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ABSTRACT 

This paper demonstrates two types of evacuee behaviors using cumulative prospect theory (CPT) for all 
evacuating agents and traffic simulation to evacuate flooding-vulnerable residents (12% of the region’s 
population) along the coastline of Houston, Texas. The first model assumes panic behavior, with a desire 
to arrive as early as possible, subject to traffic congestion and travel times to different destination options. 
The second model relies on more “patient” preference behaviors (where evacuees seek to avoid 
heavy congestion), and results in a much more orderly evacuation. The two models’ (panicked vs 
patient) departure time and destination choices are jointly optimized to evaluate each evacuee’s 
most likely evacuation decision. The panicked assumption results in departures highly concentrated in the 
first 2 hours of a 6-hour departure window, with those residing closer to safe destinations departing 
earliest, on average. In contrast, the patient or orderly evacuation showed evacuees loading the 6-hour 
window, with many evacuees reluctant to depart in the final hour or two, to avoid rising late-arrival 
penalties. The patient case delivers a rather staggered evacuation, helping evacuate the most distant 
residents first (i.e., those with longest routes to cover, to reach safety). Results suggest that 
panic evacuees tend to evacuate to a closer destination, while patient evacuees tend to select more 
inland/distance destinations, thanks to less congested traffic conditions resulting from more 
orderly departures. Although each destination’s safety level is assumed equal, more inland 
destinations are presumably advantageous, in terms of threat avoidance (from storms in the Gulf of 
Mexico).  

KEYWORDS 

Evacuation; Departure Time Choice; Destination Choice; Network Optimization; Cumulative Prospect 
Theory 

INTRODUCTION 

Hurricanes are becoming as one of the most common, but deadliest natural disasters in the United States. 
It can disrupt residents’ ordinary activities, damage the urban infrastructure, and even result in 
considerable casualties or loss of lives. For instance, Hurricane Harvey caused $125 billion in damages, 
nearly a third of Houston, Texas was flooded, and 40,000 people had to evacuate to shelters (Blake & 
Zelinsky, 2018). Local authorities are the first line to prepare for the risk management plans, issue in-
advance warning alerts, and 
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assign evacuation shelters and routes. Accordingly, it is essential to facilitate the evacuation by managing 1 
the traffic infrastructures, prioritizing the vulnerable population, and responding to the emergency situations. 2 

If possible, the evacuees can decide when and where to evacuate, but their decisions are subject to individual 3 

preferences and the decisions will affect the overall evacuation performance.  4 

The research on traveler’s departure time choice have focused on reflecting the early and late arrival 5 

penalties on the traveler’s decision-making process. Travel times are often considered as random variables, 6 
and the optimal “head-start” times for the travelers are chosen with safety margins (Noland & Small, 1995). 7 

For evacuation purpose, evacuees are facing more risky and uncertain conditions than daily travelers, and 8 
factors accounted for analyzing evacuees’ departure time choices include evacuees’ attitudes toward the 9 

risk (Dixit et al., 2012), probability of hazard occurrence (Golshani et al., 2019), length of the time span to 10 

depart (Tamminga et al., 2011), or the type and timing of the evacuation notice (Fu et al., 2007). As late 11 
departure may put the evacuee at risk, while early and simultaneous departure of evacuees may induce 12 

severe traffic congestion, findings from evacuees’ departure time choices can be adopted on planning timely 13 

evacuation orders by distributing the departure times of evacuees to manage efficient evacuation.  14 

The travel destination choice is another multifaceted decision process, in which demographics (Yang et al., 15 

2010), trip purposes (Molloy & Moeckel, 2017), time-of-day (Zong et al., 2019), or mode choice (Janzen 16 
& Axhausen, 2017) can affect the decisions. When the research focused on evacuation destination choices, 17 

factors including the presence of nearby evacuation routes (e.g., interstate highways) (Cheng et al., 2013), 18 
regional geography (Parady & Hato, 2016), evacuees’ risk attitudes (Parvin et al., 2019) are additionally 19 

considered to apply the model specifically for evacuation scenarios. The evacuation destination choice 20 

models provide the spatial range of evacuation traffics, which can be used to assign evacuation shelters and 21 

infrastructures at proper locations. Even spatiotemporal analyses of jointly modeling evacuees’ departure 22 

time and destination choices have been conducted in an effort to account for the correlation of the two 23 

different decision making processes (Carver & Quincey, 2017; Wong et al., 2020). 24 

In this paper, a joint model of evacuation departure time and destination choices is developed with a focus 25 
on the evacuees’ preferences on arrival times by considering the traffic conditions. Depending on the 26 

evacuees’ preferences, two models are developed, where the first model assumes panic behavior, with a 27 

desire to arrive as early as possible, subject to traffic congestion and travel times to different destination 28 
options. The second model relies on more “patient” preference behaviors (where evacuees seek to avoid 29 

heavy congestion), and results in a much more orderly evacuation. Cumulative prospect theory is used to 30 
describe human decision behaviors under risks and uncertainties by considering the valuation of a possible 31 

outcome of a decision, as well as the probability of that outcome being observed. 32 

The remainder of this paper is organized as follows. Section 2 describes the network and data used in the 33 
analyses to estimate the travel times of evacuation routes as well as the probability of that travel time being 34 

observed. Section 3 introduces the methodology developed in this paper to model the departure time and 35 
destination choices of two different evacuee preferences, whereas the analyses results are discussed in 36 

Section 4. Section 5 summarizes the findings and recommendations obtained from the proposed 37 

methodology. 38 

NETWORK AND DATA DESCRIPTION 39 

This paper’s evacuation scenario assumes a hurricane will make landfall on Houston’s coastline within a 40 

few days. The region’s network contains 36,124 links, across 5,217 traffic analysis zones (TAZs). There are 41 

7.2 million persons residing across the region’s 8 counties: Brazoria, Chambers, Fort Bend, Galveston, 42 
Harris, Liberty, Montgomery, and Waller (US Census Bureau, 2019). This paper assumes that only those 43 

living near the coastline will evacuate, while those inlands will remain but reduce background traffic 44 
volumes by 50 percent (versus a typical weekday). Thus, only TAZs in five counties (Brazoria, Chambers, 45 

Galveston, Harris, and Liberty) are included in the ‘Hurricane Risk Zone’ and subject to the evacuation 46 

plan (Texas Natural Resources Information Service (TNRIS), 2004).  47 



3 

 

