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ABSTRACT 

The market share of plug-in electric vehicles (PEVs) is growing, thanks to improvements in battery 

efficiency, declining production costs, and sustained policy support. Concurrently, concerns are 

growing over the supply of decommissioned PEV batteries. Following their service life, PEV 

batteries can maintain close to 80% of their original capacity, rendering them suboptimal for 

transport use, but viable for battery storage systems (BSSs). As a result, there has been a growing 

interest among researchers and the private sector to determine the utility of repurposing PEV 

batteries for energy storage. Previous work has optimized behind-the-meter (BTM) BSSs for self-

sufficiency and energy arbitrage, but few have sought to use the system to lessen a home’s 

electricity-related carbon footprint. This study uses high resolution 2018 electricity demand and 

grid feedstock data for energy-efficient homes in Austin, Texas to simulate the daily operations of 

a 6 kWh BTM BSS to minimize daily CO2e emissions. Results showed homes with rooftop solar 

could reduce on average 50% of total household emissions, or 2.67 tons of CO2e annually, while 

homes without rooftop solar could reduce just 2% of total household emissions, or 0.12 tons of 

CO2e annually. Adding BTM BSS to homes with rooftop solar increases average annual carbon 

savings by 64% through greater energy retention. For BTM BSSs to be cost-effective for Austin 43 
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homeowners, the price of repurposed PEV batteries must fall to $15/kWh or per-ton carbon pricing 1 

must rise to $38.75 for homeowners to reach breakeven at the end of an estimated 10-year lifespan. 2 

3 

Keywords: e-waste management, battery repurposing, battery storage, emission reduction, 4 

residential energy storage 5 
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INTRODUCTION 1 

Vehicle electrification is an indispensable component in a suite of solutions designed to reduce 2 

transportation activities’ greenhouse gas (GHG) emissions (1). Electric vehicles (EVs), or more 3 

generally, PEVs, are differentiated between plug-in hybrid electric vehicles (PHEVs), which have 4 

up to 40-mile all-electric range with a gasoline engine for range extension, and fully-electric 5 

battery electric vehicles (BEVs), which have a median range of 201 miles for non-Tesla, U.S. 2020 6 

EVs (2, 3). Increasing battery range and the deployment of additional public fast-charging 7 

infrastructure may lessen both range anxiety and long charging concerns, two common barriers to 8 

the adoption of EVs (4, 5). Technology advancements have significantly improved since the first 9 

PEV models, and all-electric BEV vehicle sales now substantially outpace PHEVs (about 3:1 ratio 10 

in new sales), thanks to the development of popular models, like the Tesla Model 3 (6). Figure 1 11 

depicts both the share of PEV sales broken down into PHEV and BEVs and the number of sales, 12 

with the noticeable divergence in sales starting in 2018 attributed to the Tesla Model 3. Market 13 

share for EVs continues to increase year-over-year, and EVs now represent over 2% of U.S. new 14 

light-duty vehicle sales, which is up from 0.7% in 2015 (7). By 2035, more than half of new U.S. 15 

passenger vehicle sales could be electric (8). But projections are dependent on a host of factors, 16 

including government incentives, vehicle turnover rates, consumer demand for EVs, and when 17 

purchase-price cost parity with conventionally-fueled vehicles is met (9, 10).  18 

 19 

 20 
Figure 1. Share and count of annual US PEV sales by type: BEV and PHEV 21 

(Data from Argonne National Laboratory, 2020) 22 

 23 

As a result of increased EV sales, the global stockpile of used PEV batteries may exceed 24 

3.4 million by 2025, compared to just 55,000 in 2018 (11). Moreover, one forecast of used PEV 25 

battery availability from 2016 to 2025 estimated 29 GWh of used PEV batteries by 2025 (12). 26 

Notwithstanding concerns about raw material sourcing for batteries and manufacturing-related 27 

GHG emissions (13–15), few life cycle assessments (LCAs) consider the extended environmental 28 

benefits of repurposing PEV battery packs for stationary battery storage systems (BSSs) (16–20) 29 

before end-of-life recycling and waste disposal. Present environmental analysis research highlights 30 
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how processes during the lithium-ion battery (LIB) lifecycle can cause further adverse impacts 1 

such as the depletion of water tables during mining, high GHG emissions during battery 2 

manufacturing, e-waste due to a small percentage of batteries being recycled after operation, and 3 

contamination or exposure of toxic chemicals after disposal (21, 22). In contrast to recycling, 4 

repurposing PEV batteries entails modest disassembly, battery health tests to assess degradation 5 

(and to redirect inferior packs to recycling) and assembling similarly rated and performing packs 6 

together by adding critical electrical, control, and safety parts (23, 16). Estimates on battery health 7 

show that used PEV battery capacities may still hold 60-80% of its design capacity (24), which 8 

under favorable conditions could provide up to 10 years of second-life stationary BSS (25) at an 9 

economic savings of up to 60% compared to new storage systems (12).  10 

Repurposed BSSs are dynamic, flexible power sources for storing and dispatching energy. 11 

For example, they can be programmed to store intermittent zero-carbon renewable energy at the 12 

generation level or lessening peak loads on the distribution grid (e.g., fast-charging stations). 13 

Utilizing repurposed batteries for behind-the-meter (BTM) energy storage has recently garnered 14 

attention as homeowners attain partial energy independence with rooftop solar/photovoltaic (PV) 15 

arrays (26). While residential buildings and appliances are becoming more energy efficient (27, 16 

28), smaller residential carbon footprints (or net zero) can be achieved by transitioning to 17 

renewable energy paired with BSS (29). Integrating renewable energy generation sources with 18 

BSS provides several energy management tools, which can be finely adjusted for homeowners and 19 

power providers alike. Some of these tools include storing excess renewable energy which can be 20 

offset purchased power during the evening peak, thus abating natural gas peaker-power plants.  21 

