agents to leave home for work. Similarly, a normal distribution 

from 3 to 6pm is used to select times for agents to leave work for home (Ziemke et. al., 2016). An 

example of these departures and arrivals for the BAU scenario in the base year for the model region 

is shown in Figure 1 below. 
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Once a MATSim model year run is complete, zone-to-zone travel times are taken from 

MATSim and used to calculate accessibilities for each zone pair. This is taken into consideration 

when households are making relocation decisions in SILO. 

 

 
Figure 1: Example of Work Trip Departures, arrivals, and the Corresponding Number of Persons 

En-Route for the BAU Model in Year 2013 (Horni et al., 2016) 

 

CASE STUDY 

 

SILO Inputs and Parameter Calibration 

 

The Austin, Texas six-county metropolitan region is 5,304 mi2 and includes 2,102 traffic 

analysis zones (TAZs). In the base year of 2013, the model contains a population of 1,916,060, 

with 768,950 households, 810,751 dwellings, and 1,040,915 jobs. These counts were determined 

from a combination of PUMS data, which is aggregated to the PUMA-level, as well as data from 

the Austin metropolitan planning organization CAMPO, which has information at the TAZ level. 

A transportation network was created based on OSM data. Default values are used to set speeds, 

and only AV (car) traffic is considered at this point.  

 

The most important input aside from the synthetic population is the available land for 

development at the TAZ level. CAMPO collects a detailed land use inventory for the City of Austin 

and publishes this every year (Frank, 2019). The land that was categorized as ‘undeveloped’ was 



Wellik and Kockelman 

  9 

determined to be land that was available to develop residentially. The database defines 

‘undeveloped’ as parcels without structures that have the potential for development. A GIS overlay 

of this categorized land was used to aggregate this information to determine the total developable 

land at the TAZ-level for the TAZs in the City of Austin. Unfortunately, there was not the same 

level of detailed data available for the non-city metropolitan region of Austin. A linear regression 

model was used to make reasonable assumptions for available land in these non-city regions of 

Austin. Several iterations of linear regression models were run until only statistically significant 

(α=0.05) variables were left. See Table 2 below for these details. 

 
Table 2: Linear Regression Model Used to Determine Non-City Developable Land 

Variable Param Std. Err. t-stat p-value 

Constant 9.89×10-2 8.34×10-3 11.86 0.000 

Population density (persons/acre) -5.88×10-3 1.04×10-3 -5.66 0.000 

Population density squared (persons/acre2) 1.39×10-4 3.50×10-5 3.96 0.000 

Employment density (jobs/acre) -1.25×10-3 5.35×10-4 -2.33 0.020 

Suburban (dummy = 1 if TAZ is suburban) 3.55×10-2 7.98×10-3 4.44 0.000 

Median income (dollars) -3.39×10-7 8.25×10-8 -4.11 0.000 

 

While this is a defensible approach, it is easy to imagine how this may be biased and how 

it could underestimate the amount of available land in the non-city metropolitan regions. This is 

because non-city regions by definition are more rural, and so one would expect there to be more 

undeveloped land than in the city. Considering this fact, it is not terribly appropriate to train a 

linear regression model on data whose predictor variable takes certain values in one particular 

region and apply it to data whose predictor variable takes different values in another region. In this 

case, a linear regression model is trained on data with relatively less available land, and then 

applied to regions that one expects to have more available land. As such, the regression has some 

inherent bias. 

 

Given these two motivations of (1) high parameter sensitivity and (2) concerns with using 

a linear regression model outside of its reasonable range, it is important to calibrate the available 

land values that are obtained for the non-city metropolitan regions. To perform this calibration, the 

model was run with varying percentages of the regression model results for these non-city 

Metropolitan regions. It was run with 50%, 75%, 100%, 125%, 150%, 175%, 200%, 250%, and 

300% of the available, developable land that was output from the linear regression model for the 

model base year of 2013. Then, available land is calibrated by comparing the household 

distribution in subsequent model years. In particular, the household distribution results for each of 

these model runs were compared to the household distribution from the CAMPO model in 2015, 

as well as for the CAMPO model household forecast for 2040. 

 

To aggregate this calibration to a more digestible size, household distribution was 

compared at the county level for each model run to the CAMPO household distribution values in 

2015 and 2040. As expected, decreasing the amount of available land in the non-city Metropolitan 

regions was further from the results in the CAMPO model, and increasing the amount of land in 

these regions helped, but only to a certain point. It was found that multiplying the developable land 

obtained from the linear regression model by 175% or 1.75 came the closest to the CAMPO model 
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in 2015 and 2040. As such, these values for available and developable land were used in all 

scenarios discussed. 