The TNRIS defines 5 hurricane risk zones, where someone in zone 1 is threatened only by Category 1 1 
hurricanes, while those in risk zone 5 are threatened by Category 1 through 5 hurricanes (with 5 being the 2 

strongest and heading furthest inland). Residents in Houston’s risk zones 1 through 5 comprise 12.4% of 3 

the region’s 7.2 million. Using the TAZ’s population data, every resident’s home location (origin) is 4 

randomly sampled from the set of links that are within that TAZ. The TAZs that are not included in the 5 

hurricane risk zone are assumed to have 50% of daily weekday traffic. The evacuation destination is 6 
assumed to be one of the 8 exit sites in the Houston network, and when the evacuee arrived at this exit point, 7 

no further evacuation trip is tracked in this paper. To improve the realism of the model, this paper assumed 8 
that the simulation has 30 minutes of warm start to fill in the empty network with daily traffic, and after 9 

warm start, the evacuation begins for 6 hours of departure time slots from 6 AM until noon. The colored 10 

regions in Figure 1 shows the hurricane risk zones and the locations of the 8 destinations with the 11 
recommended evacuation routes from the local metropolitan organization (Houston-Galveston Area 12 

Council). 13 

 14 

Figure 1. Evacuation Route and Destinations 15 

Evacuation Travel Time Estimation 16 

Travel times from evacuees’ origins to destinations depend on departure times and evolving traffic 17 
conditions, which can become rather severe during mass evacuations. Evacuations are rare, so that 18 

simulation methods are needed to estimate the travel time during evacuation. Microsimulation is very 19 

helpful in understanding these traffic dynamics, over time and space. Staggered loading of evacuation 20 
demand may delay the onset of congestion and speed overall evacuation times (Sbayti & Mahmassani, 21 

2006). However, evacuees may not follow a recommended, staggered departure schedule, so a variety of 22 
departure patterns are observed in real world. Figure 2 shows 4 example departure time schedules, based 23 
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on a Beta distribution: early evacuation, late evacuation, uniform evacuation, and a bell-curved evacuation 1 
(with departure times resembling a normal distribution, so that the cumulative distribution resembles an S 2 

curve). Within a given departure time duration (e.g., everyone must depart within a 6-hour period), any 3 

cumulative distribution curve that can fill in the departure time (like those shown in Figure 2) is a feasible 4 

evacuation scenario.  5 

 6 

Figure 2. Example Departure Time Schedules 7 

Here, Eq. (1)’s Beta distribution with two parameters, is used to describe the variety of feasible departure 8 

time schedules. The two shape parameters, 𝑎, 𝑏, are assumed to be a random number between 0 and 3.5 to 9 

describe a specific departure time schedule. This range is found via trial and error to get a good mix of the 10 

4 different shapes as described in Figure 2. In fact, the early evacuation scenario in Figure 2 is derived from 11 

Beta(0.34, 2.88), lazy evacuation is from Beta(2.88, 0.34), uniform evacuation is from Beta(1.00, 1.00), 12 

and bell-curved evacuation is from Beta(2.85, 3.17). From the sampled departure time schedule, the 13 
evacuee’s travel time from his/her origin to destination can be obtained via a traffic simulation. When 14 

numerous departure time schedules are sampled, and the corresponding travel time of origin, destination 15 
triplets are obtained from each of the schedules, the distribution of the travel time from an origin to a 16 

destination can be derived from various scenarios of evacuation departure schedules.  17 

𝐷𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒 𝑇𝑖𝑚𝑒 ~
𝛤(𝑎+𝑏)

𝛤(𝑎)𝛤(𝑏)
 𝑥𝑎−1(1 − 𝑥)𝑏−1 (= 𝐵𝑒𝑡𝑎(𝑎, 𝑏))                                  (1) 18 

 19 
where 20 

𝑎, 𝑏 ∈ (0, 3.5)  21 

𝛤(𝑧) = ∫ 𝑦𝑧−1𝑒−𝑦𝑑𝑦
∞

0
 (Gamma function) 22 

Using Eq. (1), 6,000 different departure time schedules and trip routings are simulated, for 6 hours of 23 

departure time duration. The departure times are aggregated into 15-minute intervals, or 24 intervals across 24 
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the 6-hours departure period (as requested or required by authorities). Within each 15-minute interval, t, 1 
travel times between each origin link i to destination link j are aggregated across these 6,000 simulations to 2 

derive a travel time distribution for all ijt (origin – destination – departure time interval) triplet. An evacuee 3 

departing from origin i at departure interval t is likely to choose the destination j with the smallest travel 4 

time among the 8 exit sites with probability 𝑃𝑟(𝑗𝑖𝑡), as specified in Eq. (2). This paper assumes that the 5 

travel time distribution of the ijt triplet will follow a normal distribution with mean 𝜇𝑖𝑗𝑡 and standard 6 

deviation 𝜎𝑖𝑗𝑡. When fewer than 5 travel time samples are obtained for a given ijt triplet, 𝜇𝑖𝑗𝑡 is assumed 7 

to be the free-flow travel time (from i to j), and 𝜎𝑖𝑗𝑡 is assumed to be the largest observed value (5.05 8 

hours) from the 6,000 simulations to reflect uncertainties in estimating the travel time of this specific ijt 9 

triplet. However, only 0.8% of the total evacuation demand are subject to this assumption.  10 

From this 𝑁(𝜇𝑖𝑗𝑡 , 𝜎𝑖𝑗𝑡2) distribution, the probability that the travel time will take no longer than 𝑇𝑇𝑘  in 11 

a given ijt triplet can be obtained using the cumulative density function of the normal distribution. As 12 
normal distribution is a continuous probability distribution, the probability that the travel time will be 13 

exactly 𝑇𝑇𝑘  cannot be estimated. Thus, the probability of the travel time being 𝑇𝑇𝑘  is approximated by 14 

discretizing the distribution. Define 𝑇𝑇𝑘−1 as the travel time value that is one step smaller from the sample 15 

results than 𝑇𝑇𝑘 , and the difference of the cumulative density function of 𝑇𝑇𝑘  and 𝑇𝑇𝑘−1, in which a 16 

strict definition of this difference is the probability that travel time will be between 𝑇𝑇𝑘−1 and 𝑇𝑇𝑘 , is 17 

assumed to be the probability that the travel time will be 𝑇𝑇𝑘 . 18 

𝑃𝑟(𝑗𝑖𝑡) =
𝑒𝑥𝑝(−𝑇𝑇𝑖𝑗𝑡)

∑ 𝑒𝑥𝑝(−𝑇𝑇𝑖𝑑𝑡)𝑑∈𝑆
                                                              (2) 19 