 22 

LITERATURE REVIEW 23 

Highly efficient, energy-dense LIBs have significantly contributed to making PEV’s an 24 

economically viable and reliable source of intraregional transportation (30). Early studies 25 

suggested that PEV owners may let go of their battery once out of warranty or after reaching 8 to 26 

10 years of service life (19, 29). However, advanced batteries capable of withstanding more charge 27 

cycles (31) suggest that first-life use may follow the turnover of household vehicles, which is over 28 

10.5 years (32). Advances in battery design may even allow for residual capacities to remain 29 

relatively unchanged (or lessened only to 90%), even as batteries face more charge cycles (33). 30 

With greater adoption of PEV’s in recent years, due in part to steeper-than-expected price 31 

reductions of LIB packs (34), the supply of spent batteries for second use is expected to grow to 32 

between 112-227 GWh per year by 2030 (35). 33 

The large supply of PEV batteries can be repurposed for utility-scale energy storage, often 34 

collocated with generational units to firm up capitally intensive assets, down to distributed energy 35 

storage (DER), often in BTM settings for individual utility customers. Utility-scale LIB-storage 36 

demand is estimated at 183 GWh per year by 2030 and utilities would be wise to reduce BSS costs 37 

with second-life LIBs versus converted PEV batteries2. Several repurposing PEV pilots are 38 

underway at utility-scale (36–38) even though an early study by (39) suggested repurposed PEV 39 

batteries would only be helpful in smaller settings (e.g., BTM load leveling in residential and light 40 

commercial buildings or telecommunication backup applications, primarily due to barriers in 41 

sourcing used PEV batteries). Regardless of the eventual split between second-life applications, 42 

 
2 In 2030, the majority of early PEVs will have been scrapped (given a turnover rate of 10-12 years), however, volume 

adjusted end of life volume will include PEV models from the 2020s due to warranty or upgrades in battery capacity. 

Thus, the quality of BSS from repurposed packs will trail behind converted PEV batteries. 
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both are now recognized as plausible adopters (40). Lower costs of repurposed battery packs 1 

combined with increased demand for residential rooftop solar has made BSSs more attractive for 2 

households wishing to become more self-sufficient (26). Additionally, market-ready BSSs, such 3 

as the Tesla Powerwall and SonnenBatterie, have pushed some proactive residential and 4 

commercial consumers to protect themselves from potential grid outages, like the and public safety 5 

power shutoffs during 2019 wildfire seasons by California-based Pacific Gas & Electric (41) and 6 

electric grid failure caused by the 2021 winter storm in Texas (42) which both left millions without 7 

power for several days. Although many studies have analyzed the practical and logistical side of 8 

using of BSSs (18, 26, 29, 30, 43–45), few have aimed to quantify the operating environmental 9 

impact of such technologies. Considering the urgency of decarbonization, it is imperative to assess 10 

the carbon intensity of these systems to determine the benefits and drawbacks of implementing 11 

BTM BSS over a broad geographic region. 12 

Previous studies quantifying GHG impacts of using repurposed PEV batteries as BTM 13 

BSSs have shown that CO2, NOx, and SO2 emissions vary across the board based on the condition 14 

of a battery and context of use (19, 44). Estimates showing high emissions from BTM BSSs have 15 

power grids that rely primarily on non-renewables feedstocks (namely, coal and natural gas). 16 

However, many utilities are transitioning away from fossil fuels to renewable resources, with or 17 

without policy mandates or tax credits (43). Several initiatives are currently underway by 18 

municipalities to address the climate crisis by encouraging BSS owners to charge from low-19 

emission sources including (rooftop) solar and wind power, which are increasingly a larger 20 

feedstock share in the grid (46). Since solar and wind energy sources emit zero GHG emissions at 21 

the source and continue to be supported by state policies through subsidies, these renewables are 22 

critical to lessen a BTM BSS user’s electricity-caused carbon footprint (26, 46). Nevertheless, 23 

there is evidence of increased operating emissions in some circumstances, particularly with grids 24 

having a low variation in carbon-intensity or when the purpose of storage is for energy arbitrage 25 

(26, 43, 46, 47). 26 

Most net positive emissions caused by BTM BSSs can be primarily attributed to round-trip 27 

inefficiencies (typically near 15%) generated during the use of BSS’s (46). One study found minor 28 

improvements in efficiency from 83% to 91% can reduce CO2 emission rates by around 50% (48). 29 

Despite improvements in this technology, achieving a round-trip efficiency consistently greater 30 

than 90% may be difficult due to secondary losses caused by battery pack operation even when 31 

idle (26). For example, extreme ambient operating temperatures (high and low) can reduce PEV 32 

battery efficiency by greater than 20% (49). In all, BTM BSS inefficiencies can increase annual 33 

energy consumption on average by 324–591 kWh, and emissions by 153–303 kg CO2, 0.03–0.20 34 

kg SO2, and 0.04–0.26 kg NOx annually for a Texas household (26).  35 

Despite initial findings suggesting increased emissions, BTM BSS demand continues to 36 

grow as homeowners aim to reach energy independence by reducing their reliance on the grid (26, 37 

30). Partial grid isolation provides resilience to homes during natural disasters (e.g., hurricanes, 38 

tornadoes, and wildfires) and times of load-shedding where the flow of electricity can be disturbed 39 

(50). BTM BSS also have the potential to be used for energy arbitrage to effectively control 40 

demand charges and frequency regulation (46). Energy arbitrage can be implemented into BTM 41 

BSSs to store energy when electricity prices are low and utilize or sell the same energy when prices 42 

increase to benefit a homeowner (30). For example, Texas’ four coincidental peak (4CP) reduction 43 

utilizes a form energy arbitrage where BSSs could support and enable utility peak load reduction. 44 