 

Several other important parameters were calibrated relative to the Maryland 

implementation of SILO. This includes parameters on pricing and construction demand, which 

proved to be the next most sensitive parameters for our modeling. The pricing model in SILO’s 

real estate model updates dwelling costs based on vacancy rates, which is taken as a proxy for 

demand. This is done for each dwelling type in each TAZ. Structural vacancy rates are defined as 

the regionwide vacancy rate for each dwelling type. If vacancy rates in a given TAZ are lower than 

the structural vacancy rate, dwelling prices increase, and if they are higher, prices decrease. 

However, dwelling price increases happen faster than decreases, reflecting the landlord’s desire to 

keep prices as high as possible (Moeckel, 2018a). Structural dwelling vacancy rates are based on 

the vacancy rates in the base year and are as follows: 3% for single family detached, 5.5% for 

single family attached, 5.5% for multi-family with two to four dwellings, 7% for multi-family with 

five or more dwellings, and 6.5% for mobile homes. 

 

The median home price in Austin has risen 62% over the past eight years and 40% over 

the past five years, so a maximum change of two percent year over year as was used in the 

Maryland implementation would not replicate true housing prices for the area (Novak, 2019). 

Because of this, a maximum pricing change of 10% was allowed in the model to reflect major year 

over year pricing changes in more desirable areas of Austin.  

 

Similarly, because of the near-doubling in population Austin is expecting to see over the 

course of the model years, the construction demand parameters needed to be adjusted to keep up 

with this population growth. Figure 2 shows the construction demand as a function of vacancy rate 

for the different dwelling types modeled in SILO. This was calibrated based on the number of 

housing units of each type that have been built in Austin over the past ten years. Multi-family 

dwellings with greater than five dwellings per building have been constructed most often, followed 

by single family detached. These two types dominate the market, with much fewer of the other 

three dwelling types being constructed (City of Austin, 2019). 
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Figure 2: Construction Demand for Dwelling Types as a Function of Vacancy Rate 

 

While key parameters were calibrated so that the model reasonably represented the Austin, 

Texas region, the authors acknowledge that many parameters were left over from the Maryland 

application. For example, all of the demographic parameters were left the same as they were in the 

Maryland implementation. It was determined by the authors that the demographic events did not 

need to be re-calibrated because of time constraints as well as the limited importance of those 

parameters for the scope of this project. This means that the probability of giving birth, getting 

married, death, etc., were not calibrated to Austin-specific data. They were calibrated for Maryland 

and those values were used for this study region. The authors believe that the demographic results 

are still reasonable for Austin because of the similarity of the study areas.  

 

Scenario Descriptions 

 

Three main scenarios are defined and analyzed over a 27-year period. First is a business-

as-usual (BAU) 0% AV scenario where the traditional passenger car is the main travel mode and 

work trip travel time is a major driver in household location and relocation decision making. The 

second case, the “100% AV” scenario, looks at a scenario where personal AVs are used across the 

network. To model this simply, SILO was updated so that households value their work trip travel 

time at half the amount they do in the BAU scenario, with respect to their household location and 

relocation decision making. This means that, when households are evaluating their satisfaction 

with their current dwelling, or when households are moving and considering new dwellings, the 

workers’ work trip travel time factors into the decision-making at a 50% lower priority than it did 

in the BAU scenario. This second scenario is meant to represent the changes in the value of travel 

time that are expected when self-driving vehicle technologies emerge assuming workers travel 

privately by AVs, and can work, sleep, or do some other task of value while commuting. Note that 

vehicle occupancy is unaltered in the 100% AV scenario. Finally, the third case looks at the case 

of shared AV (SAV) implementation with a high penetration of dynamic ride sharing (DRS). This 
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scenario is called the “Hi-DRS SAV” scenario from here forward. This is modeled in a simplified 

fashion by updating SILO so that households value their work trip travel time at 25% the level 

they do in the BAU scenario, with respect to their household location and relocation decision 

making. In addition, MATSim is updated in this scenario to have twice the capacity. This is meant 

to model a situation where there are about 50% fewer vehicles on the road, meaning the average 

vehicle occupancy is about two, which is double the average vehicle occupancy assumed in the 

first two scenarios. 