 20 

where 21 

𝑃𝑟(𝑗𝑡): probability to choose destination j from origin i departing at t 22 

𝑇𝑇𝑖𝑗𝑡 : travel time from i to j departing at t (𝑇𝑇𝑖𝑗𝑡~𝑁(𝜇𝑖𝑗𝑡 , 𝜎𝑖𝑗𝑡2)) 23 

𝑆: set of destinations 24 

This paper assumed each household has only 1 privately-owned vehicle, and all household members will 25 

evacuate together in this vehicle. The traffic simulation is performed by an open-source traffic simulator 26 

named SUMO (Simulation of Urban MObility) with a Python API named TraCI (Krajzewicz et al., 2012). 27 
In the simulation, only 10% of the population are sampled due to the high computational cost. The roadway  28 

capacity is reduced proportional to the sampling rate to maintain the traffic characteristics. The outcome of 29 
this simulation, the travel time distribution from origin i to destination j departing at t, will be used to 30 

optimize the evacuee’s departure time and destination choices. 31 

METHODOLOGY 32 

This section includes the methodologies used to model and simulate departure time and destination choice 33 
during evacuation with cumulative prospect theory. Two different models are suggested, where the first 34 

model assumes that evacuees’ departure time and destination choices are subject to the willingness of 35 
evacuees to arrive as early as possible, while the second model assumes evacuees will make optimal 36 

departure time and destination choices under the willingness to arrive exactly at the desired time. 37 

Panic Evacuation Simulation using Cumulative Prospect Theory (CPT) 38 

Theoretical Background 39 

Cumulative prospect theory (CPT) is a descriptive model proposed by Tversky and Kahneman (Tversky & 40 

Kahneman, 1992) to describe human decision behaviors under risks and uncertainties. The utility of a 41 

certain decision is assessed by 1) the valuation of the outcome of the decision in terms of gains and losses 42 

and 2) a weighted function describing the probability to observe the outcome. The major difference of CPT 43 
compared to original prospect theory is that different attitudes towards probability for gains and losses can 44 
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be adopted via using cumulative probability of the outcomes (Fennema & Wakker, 1997).  1 

This paper defines ∆𝑥𝑘 as the quantified difference between the decision’s outcome (𝑥𝑘) and a reference 2 

point (𝑥∗), so that ∆𝑥𝑘 = 𝑥𝑘 − 𝑥∗. Assuming n different outcomes from making a decision, ∆𝑥1 ≤ ⋯ ≤3 

∆𝑥𝑙 ≤ 0 ≤ ∆𝑥𝑙+1 ≤ ⋯ ≤ ∆𝑥𝑛 are possible.  to ∆𝑥𝑙  to ∆𝑥𝑛 that have larger value than the reference 4 

point are gains.  5 

The value function is typically a non-linear two-stage function that has different equations for gains and 6 
losses. Eq. (3) shows one of the value functions used in this paper, which is obtained from (Liu & Li, 2019). 7 

χ  and ω  are the median exponent parameters to demonstrate diminishing sensitivity of the gains and 8 

losses, and λ is the loss aversion parameter to penalize losses over gains. 9 

𝜐(∆𝑥𝑘) = {
(∆𝑥𝑘)

χ         ,   ∆𝑥𝑘 ≥ 0

−λ(−∆𝑥𝑘)
ω,   ∆𝑥𝑘 < 0 

                                                      (3) 10 

 11 
where 12 

χ: 0.89 13 

ω: 0.92 14 

λ: 2.25 15 

The probability that the outcome k and its corresponding value function, 𝜐(∆𝑥𝑘) , can be observed is 16 

defined as 𝑝𝑘. Prospect theory including CPT defines that individuals do not weight outcomes directly by 17 

the objective probability 𝑝𝑘, but rather uses the decision weight, 𝜋𝑘+ for gain and 𝜋𝑘− for loss, which are 18 

the transformed probabilities to overweight low probabilities and underweight high probabilities (Barberis, 19 

2013). This decision weight is used to model individuals’ risk-taking behaviors under low-probability 20 
events by overweighting that probability or discounting the high-probability events since they are rather 21 

common. In this version of CPT model, the decision weights are defined by using the weight function, 𝑤(∙), 22 

obtained from (Liu & Li, 2019) as written in Eq. (4). The summation part in Eq. (4) can be converted to an 23 

integral using a continuous function as written in Eq. (5). 24 

𝜋𝑘
+ = 𝑤+(∑ 𝑝𝑚

𝑛
𝑚=𝑘 ) − 𝑤+(∑ 𝑝𝑚

𝑛
𝑚=𝑘+1 ),   𝑙 < 𝑘 ≤ 𝑛                                       (4) 25 

𝜋𝑘
− = 𝑤−(∑ 𝑝𝑚

𝑘
𝑚=1 ) − 𝑤−(∑ 𝑝𝑚

𝑘−1
𝑘=1 ),       1 ≤ 𝑘 ≤ 𝑙  26 

 27 
where 28 

𝑛: number of decisions 29 

𝑙: number of losses 30 

𝑤+(𝑝) =
𝑝0.61

[𝑝0.61+(1−𝑝)0.61]1/0.61
  31 

𝑤−(𝑝) =
𝑝0.69

[𝑝0.69+(1−𝑝)0.69]1/0.69
  32 

𝜋𝑘
+ = 𝑤+(∫ 𝑝(𝑘)𝑑𝑘

𝑛

𝑙
) − 𝑤+(∫ 𝑝(𝑘)𝑑𝑘

𝑛

𝑙+1
)                                               (5) 33 

𝜋𝑘
− = 𝑤− (∫ 𝑝(𝑘)𝑑𝑘

𝑙

1
) − 𝑤− (∫ 𝑝(𝑘)𝑑𝑘

𝑙−1

1
)  34 

Using the value function, 𝜐(∆𝑥𝑘), and the decision weight, 𝜋𝑘
+/−, the expected utility of a decision that 35 

will have n different outcomes can be derived using Eq. (6). Since the utility equation uses both value 36 

function and decision weight, the individual will consider both the value of the outcome of the value 37 
function as well as the likelihood that the outcome will be observed. Assuming n different outcomes from 38 

a decision, (∆𝑥1, 𝑝1;…;∆𝑥𝑛, 𝑝𝑛) pairs can be expected from this decision. 39 

𝑉 = ∑ 𝜐(∆𝑥𝑘)
𝑙
𝑘=1 𝜋𝑘

− + ∑ 𝜐(∆𝑥𝑘)
𝑛
𝑘=𝑙+1 𝜋𝑘

+                                                (6) 40 
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CPT for Evacuation Departure Time and Destination Choice 1 

CPT has been applied to the field of transportation including emergency response problems (Liu et al., 2 

2014), and to model traveler’s route choice behavior (Xu et al., 2011). In the evacuation problem, the kth 3 

outcome of an evacuee departing from origin i to destination j at departure time interval t is the arrival time, 4 