During a 4CP event, customers with BSSs provide a value of $60/kW to their utility by lowering 45 

their net transmission costs (51). Similarly, grid operators can sponsor peak-shaving tariffs to 46 
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reduce overall peak loads, decrease yearly consumption, and provide greater financial incentives 1 

to homeowners with BTM BSS (52, 53). On the other hand, increased adoption of distributed PV 2 

arrays at residences tends to displace utility-scale PV investment (54), which is often the system-3 

optimal investment. To ensure that these BSSs and PV arrays do not impede utility investments in 4 

renewables, a centralized-coordinated dispatch strategy or decentralized strategy with a system-5 

optimal goal may be of interest for utility operators, such as storing excess rooftop solar and 6 

abating the use of peaker power plants. 7 

One key variable contributing to the extent of possible GHG savings for a home is the 8 

regional grid feedstock or energy-mix (46). Although emission factors (EFs) vary by time of the 9 

day, they follow a similar daily pattern (with peaks at early-morning for western U.S. states). 10 

Identifying and utilizing this EF pattern is fundamental to optimize GHG emissions. In this study, 11 

residences without rooftop solar are the main users of the EF optimization technique. While there 12 

is potential to minimize GHG emissions in this manner, several studies underscore how only 13 

adding BTM BSS is unlikely to reduce GHG emissions due to increased energy usage and 14 

unfavorable roundtrip efficiency rates (26, 43, 46, 49). Furthermore, previous work suggests the 15 

synergy of DERs (rooftop solar and BTM BSS) to serve as one of the primary catalysts to lowering 16 

residential GHG emissions.  17 

 18 

Motivation and Contributions  19 

Considering how the increasing demand for BSSs almost directly correlates with the rise in the 20 

quantity of spent EV batteries, it is crucial to recognize that reusing EV batteries is significantly 21 

more sustainable than the manufacturing new batteries which entails greater adverse externalities 22 

(e.g., transport emissions and mining waste) for the planet. While repurposed EV batteries may 23 

suffer from lower roundtrip efficiency rates, it is much more beneficial to reuse and downcycle 24 

such batteries after their initial service life in vehicles due to lower life-cycle costs (55, 56). This 25 

paper presents a methodology to assess and fill the research gap concerning the operating 26 

environmental impact of utilizing repurposed PEV BSS for BTM applications. Specifically, this 27 

paper determines the current value of BTM-BSSs (based on energy policies such as carbon pricing 28 

and battery costs) and how they can be used to minimize a household’s electricity-related carbon 29 

footprint. The costs of a repurposed PEV battery pack are also explored under carbon pricing to 30 

perform a breakeven analysis. High resolution (15-minute) household electricity consumption data 31 

of 45 homes in Austin, Texas, collected on a voluntary basis by Pecan Street in 2018, is paired 32 

with 15-minute electricity generation data from the region’s independent system operator (ISO), 33 

the Electricity Reliability Council of Texas (ERCOT)3 to assess the validity of the model. The 34 

objective of the BTM BSS is set to minimize the household’s carbon footprint by storing excess 35 

rooftop solar (if present) and low-carbon energy from the grid to minimize power draw from the 36 

grid during periods of carbon-intense power generation. In performing this analysis, transportation 37 

professionals and policymakers drafting climate regulations can understand the environmental 38 

benefits of BTM BSS so that batteries from transportation electrification are repurposed for 39 

second-life BSS applications. 40 

 The remaining sections of this paper are organized as follows: the modeling framework is 41 

explained, the case study data is presented, results discussed, and concluding remarks are presented 42 

with implications for homeowners and utilities seeking untraditional decarbonization strategies. 43 

 
3 ERCOT serves almost three-fourths of the customers in Texas, accounting for around 90% of the state’s electric load 

(59). 
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METHODOLOGY 1 

Data Sources and Assumptions 2 

To show how BSSs could lessen residential GHG emissions requires two data sources: residential 3 

energy consumption and distribution of electricity generation feedstocks. These sources, both 4 

collected at 15-minute intervals during the full year 2018, were obtained from Pecan Street and 5 

ERCOT, respectively. Since marginal EFs (MEFs) were not obtainable for this year, average EF 6 

by fuel type were used to approximate EFs.  7 

Pecan Street collects household electricity usage data voluntarily from program 8 

participants using eGauges, down to the circuit level, across Texas, New York, and California 9 

energy markets. The load data, in kilowatts (kW), separates the household’s electricity demand 10 

from solar production which can allow one to retrospectively assess periods where a homeowner 11 

added electricity to the grid. Due to the high upfront capital cost of solar panels and their multi-12 

year payback period and the nature of voluntary participation in Pecan Street data collection 13 

efforts, the dataset likely biases upwards to wealthier households (57). Households from the dataset 14 

consumed on average 1.01 MWh per month, slightly below the state average of 1.18 MWh in 15 

2018. However, the early adopters of residential BSS will likely have similar demographics, 16 

especially if these systems are composed of repurposed used EV batteries since many of these 17 

program participants also own EVs. An inherent assumption is that these households do not have 18 

already have BSS, which is reasonable given the niche market for BSS.  19 

Pecan Street provided a subsample of their Austin, Texas data (n=45). The majority of the 20 

houses had solar panels (n=39). It is assumed this subsample is randomly sampled from the Texas 21 

pool such that the results from this subsample largely align with the full set. Electricity generation 22 

data by fuel type collected by ERCOT provides a broad understanding of how renewable and non-23 

renewable resources are utilized to produce electricity for customers across the ISO throughout the 24 

day and across larger temporal periods (e.g., weeks, months, and seasons). Although some 25 

residential customers may be entirely served by baseload generational units out of proximity to 26 

power plants, assuming a household’s electricity feedstock is equivalent to the wholesale 27 

generational data is appropriate absent information on transmission and distribution systems. 28 

Additionally, it is assumed that the BSS does not impact the dispatch problem for this Austin 29 

market, since the size of the system is small. 30 

Previous studies on the application of repurposed PEV LIBs as BTM BSSs vary 31 

significantly in modeling assumptions (see Table 1) and end results. Although high variability 32 

impacts confidence in findings, parameter values are based in the literature and scientific advances. 33 