 

Note that the model years are based on predictions for 2013 – 2040, but because we are 

looking at scenarios with full penetration of AVs, we don’t assume those to be representative years 

for the full implementation of this technology. However, this is the data that we had available, so 

these years were used. But the results might best be considered from years 2033 – 2060, for 

example, when this technology may be heavily or fully adopted for the whole duration. 

 

RESULTS 

 

Table 3 below gives a summary of some major results that can be drawn from the three 

scenarios that are run from the base to the final model year in SILO, with MATSim running every 

ten model years to update work trip travel times. The first thing to note from Table 3 is that the 

Austin, Texas six-county region is growing dramatically over the model time period. More than a 

million households are expected to move to the region in the 27 years between the base and final 

model year, which is a 134% increase in the total number of households. Another major result of 

note in this realm is that many more of these households live in the City of Austin in the BAU 

scenario than in the 100% AV or the Hi-DRS SAV scenarios, meaning that there are many fewer 

households living in the non-City Metropolitan region in the BAU scenario than there are in the 

100% AV or the Hi-DRS SAV scenarios.  

 

There are also more single-family dwellings in the 100% AV and the Hi-DRS SAV 

scenarios as compared to the BAU scenario in the final model year. This is because people care 

more about dwelling size and quality in the 100% AV and the Hi-DRS SAV scenarios relative to 

the BAU scenario (0% AV), so there is more demand for, and thus more construction of, single-

family dwellings. Similarly, there are more multi-family dwellings with five or more dwellings in 

them in all scenarios because there are more of these dwellings constructed (see Figure 2). New 

dwellings have the highest quality, and since this is more valued on a relative basis in the 100% 

AV scenario relative to the BAU scenario, more people move into these MF5+ dwellings, and thus 

there is higher demand, and more yet are constructed. 

 

There is a 42.6% reduction in available developable land in the 27-year period between the 

base to final model year in the BAU scenario (0% AV), a 47.8% reduction in the same period in 

the 100% AV scenario, and a 46.7% reduction in the Hi-DRS SAV scenario. There is a larger total 

reduction in the 100% AV and the Hi-DRS SAV scenarios than in the BAU scenario because 

households care relatively more about size than they do in the BAU scenario, so there are more 

SFDs which are on larger plots of land. There is also a larger reduction in available land in the 

CoA in the BAU scenario than there is in the 100% AV and the Hi-DRS SAV scenarios. On a 

related note, there are more households living in the CoA in the BAU scenario than there are in 
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the 100% AV and the Hi-DRS SAV scenarios, and less living in the metro regions in the BAU 

scenario than in the 100% AV and the Hi-DRS SAV scenarios.  

 

Finally, work trip travel times increase significantly in all three scenarios in the 27-year 

period between the base and final model year. However, they increase significantly more in the 

Hi-DRS SAV scenario, and even more so in the 100% AV scenario, by the final model year as 

compared to the BAU scenario (0% AV) in the final model year, on average. In addition, there are 

many more people with extreme work trips of over one hour in the 100% AV and the Hi-DRS 

SAV scenario in the final model year, compared to the BAU scenario in the final model year.  
 

Table 3: Summary of scenario results comparing model base year (2013) to end year (2040) 

 

Base year 

BAU 

(0% AV) – 

end year 

100% AV 

scenario – 

end year 

Hi-DRS SAV 

scenario – 

end year 

Household-Level Statistics 

Number of households 768,950 1,798,924 1,798,648 1,799,542 

Number of households in the City of Austin (CoA) 462,465 944,520 894,744 892,711 

Number of households in non-CoA Metro area 306,485 854,404 903,904 907,182 

Dwelling-Level Statistics 

Number of SFD dwellings 489,673 863,756 921,076 921,947 

Number of SFA dwellings 30,497 32,880 33,507 33,638 

Number of MF5+ dwellings 206,120 837,169 820,462 824,533 

Number of MF2-4 dwellings 45,744 52,245 51,760 51,983 

Number of MH dwellings 38,927 48,559 52,516 53,227 

Available, Developable Land 

Total available, developable land 426.9 mi2 245.2 222.9 227.4 

Available, developable land in the CoA 69.0 mi2 8.9 10.6 14.5 

Available, developable land in metro areas 358.0 mi2 236.3  212.3 212.9 

Work Trip Statistics 

Average work trip travel time 31.4 mins 38.5 41.6 39.8 

Average work trip time for those living in the CoA 22.3 mins 25.7 25.6 25.6 

Avg. work trip time for those living in metro areas 41.4 mins 48.4 52.1 50.5 

Number of commuters with 60+ minute work trips 2639 6006 8007 6993 
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Work Trip Travel Time Results 

 

Now, work trip travel time results are compared across the three scenarios. Figure 3 shows 

the distribution of work trip travel times across all workers living and working in the Austin six-

county metropolitan region in the base model year and 20 years after the base year in each scenario. 