𝐴𝑇𝑘
𝑖𝑗𝑡, he/she will finish the evacuation. The decisions that this evacuee have to make are 1) the departure 5 

time choice to decide at which departure time interval t he/she should evacuate, and 2) the destination 6 
choice to decide which destination j he/she should evacuate at the departure time interval t. As the outcome 7 

of this ijt decision is the arrival time, arriving to the destination earlier than the desired arrival time, 𝐴𝑇∗,𝑖𝑗𝑡, 8 

can be posed as gain, while arriving later than 𝐴𝑇∗,𝑖𝑗𝑡 can be posed as loss. Therefore, the desired arrival 9 

time for ijt decision, 𝐴𝑇∗,𝑖𝑗𝑡, can be interpreted as the reference point, and ∆𝑥𝑘 needed in CPT is defined 10 

as the difference between the evacuee’s arrival time, 𝐴𝑇𝑘
𝑖𝑗𝑡, and the desired arrival time, 𝐴𝑇∗,𝑖𝑗𝑡. 11 

The arrival time, 𝐴𝑇𝑘
𝑖𝑗𝑡, for an ijt decision is the sum of the actual departure time, deptT, which is the actual 12 

departure time randomly chosen within the 15 min departure time interval t, and the kth outcome of travel 13 

time, 𝑇𝑇𝑘
𝑖𝑗𝑡 . The probability to arrive at 𝐴𝑇𝑘

𝑖𝑗𝑡 is subject to the probability that the travel time will be 14 

𝑇𝑇𝑘
𝑖𝑗𝑡  , which is written as 𝑝𝑘

𝑖𝑗𝑡 . Therefore, the probability to observe the outcome 𝐴𝑇𝑘
𝑖𝑗𝑡  from the ijt 15 

decision is subject to the travel time distribution of this ijt decision, which is defined as the normal 16 

distribution, 𝑁(𝜇𝑖𝑗𝑡 , 𝜎𝑖𝑗𝑡2). Eq. (7) shows the application of CPT to the evacuation problem as described 17 

above. 18 

𝜐(𝐴𝑇∗,𝑖𝑗𝑡 − 𝐴𝑇𝑘
𝑖𝑗𝑡) = {

(𝐴𝑇∗,𝑖𝑗𝑡 − 𝐴𝑇𝑘
𝑖𝑗𝑡)

χ
                ,   𝐴𝑇∗,𝑖𝑗𝑡 − 𝐴𝑇𝑘

𝑖𝑗𝑡 ≥ 0, 𝑒𝑎𝑟𝑙𝑦 𝑎𝑟𝑟𝑖𝑣𝑎𝑙

−λ (−(𝐴𝑇∗,𝑖𝑗𝑡 − 𝐴𝑇𝑘
𝑖𝑗𝑡))

ω
,   𝐴𝑇∗,𝑖𝑗𝑡 − 𝐴𝑇𝑘

𝑖𝑗𝑡 < 0, 𝑙𝑎𝑡𝑒 𝑎𝑟𝑟𝑖𝑣𝑎𝑙
           (7) 19 

 20 

𝜋𝑘
+ = 𝑤+(∑ 𝑝𝑚

𝑖𝑗𝑡𝑛
𝑚=𝑘 ) − 𝑤+(∑ 𝑝𝑚

𝑖𝑗𝑡𝑛
𝑚=𝑘+1 ), 𝑙 < 𝑘 ≤ 𝑛  21 

𝜋𝑘
− = 𝑤−(∑ 𝑝𝑚

𝑖𝑗𝑡𝑘
𝑚=1 ) − 𝑤−(∑ 𝑝𝑚

𝑖𝑗𝑡𝑘−1
𝑚=1 ),      1 ≤ 𝑘 ≤ 𝑙  22 

 23 

𝑉𝑖𝑗𝑡 = ∑ 𝜐(𝐴𝑇∗,𝑖𝑗𝑡 − 𝐴𝑇𝑘
𝑖𝑗𝑡)𝑙

𝑘=1 𝜋𝑘
− + ∑ 𝜐(𝐴𝑇∗,𝑖𝑗𝑡 − 𝐴𝑇𝑘

𝑖𝑗𝑡)𝑛
𝑘=𝑙+1 𝜋𝑘

+  24 

 25 

where 26 

𝐴𝑇𝑘
𝑖𝑗𝑡 = 𝑑𝑒𝑝𝑡𝑇 + 𝑇𝑇𝑘

𝑖𝑗𝑡  27 

𝑑𝑒𝑝𝑡𝑇 ∈ {𝑟𝑎𝑛𝑑𝑜𝑚 𝑎𝑐𝑡𝑢𝑎𝑙 𝑡𝑖𝑚𝑒|𝑎𝑐𝑡𝑢𝑎𝑙 𝑡𝑖𝑚𝑒 𝑣𝑎𝑙𝑢𝑒𝑠 𝑖𝑛 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 𝑡}  28 

𝑉𝑖𝑗𝑡: utility of the decision ijt 29 

𝑝𝑘
𝑖𝑗𝑡 ∼ 𝑁(𝜇𝑖𝑗𝑡 , 𝜎𝑖𝑗𝑡

2)  30 

χ, λ, ω,𝑤(∙): defined in Eq. (3) and Eq. (4) 31 

In Eq. (7), all variables and parameters are defined except the desired arrival time of the ijt decision, 𝐴𝑇∗,𝑖𝑗𝑡. 32 

In the real world, the desired arrival time can vary by individuals and types of disasters that trigger the 33 

evacuation. In this paper, the 𝐴𝑇∗,𝑖𝑗𝑡, will be estimated using steepest hill climbing algorithm that results 34 

in the maximum utility, 𝑉𝑖𝑗𝑡∗ . For a given evacuee with the origin i, initialize the 𝐴𝑇∗,𝑖𝑗𝑡 with a random 35 

number within 0-to-6.5-hour duration and its corresponding utility. In every iteration, explore a new 𝐴𝑇∗,𝑖𝑗𝑡 36 

that is neighboring within 30 minutes, but does not exceed the 0-to-8-hour duration. Find the optimal 37 

departure time interval, t*, and the optimal destination choice at that interval, j*, that results in the maximum 38 

utility, 𝑉𝑖𝑗𝑡∗  with the new 𝐴𝑇∗,𝑖𝑗𝑡. If the new 𝑉𝑖𝑗𝑡∗  is larger than the 𝑉𝑖𝑗𝑡∗  value from the previous iteration, 39 

accept the new 𝐴𝑇∗,𝑖𝑗𝑡, its departure time choice t* and destination choice j*, and iterate until the algorithm 40 

converges. Algorithm 1 describes the pseudo-code of the method, and it is terminated if the percent change 41 
of the moving average of all evacuees’ mean utility meets the convergence criteria or if the simulation 42 