For example, residual capacity is around 70-80% with early PEVs but is expected to rise as 34 

improvements in battery chemistry will allow for greater quantity of charge-discharge cycles 35 

without severe degradation. Estimated lifespan of repurposed PEV LIBs is expected to be near 8-36 

10 years. Current LIB roundtrip efficiency rates are expected to be near 90%. Finally, BTM BSSs 37 

are expected to reduce peak power demand by 10-32%, depending upon rate of adoption.  38 
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Table 1. Summary of Repurposed PEV and BTM BSS Assumptions in the Literature 1 

Variable Parameter Study 

Residual Capacity 80% 

81.31% 

70-80% 

70-80% 

Ahmadi et al. (2014) 

Bobba et al. (2018) 

Kamath et al., (2020a) 

Sathre et al. (2015) 

Estimated Lifespan for Second-Life 

Applications 

10 years 

6-12 years 

Ahmadi et al. (2014) 

Casals et al. (2017) 

Total Roundtrip Efficiency 80-85% 

91% 

95% 

85% 

83-91% 

75-80% 

Ahmadi et al. (2017) 

Bistline and Young. (2020) 

Bobba et al. (2018) 

Fares and Webber (2017) 

Fisher and Apt. (2017) 

Neubauer et al. (2015) 

Potential Reductions in Peak Power 

Demand 

10% 

15-20% 

8-32% 

Vejdan et al. (2019) 

Fisher and Apt. (2017) 

Fares and Webber. (2017)  

 2 

EF values shown in Table 2 were used along with grid-generation data to determine BSS 3 

charge and discharge times for the battery-grid component; EF values of 0 (lbs. of CO2e per MWh) 4 

indicate 100% renewable energy use whereas all greater EF values indicate increased emissions. 5 

EF values of zero can only be found in the solar component of the optimization process, which is 6 

explained later. Grid generation EF values range from 400 to 1,250 lbs. of CO2e per MWh. The 7 

quantity of carbon savings can be adjusted based on energy storage and use. Applying EF values 8 

in conjunction with cost estimates per pound of CO2e saved provides a means to estimate the social 9 

cost of GHGs saved through optimization. 10 

To determine an ideal BSS size across all homes, the correlation between the capacity of 11 

solar generation (kW) with the home square-footage was examined. Results showed the correlation 12 

between solar capacity and square footage was very low, indicating additional parameters such as 13 

EV ownership and baseload electricity consumption are needed to hypothesize the capacity of 14 

future BSSs. To this end, several household solar generation capacities were analyzed to determine 15 

the capacity of a battery pack sufficient for storing all excess solar energy during the year. Limited 16 

by roundtrip efficiency, it was determined that a 6-kWh battery pack could capture up to 90% of 17 

excess solar energy during the year (defined as solar power sent to the grid). In addition, BSS 18 

available to consumers are in the range of 4 to 11-kWh and this assumption represents a reasonable 19 

estimate. 20 

The BSS is also expected to inject power within a short period of time for both resilience 21 

purposes and to strategically discharge stored solar (or stored grid electricity) to use when the 22 

house relies on grid electricity that is carbon-intense (i.e., has a high EF measure). The BSS model 23 

assumes the following fixed parameters: 6 kilowatt-hour (kWh) maximum energy capacity, 5 24 

kilowatt (kW) maximum charge/discharge rate, and 90% roundtrip efficiency. Initial capital costs 25 

are assumed to be $100 per kWh of storage (61–64). Solar energy gathered in real-time is assumed 26 

to be 100% efficient, even though the Pecan Street data reveals the inverter yields a negative output 27 

at night. Carbon pricing values are derived from analysis of trends only across the United States, 28 

whereas carbon pricing in non-U.S. markets may vary based on enacted policies and expert 29 

recommendations: the lowest scenario represents the current pricing in Austin, Texas (65), the 30 
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moderate scenario represents the highest pricing implemented in the United States (66, 67), and 1 

the aggressive scenario represents the suggested pricing according to national budget estimates 2 

(68). These assumptions are also summarized in Table 2. We assume carbon pricing doesn’t affect 3 

the dispatch of the power sources and can be passed onto end uses of electricity. With these 4 

assumptions and parameters in mind, it is critical to recognize that this study uses perfect 5 

knowledge of grid feedstock mix and home energy demand to optimize for CO2e emissions while 6 

real-world applications of this study and its modeling framework may face higher uncertainty.  7 

 8 

Table 2. Summary of Assumed Modeling Parameters: Emission Factors and BTM BSS  9 

Grid Emission Factor Parameters  Household BTM BSS Parameters 

Energy 

Source 

EF 

(lbs. CO2e 

per MWh) 

Source  Variable Parameter 

Coal 2,242 ERCOT 

(2018) 

 Battery Capacity 6 kWh 

Gas 861 ERCOT 

(2018) 

 Max 

Charge/Discharge 

Rate 

5 kW 

Natural Gas 

– Combined 

Cycle (CC) 

783 Bell et al. 

(2011) 

 Roundtrip Efficiency 

(Solar) 

100% 

Biomass1 65 US-EIA, n.d.;  

US-EPA, n.d. 

 Roundtrip Efficiency 

(Battery) 

90% 

Renewables 

(including 

rooftop solar) 

0 ERCOT 

(2018) 

 BSS Capital Cost $100/kWh 

    Carbon Pricing 

Scenarios 

$4, 12, 27.56/ton 

CO2e 
1Biomass is a weighted average according to generational output from Texas’ biomass plants by feedstock type. 10 

 11 

Energy Modeling Framework 12 

The environmental impact of residential BSS use is approximated through an integrated model 13 

combining household electricity use, rooftop solar generation (if present), and a BSS system with 14 

programming that optimizes charge and discharge decisions to lower residential GHG emissions. 15 