The base year is shown in orange in Figure 3, and the average work trip travel time in the base 

year is 31.4 minutes.  

 

The BAU scenario 20 years after the base year is shown in green in Figure 3. In this 

scenario, each bin seems pretty uniformly stretched upwards, so the distribution looks similar but 

there are more travelers in each bin. The average work trip travel time 20 years after the base year 

in the BAU scenario is 38.5 minutes, so work trip times are nearly five minutes longer across all 

workers, relative to the base model year.  

 

The 100% AV scenario 20 years after the base year is shown in yellow in Figure 3. The 

major distinction of note in this figure is how many more workers are commuting sixty minutes or 

more to work. This makes sense because households are no longer considering this work trip time 

as strongly in their household location and relocation decisions, making other dwelling attributes 

such as dwelling size and quality more important. The average work trip travel time 20 years after 

the base year in the 100% AV scenario is 41.6 minutes, so work trip times are over ten minutes 

longer across all workers, relative to the base model year. 

 

The Hi-DRS SAV scenario 20 years after the base year is shown in blue in Figure 3. The 

main difference between the 100% AV and the Hi-DRS SAV scenario is that there is a 12.7% 

decrease in the number of extreme work trips of 60 minutes or more one-way. The average work 

trip travel time 20 years after the base year in the Hi-DRS SAV scenario is 39.8 minutes, so work 

trip times are over eight minutes longer across all workers, relative to the base model year. 

 

 
Figure 3: Work Trip Travel Times in Austin in the Base Model Year and 20 Years After the Base 

Year in Each Scenario 
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Household Location Results 

 

The total number of households in the region increases by 134% in both scenarios. This is 

a major growth from about 769,000 households in the BAU model year to 1.80 million households 

in the final model year. In the 100% AV scenario, more of this growth is happening in the less-

central non-city metropolitan regions than the BAU scenario (0% AV). The number of households 

in the non-city metro regions in the 100% AV scenario grows by 194.9% from the base to the final 

model year, compared to the BAU scenario which grows by 178.8% in the same area over the 

same time period. Similarly, there is then less growth happening in the City of Austin in the 100% 

AV scenario than in the BAU scenario. In the 100% AV scenario, the number of households in the 

City of Austin grows by 93.5% from the base to the final model year, compared to the BAU 

scenario which grows by 104.2% in the same area over the same time period. Figure 4 below 

shows the spatial layout of the difference in the number of households by zone in the final model 

year of the 100% AV scenario relative to the final model year of the BAU scenario (0% AV). 

Positive values in the figure (shown in dark orange) indicate more households in that zone in the 

100% AV scenario relative to the BAU scenario in the final model year. Negative values in the 

figure (shown in white) indicate fewer households in that zone in the 100% AV scenario relative 

to the BAU scenario in the final model year. 

 

 
Figure 4: Difference in Where Households are Located in the 100% AV Scenario Relative to the 

BAU Scenario in the Final Model Year 
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In the Hi-DRS SAV scenario, more of this growth is happening in the non-city metropolitan 

regions than the BAU scenario (0% AV). There is also slightly more growth happening in the non-

city metropolitan regions in the Hi-DRS SAV scenario relative to the 100% AV scenario. In the 

Hi-DRS SAV scenario, the number of households in the non-city metro regions grows by 196.0% 

from the base to the final model year, compared to the BAU scenario which grows by 178.8% in 

the same area over the same time period. Similarly, there is then less growth happening in the City 

of Austin in the Hi-DRS SAV scenario than in the BAU scenario. In the Hi-DRS SAV scenario, 

the number of households in the City of Austin grows by 93.0% from the base to the final model 

year, compared to the BAU scenario which grows by 104.2% in the same area over the same time 

period. A figure isn’t shown for this scenario, because it looks quite similar at the spatial level. 