8 

 

reached its maximum iteration. With this method, the optimal desired arrival time, 𝐴𝑇∗,𝑖𝑗𝑡 , and its 1 

corresponding optimal departure time choice, t*, and optimal destination choice, j*, can be found for any 2 

evacuee departing from any origin i.  3 

Algorithm 1. Steepest Hill Climbing for Departure Time & Destination Choices 4 

Step 1: Initialize 5 

For all evacuees: 6 

 Initialize 𝐴𝑇∗,𝑖𝑗𝑡 and utility 𝑉𝑖𝑗𝑡 with a random ijt decision. 7 

  𝐴𝑇∗,𝑖𝑗𝑡 ∈ [0, 6.5 ℎ𝑟. ]  8 

Step 2: Explore 9 

For all evacuees:  10 

𝐴𝑇𝑛𝑒𝑤
∗,𝑖𝑗𝑡 = 𝑚𝑎𝑥(𝑚𝑖𝑛(𝐴𝑇∗,𝑖𝑗𝑡 ± 0.5𝑟𝑎𝑛𝑑, 8), 0) where the unit of 𝐴𝑇∗,𝑖𝑗𝑡 is in hours. 11 

Find t* that results in 𝑉𝑖𝑗𝑡∗
∗ , given the destination choice as j  12 

Find j* that results in 𝑉𝑖𝑗∗𝑡∗
∗ , given the departure time choice as t* 13 

Step 3: Evaluate & Accept 14 

For all evacuees: 15 

If 𝑉𝑖𝑗∗𝑡∗
∗  >  𝑉𝑖𝑗𝑡

∗ : 16 

   𝐴𝑇∗,𝑖𝑗𝑡 ← 𝐴𝑇𝑛𝑒𝑤
∗,𝑖𝑗𝑡 17 

   t←t* 18 

j←j* 19 

Step 4: Iterate until converge 20 

Convergence criteria:  21 

For iteration 𝜉, assume mean 𝑉𝑖𝑗𝑡∗̅̅ ̅̅̅ of all evacuees as (𝑉𝑖𝑗𝑡∗̅̅ ̅̅̅)(𝜉), 22 

|1 −
(𝑉𝑖𝑗𝑡

∗̅̅ ̅̅ ̅)
(𝜉−9)

+ ⋯ + (𝑉𝑖𝑗𝑡
∗̅̅ ̅̅ ̅)

(𝜉)

(𝑉𝑖𝑗𝑡
∗̅̅ ̅̅ ̅)

(𝜉−10)
+ ⋯ + (𝑉𝑖𝑗𝑡

∗̅̅ ̅̅ ̅)
(𝜉−1)

| < 1𝑒 − 4 or 𝜉 > 2,000 23 

Go to Step 2 until converge. 24 

Patient Evacuation Simulation using Cumulative Prospect Theory (CPT) 25 

Patient Evacuation to Avoid Panic 26 

The shape of the value function in the previous section implies the evacuees’ behavior of ‘arrive as early as 27 

possible’. The value function, 𝜐(𝐴𝑇∗,𝑖𝑗𝑡 − 𝐴𝑇𝑘
𝑖𝑗𝑡), is maximized when 𝐴𝑇𝑘

𝑖𝑗𝑡 is minimized representing 28 

that the evacuees pursue to arrive as early as possible; thus, the panic behavior during evacuation is modeled 29 

with this value function. However, as this value function may improve the realism of modeling human 30 
nature, it may not result in the optimal decision-making process that can improve the overall evacuation 31 

performance.  32 

Staggered evacuations are known to perform better than simultaneous evacuation in terms of roadway 33 

capacity management (Liu et al., 2006) and overall evacuation time reduction (Chen & Zhan, 2014), so that 34 

the strategy of ‘arrive as early as possible’ should be avoided if possible. Nonetheless, the performance of 35 
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optimal evacuation plan may vary with respect to the evacuees’ compliance behavior (Fu et al., 2013). A 1 
well-planned staggered evacuation may not be implemented in the real world with expected evacuation 2 

performance if the evacuees do not follow the rule and fall into a panic. The order compliance problem 3 

during evacuation can be mitigated when the information technology is reliable enough so that the evacuees 4 

will trust the expected network conditions and avoid panic behavior by using networking devices including 5 

computers, smartphones, and automated vehicles (AVs). AVs can even be centrally controlled via 6 
communication devices to improve the compliance rate. With a more reliable travel time estimates, future 7 

evacuees may make a more patient and reasonable decision than before. In this context, the second model, 8 
namely patient CPT model, where the evacuees behave more patiently to avoid falling into panic suggests 9 

a transition from ‘arrive as early as possible’ to ‘arrive exactly at your desired time’. 10 

The core of the patient CPT model is that arriving at the desired arrival time, 𝐴𝑇∗,𝑖𝑗𝑡, will have the highest 11 

value from the value function thanks to evacuees behaving more patient and panicking less than before. By 12 

each evacuees arriving exactly at the desired arrival time, the evacuation becomes staggered with the 13 
conditions each evacuee will be facing (e.g., origin location, level of traffic congestion, destination choice, 14 

departure time choice, etc.). Two additional arrival times are introduced as well, namely early arrival time, 15 

𝐴𝑇𝑒,𝑖𝑗𝑡, and late arrival time, 𝐴𝑇𝑙 ,𝑖𝑗𝑡 as proposed by (Li et al., 2018). Although the model from (Li et al., 16 

2018) suggested that arriving earlier than 𝐴𝑇𝑒,𝑖𝑗𝑡 is defined as loss in the value function, it should be not 17 

defined as loss in the evacuation problem. Arriving too early should be still advantageous in the evacuation 18 

problem since the evacuee is more likely to survive by arriving early, although the amount of gain should 19 
converge to 0 with the amount of time arriving earlier. Likewise, in evacuation problem, arriving too late 20 

compared to 𝐴𝑇𝑙,𝑖𝑗𝑡 should be heavily penalized as loss since the evacuee may not survive if he/she arrives 21 

too late. 22 

The evacuees’ perception of early and late arrival time relative to the desired arrival time may be different 23 

by individuals. For instance, some evacuees will perceive arriving just for a few more seconds than the 24 
desired arrival time as late arrival since they are more cautious than others, while other evacuees will 25 

perceive arriving a few more hours than desired time as late arrival due to their optimistic personality. In 26 

this sense, each evacuee will have early arrival coefficient (𝜏𝑒𝑎𝑟𝑙𝑦) and late arrival coefficient (𝜏𝑙𝑎𝑡𝑒) to 27 

describe the evacuee’s personality, which are random number between 0 and 1. Using the two coefficients, 28 

early and late arrival times for each evacuee can be defined as written in Eq. (8).  29 