The developed modeling framework conducts a continuous temporal analysis that optimizes the 16 

use of energy from both grid and local renewable sources. In this study, the optimization process 17 

occurs on a daily basis during the 2018 calendar year. The following sections detail the sequential 18 

processes and assumptions involved during model construction. 19 

 The developed optimization program model uses EFs alongside whole house power 20 

demand as the foundation to simulate a BSS for the daily continuous sample period. Each home 21 

has its own BSS to store energy for future use, depending on the household’s power generation 22 

and electricity demand. To minimize a household’s carbon footprint, the model identifies periods 23 

of the day when EFs reach the daily minimum, and stores energy from the grid for use during peak 24 

http://www.ercot.com/gridinfo/generation
http://www.ercot.com/gridinfo/generation
http://www.ercot.com/gridinfo/generation
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EF times later in the day. Since we optimize BSS use within each day, we assume the battery 1 

completely discharges during a single day (if charges at least partially).  2 

For the optimization model, simply using a renewable energy ratio value (i.e., renewable 3 

energy generated to total energy generated) was not an accurate measure to determine the ideal 4 

times for BSS (dis)charging since it did not consider the mix of non-renewable emission sources 5 

based on rate of emissions. Therefore, it was necessary to create an EF value unique to each 15-6 

minute interval that provided insight on the quantity of emissions generated relative to total 7 

electricity generated. 8 

 Efficiency rates shown in Figure 2 are considered during the charge and discharge cycle. 9 

Based upon the varying levels of installed solar energy capacity (or lack thereof) present with 10 

households across the dataset, three separate operational components were identified for the home 11 

BSS to use and store electricity. Besides grid-home, the other two components are discussed below 12 

since they are dependent on the presence of solar panels. 13 

 14 

Battery-Grid 15 

While incorporated into all simulations, the battery-grid component is the primary energy 16 

interaction for homes without solar panels to minimize GHG emissions through a peak-shaving 17 

approach. This scenario functions by extracting and storing grid energy in the BSS when EF values 18 

reach a local minimum. Consumption of the stored battery energy by the home occurs when EF 19 

values reach a local maximum. Since historical consumption data is used and assumed to be 20 

representative of typical demand patterns, the extrema may be considered global across a day. 21 

Although this direct interaction is used less frequently on homes with solar panels due to capacity 22 

constraints and the desirability of the battery to store 100% renewable solar for later use, this 23 

operational method offers the greatest benefit during times when solar energy generation is 24 

unreliable.  25 

 26 

 27 
Figure 2. Diagram of solar-battery-grid and battery-grid interactions 28 

 29 

Solar-Battery-Grid 30 

The Solar-Battery-Grid component allows for solar energy to be stored when the panels produce 31 

more energy than the household demands. This interaction also captures and actively transfers 32 

produced solar electricity to the home for immediate use when possible. Residences see direct 33 
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GHG reduction by substituting grid electricity with 100% renewable energy for periods of the day 1 

when solar irradiance is high. Since this study only accounts for household GHG savings, emission 2 

savings of excess solar generation are ignored in circumstances where the energy stored in the 3 

battery is at capacity and can no longer be transferred to the battery (i.e., net metering). 4 

 Integrated battery-grid interactions allow for greater GHG savings when solar energy 5 

generation is suboptimal and battery conditions are met. For households residing in markets where 6 

net metering exists, the panels may be oversized relative to the household’s demand to receive 7 

some credit for when excess solar is pushed to the grid. Residences in Austin, Texas can participate 8 

in the Value of Solar program that credits their bill with their generational output and allows for 9 

credits to carry over from solar rich months. This Solar-Battery-Grid component offers significant 10 

benefits over the battery-grid method since the stored solar power maintains an EF value of 0 (lbs 11 

of CO2e emitted per kWh of energy). The inefficiencies of the battery system discussed earlier are 12 

assumed to capture the energy demand of the inverter. 13 

 14 

Calculations 15 

A general outline of the optimization process is depicted in Figure 3 along with the following 16 

equations describing the possible variable interactions in each loop. Before the optimization 17 

process was initiated, it was critical to convert energy values from eGauges to power readings for 18 

proper analysis using Eq. (1): 19 

 20 

𝑃 =
𝐸𝑔𝑎𝑢𝑔𝑒

4
,          (1) 21 

 22 

where 𝑃 is the magnitude of power transfer (kW) calculated for each 15-minute interval measured 23 

from the 𝐸𝑔𝑎𝑢𝑔𝑒  reading (kWh) typically found two types of gauges: near the electricity meter 24 

(measuring demand), and near the inverter (measuring solar generation). 𝑃 readings measuring 25 

solar energy generation are classified under 𝑃𝑠𝑜𝑙𝑎𝑟 and readings measuring home electricity 26 

exchange to and from grid are assigned to 𝑃𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 . 27 

The solar component part of the optimization model only considering interactions between 28 

home demand and solar panels is determined as shown in Eq. (2): 29 

 30 

𝑃𝑑𝑒𝑚𝑎𝑛𝑑 = 𝑃𝑠𝑜𝑙𝑎𝑟 − 𝑃𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 ,       (2) 31 

 32 

where 𝑃𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟  is quantity of electricity transferred to or from the grid, 𝑃𝑠𝑜𝑙𝑎𝑟 is the direct injection 33 

of solar energy, and 𝑃𝑑𝑒𝑚𝑎𝑛𝑑 is the magnitude of remaining demand remaining to be satisfied from 34 

grid sources. Excess solar power is stored in the battery when 𝑃𝑑𝑒𝑚𝑎𝑛𝑑 is a positive value as 35 

calculated in Eq. (3): 36 

 37 

𝑃𝑏𝑎𝑡 𝑐ℎ𝑎𝑟𝑔𝑒 =  𝑃𝑑𝑒𝑚𝑎𝑛𝑑,        (3) 38 

 39 

where 𝑃𝑏𝑎𝑡 𝑐ℎ𝑎𝑟𝑔𝑒  represents the inflow of power and increase of energy stored in the BTM BSS 40 

at a specified 15-minute interval. 41 

Circumstances when 𝑃𝑑𝑒𝑚𝑎𝑛𝑑 is negative warrants compensation of remaining demand 42 

from the battery (assuming the battery has a stored energy reading greater than 0) as calculated in 43 