 

Available and Developable Land Results 

 

Austin-Round Rock, Texas is number four on the list of the fastest growing cities in 

America according to USA Today (2019). Because of this, it is expected that available and 

developable land will decrease significantly over the model period of the base to the final model 

year. This is seen through a 42.6% reduction in developable land over the model time period in 

the BAU scenario (0% AV), a 47.8% reduction in the 100% AV scenario, and a 46.7% reduction 

in the Hi-DRS SAV scenario. This larger reduction in developable land in the 100% AV and in 

the Hi-DRS SAV scenarios compared to the BAU scenario is because households care relatively 

more about size than they do in the BAU scenario, so there are more single-family dwellings 

constructed, which take up more land.  

 

There is also a larger reduction in available land in the City of Austin in the BAU scenario 

(0% AV) than there is in the city in the 100% AV and in the Hi-DRS SAV scenarios. This is 

because households are more willing to live in the less central regions and less willing to pay 

higher prices to live in the city in both of the AV scenarios, because they do not care as much about 

their work trip travel distance. In the BAU scenario, there is an 87.1% reduction in available land 

in the city and a 34.0% reduction in available land in the non-city metropolitan regions. In the 

100% AV scenario, there is an 84.7% reduction in available land in the city and a 40.7% reduction 

in available land in the non-city metropolitan regions. In the Hi-DRS SAV scenario, there is an 

78.9% reduction in available land in the city and a 40.5% reduction in available land in the non-

city metropolitan regions. Figure 5 below indicates the spatial distribution of available land by 

zone in the final model year in the 100% AV scenario relative to the BAU scenario. Positive values 

in the figure (shown in dark green) indicate more available land in that zone in the respective AV 

scenario relative to the BAU scenario in the final model year. Negative values in the figure (shown 

in white) indicate less available land in that zone in the 100% AV scenario relative to the BAU 

scenario in the final model year. A figure isn’t shown for the Hi-DRS SAV scenario, because it 

looks quite similar at the spatial level. 
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Figure 5: Difference in the Amount of Available, Developable Land in the 100% AV Scenario 

Relative to the BAU Scenario in the Final Model Year 

 

CONCLUSIONS AND LIMITATIONS 

 

The adoption of AVs is fast approaching as many companies are hard at work on their 

version of the technology. As such, engineers and planners must begin to plan and prepare for 

important impacts of their adoption. There are many benefits one could imagine from the advent 

of AVs, including safety improvements, increased economic productivity, and improved quality 

of life. However, there are also secondary negative impacts of these technological changes that are 

plausible if appropriate action is not taken to mitigate them. This includes the impacts of urban 

sprawl as are discussed in the present study, which has negative consequences including increased 

emissions and congestion. There are many other negative impacts one could envision of AV 

technology adoption that are not the focus of this study but require future work. This includes 

induced demand for travel, issues with equity surrounding the technology, and safety and privacy 

issues. There are many opportunities for important research in the area of AV impacts. 

 

The present study provides an initial look at potential residential land use implications from 

a reduction in the value of the time it takes to complete one’s work trip which will be expected in 

a future of fully automated vehicles. Because this model is not fully calibrated for the model region, 
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one should really only consider the relative differences between the BAU scenario and the two AV 

scenario results, rather than the true values, and make conclusions based on those.  

 

Of  major note, it was seen that work trip travel times increase quite significantly in the 

100% AV scenario relative to the BAU scenario (0% AV) 20 years after the base year. There was 

also an increase in work trip travel times in the Hi-DRS SAV scenario relative to the BAU scenario 

20 years after the base year, to a lesser degree. Specifically, average work trip travel times increase 

by 3.1 minutes in the 100% AV scenario relative to the BAU scenario (0% AV) in the final model 

year, which is an 8.1% increase. Additionally, average work trip travel times increase by 1.3 

minutes in the Hi-DRS SAV scenario relative to the BAU scenario in the final model year, which 

is a 3.4% increase.  There is also an increase in the number of “extreme” work trip of 60 minutes 

or more. There are 2,001 more workers in the model region with an extreme work trip in the 100% 

AV scenario relative to the BAU scenario in the final model year, which is a 33.3% increase. There 

are also 987 more workers in the model region with an extreme work trip in the 100% AV scenario 

relative to the BAU scenario in the final model year, which is a 16.4% increase.   

 

The work in this study also found differences in the distribution of households across the 

model region between the two AV scenarios relative to the BAU scenario as well. There were 

49,776 fewer households in the City of Austin in the 100% AV scenario relative to the BAU 

scenario (0% AV) in the final model year, which is a 5.3% decrease. Similarly, there were 51,809 

fewer households in the City of Austin in the Hi-DRS SAV scenario relative to the BAU in the 

final model year, which is a 5.5% decrease. On this same note, there were 49,500 more households 

that were located in the non-city metropolitan regions of the Austin six-county region in the 100% 

AV scenario relative to the BAU scenario in the final model year, which is a 5.8% decrease. 