𝐴𝑇𝑒,𝑖𝑗𝑡 = 𝐴𝑇∗,𝑖𝑗𝑡𝜏𝑒𝑎𝑟𝑙𝑦                                                                (8) 30 

𝐴𝑇𝑙,𝑖𝑗𝑡 = 𝑚𝑖𝑛(𝐴𝑇∗,𝑖𝑗𝑡/𝜏𝑙𝑎𝑡𝑒, 8 ℎ𝑟. )  31 

𝜏𝑒𝑎𝑟𝑙𝑦 , 𝜏𝑙𝑎𝑡𝑒 ∈ (0, 1)   32 

Assuming 8 hr. is the maximum late arrival time 33 

By comparing the arrival time (𝐴𝑇𝑘
𝑖𝑗𝑡) to early arrival time (𝐴𝑇𝑒,𝑖𝑗𝑡), desired arrival time (𝐴𝑇∗,𝑖𝑗𝑡), and late 34 

arrival time (𝐴𝑇𝑙,𝑖𝑗𝑡), four states of arrival times, namely 1) too early arrival, 2) acceptable early arrival, 3) 35 

acceptable late arrival, and 4) too late arrival can be defined. The patient CPT model’s value function 36 

(𝑣(𝐴𝑇𝑘
𝑖𝑗𝑡)), decision weight (𝜋𝑘

+/−), and its utility equation of is as written in Eq. (9). The parameter 𝜂 37 

represents the inflection point, 𝛨 represents the maximum of the value function, 𝛼, 𝛽 represent the shape 38 

of the value function when the arrival time is later than the desired time, and 𝛾 represents the shape of the 39 

weight function, 𝑤(∙). All the five parameters mentioned above should be calibrated to derive the optimal 40 
model performance. Thereafter, Algorithm 1 will be applied to the patient CPT model to find the optimal 41 

departure time and destination choices. 42 
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𝑣(𝐴𝑇𝑘
𝑖𝑗𝑡) =

{
 
 
 
 

 
 
 
 

[1 𝛨⁄ −1]

1+exp(−𝜂 (𝐴𝑇𝑘
𝑖𝑗𝑡
−𝐴𝑇𝑒,𝑖𝑗𝑡)) 

,                                                              𝑡𝑜𝑜 𝑒𝑎𝑟𝑙𝑦 (𝐴𝑇𝑘
𝑖𝑗𝑡 ≤ 𝐴𝑇𝑒,𝑖𝑗𝑡)

[1 𝛨⁄ −1]

1+𝑒𝑥𝑝(−𝜂 (𝐴𝑇𝑘
𝑖𝑗𝑡
−𝐴𝑇𝑒,𝑖𝑗𝑡)) 

,                             𝑎𝑐𝑐𝑒𝑝𝑡𝑎𝑏𝑙𝑒 𝑒𝑎𝑟𝑙𝑦 (𝐴𝑇𝑒,𝑖𝑗𝑡 < 𝐴𝑇𝑘
𝑖𝑗𝑡 ≤ 𝐴𝑇∗,𝑖𝑗𝑡)

[𝐴𝑇𝑙,𝑖𝑗𝑡 − 𝐴𝑇𝑘
𝑖𝑗𝑡]

𝛼

[1 𝛨⁄ −1]

1+𝑒𝑥𝑝(−𝜂 (𝐴𝑇∗,𝑖𝑗𝑡−𝐴𝑇𝑒,𝑖𝑗𝑡)) 

[𝐴𝑇𝑙,𝑖𝑗𝑡−𝐴𝑇∗,𝑖𝑗𝑡]
𝛼 , 𝑎𝑐𝑐𝑒𝑝𝑡𝑎𝑏𝑙𝑒 𝑙𝑎𝑡𝑒 (𝐴𝑇∗,𝑖𝑗𝑡 < 𝐴𝑇𝑘

𝑖𝑗𝑡 ≤ 𝐴𝑇𝑙,𝑖𝑗𝑡)

−[𝐴𝑇𝑘
𝑖𝑗𝑡 − 𝐴𝑇𝑙]

1

𝛽,                                                                              𝑡𝑜𝑜 𝑙𝑎𝑡𝑒 (𝐴𝑇𝑙,𝑖𝑗𝑡 < 𝐴𝑇𝑘
𝑖𝑗𝑡)

  (9) 1 

 2 

𝜋𝑘
+ =

{
 
 

 
 𝑤+ (∑ 𝑝𝑚

𝑖𝑗𝑡𝑠+𝑐+𝑠′+𝑐′

𝑚=𝑘 ) −𝑤+ (∑ 𝑝𝑚
𝑖𝑗𝑡𝑠+𝑐+𝑠′+𝑐′

𝑚=𝑘+1 ) ,                                 𝑠 + 𝑐 + 𝑠′<𝑘≤𝑠 + 𝑐 + 𝑠′+ 𝑐′

𝑤+(∑ 𝑝𝑚
𝑖𝑗𝑡𝑘+1

𝑚=𝑠+𝑐+1 ) − 𝑤+(∑ 𝑝𝑚
𝑖𝑗𝑡𝑘

𝑚=𝑠+𝑐+1 ),                                                    𝑠 + 𝑐<𝑘≤𝑠 + 𝑐 + 𝑠′

𝑤+(∑ 𝑝𝑚
𝑖𝑗𝑡𝑠+𝑐

𝑚=𝑘 ) − 𝑤+(∑ 𝑝𝑚
𝑖𝑗𝑡𝑠+𝑐

𝑚=𝑘+1 ),                                                                              𝑠<𝑘≤𝑠 + 𝑐

  3 

𝜋𝑘
− = 𝑤−(∑ 𝑝𝑚

𝑖𝑗𝑡𝑘
𝑚=1 ) − 𝑤−(∑ 𝑝𝑚

𝑖𝑗𝑡𝑘−1
𝑚=1 ),                                                                                              1≤𝑘≤𝑠  4 