Eq. (4) and/or directly from the grid as later shown in Eq. (5): 44 

 45 
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𝑃𝑔𝑟𝑖𝑑 = 𝑃𝑑𝑒𝑚𝑎𝑛𝑑 − 𝜂𝑃𝑏𝑎𝑡𝑡𝑒𝑟𝑦,        (4) 1 

 2 

where 𝑃𝑏𝑎𝑡𝑡𝑒𝑟𝑦 is the power transferred from the battery to the home which is limited to 1.25 kW 3 

(relative to 5 kW maximum discharge rate) and does not exceed the remaining demand at any 4 

interval 
𝑃𝑑𝑒𝑚𝑎𝑛𝑑

𝜂
. Roundtrip efficiency of the battery is assigned to 𝜂, which is static at 90% for this 5 

study. 𝑃𝑔𝑟𝑖𝑑 (always ≥ 0) represents remaining demand which is equivalent to the transfer of 6 

power from the grid to the home when solar and battery power sources do not fully satisfy home 7 

power demand. 8 

 9 

 10 
Figure 3. Daily GHG optimization process 11 

  12 
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Ideal charging time is calculated to be at the time(s) when EF reaches its daily minima. 1 

Rate of charge during the ideal charging time is determined according to the component of 2 

optimization as shown in Eq. (6).  3 

 4 

𝑃𝑏𝑎𝑡 𝑐ℎ𝑎𝑟𝑔𝑒 =
𝐸𝑚𝑎𝑥−max ( ∑ (𝑃𝑏𝑎𝑡𝑡𝑒𝑟𝑦)𝑖

96
𝑖=1 )

𝑘
 .      (6) 5 

For the battery-grid option, charge rate (𝑃𝑏𝑎𝑡 𝑐ℎ𝑎𝑟𝑔𝑒) is fixed at 1.25 kW while the Solar-Battery-6 

Grid option has a variable charge rate (maximum of 1.25 kW) and is calculated to be the difference 7 

between battery capacity (𝐸𝑚𝑎𝑥 fixed at 6 kWh) and maximum energy stored 8 

(max ( ∑ 𝐸𝑏𝑎𝑡𝑡𝑒𝑟𝑦
96
𝑖=1 )) in the battery from the Solar-Battery-Grid interaction divided by the 9 

frequency, or number of intervals (𝑘) required to fully charge the battery. The optimization process 10 

minimizes 𝑘 to ensure energy extraction utilizes the smallest EF values to maximize future savings. 11 

The battery discharging process functions similarly, but optimizes by comparing the largest 12 

EF values with (remaining) demand to ensure highest possible CO2e savings by utilizing a peak-13 

shaving technique as calculated in Eq. (7): 14 

 15 

𝑃𝑏𝑎𝑡 𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 = {
𝑃𝑑𝑒𝑚𝑎𝑛𝑑 𝑖𝑓 𝐸𝑏𝑎𝑡𝑡𝑒𝑟𝑦 ≥ 

𝑃𝑑𝑒𝑚𝑎𝑛𝑑
𝜂

𝐸𝑏𝑎𝑡𝑡𝑒𝑟𝑦 𝑖𝑓 𝐸𝑏𝑎𝑡𝑡𝑒𝑟𝑦 ≤ 
𝑃𝑑𝑒𝑚𝑎𝑛𝑑

𝜂

  ,     (7) 16 

 17 

where 𝐸𝑏𝑎𝑡𝑡𝑒𝑟𝑦 is the energy in the battery at any point in time, 𝑃𝑑𝑒𝑚𝑎𝑛𝑑 is the magnitude of home 18 

demand, and 𝑃𝑏𝑎𝑡 𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 is the quantity of power discharge from the battery at any specific 15-19 

minute interval. The battery charging function will run until the battery is adequately or fully 20 

charged and the battery discharge function will run until the battery no longer holds any energy. 21 

Following the battery simulation process, final GHG savings are determined as shown in Eq. (8): 22 

 23 

𝐺𝐻𝐺𝑠𝑎𝑣𝑖𝑛𝑔𝑠 = 𝑃𝑠𝑜𝑙𝑎𝑟 ∗ 𝐸𝐹 + 𝑃𝑏𝑎𝑡 𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 ∗ 𝐸𝐹𝑐𝑎𝑙𝑐 − 𝑃𝑏𝑎𝑡 𝑐ℎ𝑎𝑟𝑔𝑒 ∗ 𝐸𝐹, (8) 24 

 25 

where 𝐺𝐻𝐺𝑠𝑎𝑣𝑖𝑛𝑔𝑠  is the CO2e savings in pounds, 𝑃𝑠𝑜𝑙𝑎𝑟 and 𝑃𝑏𝑎𝑡 𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒  are the quantity of solar 26 

and battery power transferred to the home during discharge process, 𝑃𝑏𝑎𝑡 𝑐ℎ𝑎𝑟𝑔𝑒  is the quantity of 27 

power (only associated with the battery-grid interaction) received and stored by the battery, 𝐸𝐹 is 28 

the precalculated dynamic energy factor for the specified interval, and 𝐸𝐹𝑐𝑎𝑙𝑐  is the adjusted energy 29 

factor which is continuously calculated (weighted average), based on grid feedstock and magnitude 30 

of power transfers, during the battery charge process of each day.  31 

All the previous general equations describe how results were calculated for one 15-minute 32 

interval. To calculate the values of these variables and simulate the functions of a BTM BSS over 33 

a full day, the subscript 𝑛, which is assigned to an integer, must be added to the 𝐺𝐻𝐺𝑠𝑎𝑣𝑖𝑛𝑔𝑠  34 

equation and combined with the summation shown in Eq. (9) to represent the equation values 35 

associated with all 96, 15-minute intervals in a full day. An additional summation can be used with 36 

the below equation to simulate BTM BSS functions over a full year. 37 

 38 

 ∑ (𝐺𝐻𝐺𝑠𝑎𝑣𝑖𝑛𝑔𝑠)𝑛
96
𝑛=1 .         (9) 39 

   40 

CASE STUDY RESULTS 41 

Running optimization analysis on the Battery-Grid and Solar-Battery-Grid components suggests 42 

the extent of EF variability and potential for solar-energy generation in Austin, Texas meets the 43 