Similarly, there were 52,778 more households that were located in the non-city metropolitan 

regions of the Austin six-county region in the Hi-DRS SAV scenario relative to the BAU scenario 

in the final model year, which is a 6.2% decrease. 

 

Also related to these results are the differences in available and developable land. There is 

relatively more available land in the City of Austin in the 100% AV and the Hi-DRS SAV 

scenarios relative to the BAU scenario in the final model year and relatively less available land in 

the City of Austin in the 100% AV and the Hi-DRS SAV scenarios relative to the BAU scenario 

in the final model year. Namely, there was 24.0 square miles less land located in the non-city 

metropolitan regions of the Austin six-county region in the 100% AV scenario relative to the BAU 

scenario (0% AV) in the final model year, which is a 10.2% decrease. Additionally, there was 23.4 

square miles less land located in the non-city metropolitan regions of the Austin six-county region 

in the Hi-DRS SAV scenario relative to the BAU scenario in the final model year, which is a 9.9% 

decrease. Along the same lines, there was 1.7 square miles more land located in the City of Austin 

in the 100% AV scenario relative to the BAU scenario in the final model year, which is a 19.1% 

increase. Additionally, there was 5.6 square miles more land located in the City of Austin in the 

Hi-DRS SAV scenario relative to the BAU scenario in the final model year, which is a 62.9% 

increase. All of these are directionally what one would expect when AVs and SAVs are deployed 

and work trip times are not as strong of a consideration in household location and relocation 

decision-making.  
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It is interesting that work trip travel times do not increase as dramatically in the Hi-DRS 

SAV scenario as they do in the 100% AV scenario relative to the BAU scenario, but the land use 

impacts are similar and even more pronounced in the Hi-DRS SAV scenario than they are in the 

100% AV scenario. This makes sense because sharing rides in the SAV scenario leads to shorter 

travel times because of the reduction in the number of vehicles on the road relative to the AV 

scenario. Because these travel times decrease, households are willing to live further distances from 

their workplaces, increasing urban sprawl. It is worth noting that, although the sprawl is more 

significant in the Hi-DRS SAV scenario, the emissions implications would be lower than the 100% 

AV scenario because the rides are shared, meaning there are fewer vehicles traveling those longer 

distances. 

 

It is also important to understand some of the limitations to our study. For one, there are 

major simplifications made in the scenario definitions for the “100% AV” and the “Hi-DRS SAV” 

scenarios, so these results must be considered taking into account these simplifications. In addition, 

AVs, and particularly SAVs, have major implications for parking needs. Currently, parking is an 

important housing choice consideration, and if you don’t need to worry about parking because you 

can easily use SAVs on-demand, this could cause conflicting results to our study, such as re-

urbanization. These factors are not considered. In addition, telework is becoming a more common 

trend in workplaces, and is unfortunately not represented by SILO as an option for workers. As a 

final limitation of note, SILO does not account for any new travelers that may occur in response 

to the introduction of AV technology, such as those currently without driver's licenses. There are 

other limitations in the way SILO operates as discussed in Section 4.6. This includes assumptions 

in the SILO model framework such as the fact that the only transportation consideration in the 

household location and relocation decision-making is the work trip travel time. 

 

This is a crude initial look at some of the residential land use and transportation impacts 

that could occur in a future of self-driving vehicles. Further research is needed in this area. It would 

be beneficial future work to increase the complexity of the integration of the land use and 

transportation model. This could include using AV and/or SAV MATSim plug-ins to both generate 

AV/SAV travel demand and to simulate all of the traffic in the system, not just work trips. Then, 

one could also model a mix of AVs and traditional passenger cars. It would of course be beneficial 

to spend the time to fully calibrate the LUM for the model region too. Though this is very time-

consuming, it would improve the reasonability of results. Finally, it would be constructive to 

increase the complexity of the LUM to include more accessibility and transportation characteristics 

into the household location and relocation decision-making. For example, many households care 

about the distance to the nearest grocery store and proximity to restaurants and retail, not just their 

work trip distance. As more complexity is added to these ITLUMs, there is of course further 

calibration and data needs. However, this is where the field of ITLUMs should be headed. 
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