𝑤+/−(𝑝) =
𝑝𝛾

[𝑝𝛾+(1−𝑝)𝛾]1/𝛾
  5 

 6 

𝑉𝑖𝑗𝑡 = ∑ 𝜐(𝐴𝑇𝑘
𝑖𝑗𝑡
)𝑠

𝑘=1 𝜋𝑘
− + ∑ 𝜐(𝐴𝑇𝑘

𝑖𝑗𝑡
)

s+c+s′+c′

𝑘=𝑠+1 𝜋𝑘
+  7 

 8 

where 9 

𝛼, 𝛽, 𝛾, 𝜂, 𝛨 ∈ [0, 1]  10 

𝑐′: number of too early outcomes 11 

𝑠′: number of acceptable early outcomes 12 

𝑐: number of acceptable late outcomes 13 

𝑠: number of too late outcomes 14 

Figure 3 graphically depicts the difference of the two CPT models. In Figure 3-(a), the maximum of the 15 

value function of the first CPT model, panic evacuation, can be expected when 𝐴𝑇𝑘
𝑖𝑗𝑡 is minimized with a 16 

given 𝐴𝑇∗,𝑖𝑗𝑡. This model represents the strategy of ‘arrive as early as possible’. The marginal impact of 17 

change in the value function diminishes when the distance from 𝐴𝑇∗,𝑖𝑗𝑡  increases. The diminishing 18 

sensitivity of loss especially represents that the evacuee becomes insensitive to the unit arrival time when 19 

he/she is expected to arrive too late compared to a reference time. 20 

In Figure 3-(b), the second model’s the maximum value function can be expected when 𝐴𝑇𝑘
𝑖𝑗𝑡  equals 21 

𝐴𝑇∗,𝑖𝑗𝑡, which represents the strategy of ‘arrive exactly at your desired time’. This may become possible 22 

when evacuees are not under panic by understanding the traffic conditions better than before. Arriving 23 

earlier than the desired arrival time is always beneficial, since it still implies a successful evacuation. 24 

However, the amount of gain converges to 0 with respect to the amount of time arriving earlier, since 25 

arriving early is not the optimal arrival time.  26 

The marginal impact of change in the proposed model’s value function increases when the arrival time is 27 
expected to be too late. The increasing sensitivity of loss represents that the evacuee becomes more sensitive 28 

to the unit arrival time when he/she is expected to arrive too late. Thus, late arrival is more strictly avoided 29 

with the proposed model than the original model. In the real world, the evacuee would desperately attempt 30 

to avoid the worst case, since the ultimate loss from arriving late during evacuation would be the evacuee’s 31 

life, which is indispensable. This may explain the evacuation behavior better than what was implied in the 32 
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first CPT model, where the evacuee in the first model became insensitive to the loss when the arrival time 1 

is too late.  2 

 3 

Figure 3. Value Functions of (a) the Panic CPT Model and (b) the Patient CPT Model 4 

Parameter Calibration 5 

The parameter vector, [𝛼, 𝛽, 𝛾, 𝜂, Η], of the patient CPT model should be calibrated before Algorithm 1 is 6 

implemented to find the optimal departure time and destination choices. All 5 parameters are between 0 and 7 
1, and for simplicity, this paper assumed that these parameters are numbers with two decimal points (0.01, 8 

…,0.99). With a random 𝐴𝑇∗,𝑖𝑗𝑡 assigned to all evacuees, genetic algorithm is used to find the parameter 9 

vector [𝛼, 𝛽, 𝛾, 𝜂, Η] that results in the maximum mean utility, 𝑉𝑖𝑗𝑡∗̅̅ ̅̅̅. The genetic algorithm used in this 10 

paper is based on single-point crossover method with population 48, selection rate 0.6 and mutation rate 11 

0.1. Algorithm 2 describes the pseudo-code of the algorithm used to calibrate the parameters. For 12 

calculational simplicity, only 1% of the evacuation demand is sampled for the parameter calibration. 13 

Algorithm 2. Parameter Calibration with Genetic Algorithm 14 

Step 1: Parameter Initialized 15 

48 different [𝛼, 𝛽, 𝛾, 𝜂, 𝛨] ∈ [0, 1] vectors randomly assigned (two decimal points). 16 

Step 2: Initialize 𝑨𝑻∗,𝒊𝒋𝒕 17 

For all parameter vector: 18 

For all evacuees: 19 

 Initialize 𝐴𝑇∗,𝑖𝑗𝑡 and utility 𝑉𝑖𝑗𝑡 with a random ijt decision. 20 

      𝐴𝑇∗,𝑖𝑗𝑡 ∈ [0, 6.5 ℎ𝑟. ]  21 

Step 3: Explore 22 

For all parameter vector: 23 

For all evacuees:  24 

𝐴𝑇𝑛𝑒𝑤
∗,𝑖𝑗𝑡 = 𝑚𝑎𝑥(𝑚𝑖𝑛(𝐴𝑇∗,𝑖𝑗𝑡 ± 0.5𝑟𝑎𝑛𝑑, 8), 0) where the unit of 𝐴𝑇∗,𝑖𝑗𝑡 is in hours. 25 

Find t* that results in 𝑉𝑖𝑗𝑡∗
∗ , given the destination choice as j  26 
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Find j* that results in 𝑉𝑖𝑗∗𝑡∗
∗ , given the departure time choice as t* 1 

Step 4: Evaluate, Crossover and Mutate 2 

Objective function of the given parameter vector = 𝑉𝑖𝑗∗𝑡∗∗̅̅ ̅̅ ̅̅ ̅ (Mean 𝑉𝑖𝑗∗𝑡∗
∗  of all evacuees) 3 

Rank order the 48 parameter vectors by its objective function. 4 

Perform single-point crossover with selection rate 0.6, mutation rate 0.1 for all parameter vectors to 5 

maximize the objective function. 6 

Step 5: Iterate until Converge 7 

Convergence criteria:  8 

For iteration 𝜉, assume the highest objective function among 48 parameter vectors as 𝐶𝜉, 9 

|1 −
𝐶𝜉−9+ ⋯ + 𝐶𝜉

𝐶𝜉−10+ ⋯ + 𝐶𝜉−1
| < 1𝑒 − 4 or 𝜉 > 100 10 

Go to Step 2 until converge. 11 

Figure 4 shows the convergence results of the parameter calibration using genetic algorithm. Genetic 12 

algorithm is a heuristic approach with inherent stochasticity, so that a sudden jump in objective function 13 
can be observed when a random solution set is stochastically searched. Figure 4 shows that the objective 14 

function is improved greatly at iteration 4. After 24 iterations, the optimization satisfied the convergence 15 

criteria and stopped the iteration. The parameters found are 𝛼 = 0.01, 𝛽 = 0.83, 𝛾 = 0.96, 𝜂 =16 

0.98, and 𝛨 = 0.01. These parameters will be used to simulate the patient evacuation throughout this paper. 17 

 18 

Figure 4. Genetic Algorithm Convergence Results 19 

Model Convergence 20 

In the simulation, only 10% of the population are sampled due to the high computational cost, and the non-21 
evacuating regions are assumed to have 50% of daily weekday traffic. Each evacuee’s departure time and 22 

destination choices are updated with Algorithm 1 to maximize his/her utility. Figure 5 shows the 23 
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convergence results of the two models. For the patient evacuation model, the parameters obtained from 1 
Algorithm 2 are used. The panic and patient models are iterated for 1,876 and 240 iterations, respectively, 2 

and both models’ iteration is terminated after the convergence criteria is satisfied. The mean utility of the 3 

panic and patient models after the iterations is 6.57 and 84.18, respectively.  4 