Khowaja et al. 2021 

14 

threshold to reduce CO2 emissions. Since these findings were consistent across 2018, BTM BSSs 1 

seem to be a viable method of reducing GHG emissions for homeowners under the ERCOT grid 2 

energy-mix. The simulated results discussed below suggest carbon emission savings through BSS 3 

can be achieved, but only in scenarios when EFs vary enough on a daily basis (such as the summer 4 

peak days) to overcome battery efficiency limitations or with the installation of rooftop solar 5 

panels. 6 

 7 

Battery-Grid Scenario 8 

The Battery-Grid scenario optimized carbon emissions from 6 homes and reduced on average 0.12 9 

tons of CO2e per household in 2018. Illustrated in Figure 4, the household carbon savings range 10 

between an average minimum 12.3 pounds of CO2e in September and an average maximum 30.9 11 

pounds of CO2e in March due to optimizing charging and discharging of the grid (even when 12 

accounting for an assumed 10% inefficiency). Furthermore, the high variation in CO2e savings 13 

between summer/fall and winter/spring seasons is most likely attributed to (1) the near doubling 14 

of average household energy use during the summer season compared to winter season, and (2) 15 

the ERCOT grid dispatching inefficient power plants to meet the peak summer demand. The 16 

distribution of renewable energy in the region’s energy mix fluctuated between 11% and 68% in 17 

2018 and averaged 32%. Additional analysis of grid energy-mix variability indicates the 18 

percentage of renewable energy is lower for extended periods of time in the summer/fall season 19 

and higher for winter/spring season. These findings support the hypothesis that grid energy-mix is 20 

the one of primary variables impacting the magnitude of monthly CO2e savings. Considering 21 

similar electricity demand curves for tested households, CO2e savings for the Battery-Grid only 22 

scenario remained close to the average due to uniform EF values and similar energy use patterns. 23 

 24 

 25 
Figure 4. Average CO2e savings through battery-grid optimization  26 
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Solar-Battery-Grid Scenario 1 

The Solar-Battery-Grid scenario optimized carbon emissions from 39 homes and reduced on 2 

average 5,337 pounds (2.67 tons) of CO2e per household in 2018. Figure 5 shows carbon emission 3 

savings calculated for these homes vary significantly throughout the year ranging between an 4 

average minimum 231 pounds of CO2e in February to an average maximum 727 pounds of CO2e 5 

in July. The variation of CO2e savings is especially prominent during the summertime as rooftop 6 

solar generation systems are prone to reach maximum solar production (see Table B.1 for reference 7 

as values vary between homes due to array size and configuration). Similarly, a more consolidated 8 

carbon savings value is observed in the wintertime as rooftop solar panels may no longer achieve 9 

peak production due to suboptimal conditions. Assuming relatively similar usage patterns, 10 

households with rooftop solar panels achieve at least 9 times greater carbon savings throughout 11 

the year when compared to homes with a standalone BTM BSS.  12 

 13 

 14 
Figure 5. Average CO2e savings through solar-battery-grid optimization 15 

 16 

Economic Analysis 17 

While results indicate BSS systems can reduce carbon emissions, the expected maximum quantity 18 

of additional energy required due to efficiency losses is near 219kW (for the Battery-Grid 19 

scenario). This equates to an additional annual cost of $27.19 per household, assuming the home 20 

is within Austin city limits and has a base load of 1 MW per month (69).  21 

 Based on the emissions reduction results of this study, the potential value to the consumer 22 

is estimated assuming Austin households could be compensated under carbon pricing. As shown 23 

in Figure 6, current (base), moderate, and aggressive pricing estimates of $4 per ton CO2e, $12 per 24 

ton CO2e, and $27.56 per ton CO2e are used to calculate estimates. Under the current carbon pricing 25 

model an Austin homeowner with a BSS would receive an annual average compensation of $0.49 26 

without rooftop solar or $10.67 with rooftop solar. Comparing electricity costs to carbon pricing 27 

benefits of the Battery-Grid scenario, even the aggressive carbon pricing estimate is not enough to 28 

offset the cost of electricity (an expected annual loss of $23.80). Meanwhile, households with solar 29 

have positive returns under just a few carbon pricing scenarios as initial capital costs remain a 30 
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barrier to adoption. Break-even cost results presented in Table 3 underscore how the rapid decline 1 

of battery prices and fruition of carbon pricing policies can approach a tipping point where BTM 2 

BSSs may soon be desirable and add value to a home with rooftop solar. Assuming an annual 3 

discount rate of 3% on carbon pricing, BTM BSSs are profitable in few cases within the estimated 4 

BSS lifespan of 10 years. 5 

 6 

 7 
Figure 6. Benefits under carbon pricing scenarios 8 

 9 

Although carbon pricing may help offset electricity fees, it is imperative to also consider 10 

the cost of BSSs. According to studies, current costs of repurposed lithium-ion BSSs are typically 11 

30% the cost of new batteries and lie between $38 to $147 per kWh (23, 62). Additionally, these 12 

costs may be impacted by externalities such repurposing costs or policy-related subsidies. EV 13 

sector growth, market competition, and product availability will continue to play a key role in 14 

reducing the costs of repurposed lithium-ion BSSs. With these catalysts continuing to expand the 15 

capabilities of BSSs, we expect costs to continue to lower and market penetration to increase in 16 

the future. 17 

 18 

Table 3. Cost Recovery Time of BSSs with Carbon Pricing for Solar-Battery-Grid Case 19 

Carbon Pricing 

Cost of Repurposed BSS 

$147/kWh 

(maximum) 

$100/kWh 

(estimated) 

$38/kWh 

(minimum) 

$4.00 per ton CO2e 

(current) 

infeasible infeasible infeasible 

$12.00 per ton CO2e 

(moderate) 

infeasible infeasible 8.1 years 

(profitable) 

$27.56 per ton CO2e 

(aggressive) 

infeasible 9.5 years 

(profitable) 

3.3 years 

(profitable) 

 20 

DISCUSSION 21 
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In light of the transition to PEVs, this paper sought to answer how the benefits of PEVs could be 1 

extended by repurposing spent lithium-ion batteries for BTM BSS. The utility of this system is 2 

explored with the objective set to minimize a household’s carbon footprint due to electricity. 3 

Battery storage can store excess renewable energy and discharge it to reduce the carbon footprint 4 

of energy consumed. Due to battery inefficiencies, homes without on-site renewables, such as 5 

rooftop solar, are unlikely to adopt a BSS for carbon reduction purposes. Although they may serve 6 

other functions like energy arbitrage and as backup power, BSS optimization for carbon reduction 7 

relies on the grid’s carbon intensity to vary. Increased intermittent renewable energy generation 8 

without large-scale energy storage could allow for more distributed BSS systems since electricity 9 

will need to come from fast response power plants, often natural gas-fired, which could represent 10 

a large enough fluctuation in carbon intensity to overcome inefficiency loss. As the grid 11 

decarbonizes and results in lower EF variability, the purpose of BTM BSS may shift to supporting 12 

grid GHG reduction initiatives (such as reducing the reliance of peaker power plants and/or other 13 

carbon intense sources) possibly with alternative incentives including peak-shaving incentivized 14 

tariffs. Considering the current state of BSS efficiency rates, users such as homeowners and grid 15 

operators must be willing to accept minor losses to achieve sufficient penetration of renewable 16 

energy. 17 

 Homes with on-site renewables, PEVs, and communities served by microgrids are likely 18 

early adopters of this system. While early adopters may not prioritize carbon emission reduction, 19 

they could implement the function as a secondary objective when the feasibility of energy arbitrage 20 

and necessity for emergency energy storage are absent. This study of homes in Austin, Texas finds 21 

an annual peak savings of 2.67 tons of CO2e per household with rooftop solar. Although the actual 22 

emission reductions are a function of array features (size and orientation), baseline energy 23 

consumption, weather (solar irradiance), and system set-up (knowledge of generation and demand, 24 

algorithm performance), BTM BSS with used PEV batteries may soon represent a long-term low 25 

hanging fruit in meeting climate change goals.  26 

 Under the current carbon pricing of $4 per ton CO2e, households with rooftop solar could 27 

expect $10.67 in compensation annually. Annual compensation can increase to $32.02 with $12 28 

per ton CO2e pricing and $73.54 with $27.56 per ton CO2e. Additional cost-benefit analysis reveals 29 

BSS prices must fall to either $15/kWh or carbon pricing must increase to $38.75 per ton of CO2e 30 

for homeowners to breakeven at the end of the estimated 10-year lifespan of the BSS. The reducing 31 

costs of BTM BSS, further supported through subsidies, will also be a key role in reducing the 32 

break-even period and enabling this technology to shift from the infeasible to the feasible range. 33 

While the GHG savings for each household may appear negligible, the power of scale and rising 34 

social cost of CO2e may allow communities to considerably reduce their carbon footprint and 35 

transition both the power and transportation sector away from traditional fuel sources. Unless 36 

governments increase carbon prices, falling repurposed PEV battery costs are expected to be the 37 

primary driver of feasibility for BTM BSS as a GHG reduction medium. 38 

 39 

Limitations 40 

While this study shows a potential for BSSs to reduce carbon emissions, limitations of this study 41 

will impact how storage systems function in practical settings. This study uses perfect knowledge 42 

of energy demand, solar generation, and grid emissions. Therefore, optimization performance is 43 
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likely to decline as historical data does not align with real world observations. BSSs may also 1 

require maintenance and additional costs associated with life cycle analysis (LCA) which are not 2 

considered as part of this study but should be evaluated in the future. However, BSS from 3 

repurposed PEV LIBs have lower life-cycle costs than new systems (56). In addition, the discussed 4 

model only minimized environmental costs and does not analyze installation and service costs for 5 

homeowners. Lastly, the small dataset of 45 homes provided by the energy provider may not be a 6 

true random sample and does not represent all usage trends across the City of Austin. 7 

 8 

CONCLUSION 9 

This study estimates the potential CO2e savings of BTM BSSs with repurposed PEV LIBs in 10 

residential settings. Methods and findings from this study can be applied to assess the feasibility 11 

of household CO2e optimization through BTM BSS for residences in other regions with variable 12 

grid feedstocks. Comparing the magnitude of CO2e reduction with incentives such as carbon 13 

pricing in a region or state can assist homeowners and providers in determining the value of BTM 14 

BSS for CO2e reduction. However, emission estimates could be improved by including the life 15 

cycle CO2e savings of this battery from principal use in transportation to secondary uses in energy 16 

storage. Studies assessing the environmental benefits of repurposing PEV batteries would be wise 17 

to use these results as an upper-bound of GHG savings.  18 

 This study assumes: a process for regional collection and industrialized repurposing of used 19 

PEV batteries (with sufficient supply of LIBs) exists, and DERs can be installed by homeowners 20 

who are principally motivated by the opportunity to store rooftop solar and, perhaps, to lower their 21 

carbon footprint by interacting with the grid at advantageous times. Future work should study the 22 

impact of carbon pricing on household decisions to invest in these DERs and the economic 23 

implications to charge and discharge their batteries at different efficiency costs, time of use (TOU) 24 

electricity rates, and demand charges to lower their household’s carbon footprint. It is also critical 25 

to determine how emerging technologies such as smart charging and vehicle-to-grid (V2G) impact 26 

the frequency of use and economic feasibility of PEV LIBs as BTM BSSs. 27 
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