The utility of the patient model is higher than that of the panic model, but it is the result of using different 5 

value function and does not represent that the patient model outperformed the panic original model by just 6 
having higher utility. The departure time and destination choices of all evacuees from each model’s 7 

convergence results will be used hereafter to evaluate the evacuation performance of the two models. 8 

 9 

Figure 5. Model Convergence Results for (a) Panic CPT Model and (b) Patient CPT Model  10 

EVACUATION SIMULATION 11 

The departure time and destination choices will be analyzed in macroscopic level to evaluate the two models’ 12 
evacuation performance. The distribution of departure times suggest that two models will experience 13 

different levels of traffic congestions and travel distances. 14 

Departure Time and Destination Choices 15 

The two models’ departure time histograms are shown in Figure 6-(a) and Figure 6-(b) in normalized results 16 
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of each bin’s count data with 12-minute bin width. Figure 6-(a) suggests that the evacuees are in panic and 1 
nearly everyone departs within the first 2 hour (6-8 AM). Figure 6-(b) suggests that the evacuees in the 2 

patient model have more time to prepare before they depart their origin by using the whole 6-hour duration 3 

(6 AM-noon) for the evacuation. Figure 6-(a) shows taller bars than Figure 6-(b), implying that more 4 

departures are concentrated in the panic model that may result in a more severe traffic congestion. The bars 5 

in Figure 6-(b) becomes shorter when the departure time becomes closer to 6-hour, which is the result of 6 

heavily penalizing late arrivals. 7 

 8 

Figure 6. Departure Time Histogram for (a) Panic CPT Model and (b) Patient CPT Model  9 

Figure 7 shows the spatial distribution of each TAZ’s average departure time using ArcGIS Pro’s geometric 10 
interval method. This method defines the class width based on a geometric series to give consistent 11 

frequency of observations per class. A number of TAZs are not sampled and no observations are made due 12 

to their low population. In this case, using K nearest neighbor method, the average value of its 30 nearest 13 
TAZs are assumed for the TAZs’ value, and they are filled with patterns in Figure 7. In Figure 7-(a), the 14 

evacuees from the Galveston Island at the coastline depart too late, while the evacuees from the inland part 15 
depart early, which may threaten the evacuees who live in the most vulnerable zones. In Figure 7-(b), the 16 

evacuees from coastline zones evacuate earlier followed by the evacuees from inland zones, demonstrating 17 

a patient evacuee behavior resulting in staggered evacuation. In evacuation, the evacuees from coastline 18 
zones will have longer travel time than those from the inland; thus, they should depart earlier than others 19 

to facilitate the evacuation. In Houston network, Galveston Island is of special interest since a bridge 20 
connecting the Interstate 45 will be a major bottleneck for evacuating the residents. The spatial distribution 21 

of the two models’ departure time choices implies that the evacuation from the panic CPT model not only 22 

experiences more severe traffic congestion from the concentrated departure time choices, but also the 23 

strategic prioritization of departure time by spatial characteristics cannot be expected.  24 
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 1 

Figure 7. TAZ’s Average Departure Time for (c) Panic CPT Model and (d) Patient CPT Model 2 

Figure 8-(a) and Figure 8-(b) show the destination choice results by 1) the percentage of choosing each 3 

destination, and 2) lines to show each agent’s destination choice in TAZ level. The width of the arrowed 4 
lines is normalized by the number of choices where thicker line represents that origin-destination triplet is 5 

chosen more often. Figure 8-(a) implies that the panic model’s destination choices are focused on choosing 6 

the closer destinations from the origin, while Figure 8-(b) suggests that inland destinations are chosen more 7 

in the patient model. In the panic model, the concentrated departure time choices may induce severe traffic 8 

congestion in the network and the evacuees may consider the far-away destinations relatively unattractive 9 
than closer destinations. The relatively favorable traffic conditions in the patient model may have attracted 10 

the evacuees to choose the destinations located far away from their origin. Although this paper assumed 11 
that the risk levels of all destinations are equal, evacuating to the deeper inland area may be more favorable 12 

to avoid possible threats from the hurricanes. 13 
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 1 

Figure 8. Destination Choice for (c) Panic CPT Model and (d) Patient CPT Model 2 

CONCLUSIONS 3 

This paper demonstrated two types of evacuee behaviors using cumulative prospect theory to evacuate 4 

residents from Houston, TX where a hurricane will make landfall within a few days. The two models both 5 
consider the valuation of a possible outcome that will be followed by an evacuee making a decision, as well 6 

as the probability of the outcome being observed, and derives the utility of the evacuee’s decision under 7 

uncertainties. The first model, panic evacuation, demonstrated the willingness to arrive as early as possible, 8 

while the second model, patient evacuation, demonstrated the willingness to arrive exactly at the desired 9 

arrival time. The two models’ departure time and destination choices are jointly optimized to evaluate each 10 
evacuee’s most likely decisions for evacuation. While all evacuees in each model have homogeneous 11 

decision-making logic under the model assumptions, their location of the origin, neighborhood traffic 12 

conditions, and personality on perception of early or late arrival can result in distinct departure time and 13 

destination choices. 14 

The departure time distribution of the panic evacuation model shows that the evacuees’ departures are 15 
concentrated at the first 2 hours assuming a 6-hour departure time duration, and the residents that live closer 16 

to the destinations departed earlier than others. The patient evacuation model’s departure time distribution 17 

fully utilized the 6-hour duration, but the evacuees were reluctant to depart at the near-end of that duration 18 
to avoid arriving excessively late. For the spatial distribution of the departure time choices, the residents 19 

living at a faraway location (near the coastline of Gulf of Mexico) from the destinations evacuated first, 20 

demonstrating a staggered evacuation to evacuate the residents living at a distant location first.  21 

The destination choice results suggest that panic evacuees tend to evacuate to a closer location with shorter 22 

travel distance, while patient evacuees tend to evacuate to a deeper inland part more than panic evacuees. 23 
As this paper jointly models both departure time and destination choices, the concentrated departure time 24 

distribution of the panic evacuation model induced severe traffic congestion, making the distant destinations 25 

unattractive. As evacuees’ departure times become more widespread in the patient evacuation, the traffic 26 

condition became relatively favorable, and evacuees were attracted to evacuate to far-away destinations. 27 
Although each destination’s safety level is assumed to be equal, evacuating to the deeper inland area would 28 

be advantageous to avoid possible threats from the hurricanes. 29 
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