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Abstract 22 
This paper optimizes the assignment of shared automated vehicles under users’ uncertain departure 23 
times. Automated vehicles can drive themselves so no staff are needed to relocate vehicles in the 24 
one-way carsharing system. To formulate the one-way vehicle sharing system with departure time 25 
uncertainties, a two-phase solution method is established. Phase 1 decides the strategic planning 26 
of vehicles distributed at stations by using a system optimization approach, followed by Phase 2, 27 
which tracks vehicle movements via an agent-based simulation model. The optimization solutions 28 
in Phase 1 serve as inputs for Phase 2. A case study in the six-county Austin, Texas area is 29 
conducted to verify the proposed model and corresponding solution approach. Under the base case 30 
setting, a fleet of 8,564 automated vehicles is deployed in the study region. Optimization results 31 
suggest that system profits are optimized when vehicle rental is priced at $1.28 per km ($0.8 per 32 
mile). The number of proactive vehicle relocations drops by 9.8% if the relocation operation cost 33 
increases from $0.096 per km ($0.06 per mile) to $0.32 per km ($0.2 per mile). The profit of 34 
serving each trip is $10.20 when using high-cost vehicles, and $11.60 if using low-cost vehicles. 35 
Three-hour simulation results show an average person-trip length of 25 km (15.6 miles) with 29.6-36 
minutes of average driving time. If a 24-hour day is simulated, the vehicle-occupied time and 37 
vehicle-distance traveled are 4 hours and 200 km (125 miles) per vehicle, respectively. The low 38 
coefficient of variation of satisfied demand across 30 demand scenarios demonstrates the 39 
robustness of the proposed two-phase solution method.  40 
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1 Introduction 45 
Vehicle sharing is becoming popular, allowing users to reserve unoccupied vehicles from 46 
traditional vehicle rental services by the minute or hour, instead of by the day. Vehicle users may 47 
have more flexibility when choosing a destination to return their vehicle with reduced cost, and 48 
fleet owners may profit due to higher utilization of the vehicles in their fleet. An existing study 49 
shows that vehicle serving time will rise by about 30% (Huang et al., 2020a). It indicates that 50 
vehicles need to run half of the time during daily operation, i.e., 6-hour driving time during a 12-51 
hour vehicle sharing system service time. Owing to these benefits, many traditional vehicle rental 52 
companies are beginning to provide hourly vehicle sharing services to expand their market (Hertz 53 
24/7, 2021). Popular vehicle sharing operators include companies like Car2Go (SHARE NEW, 54 
2021) and Shanghai’s EVCARD (EVCARD, 2021).  55 

There are two main types of vehicle sharing services, depending on the vehicle return 56 
restrictions. Round-trip vehicle sharing requires users to return vehicles to the original departure 57 
location. Such a service is less popular among the public, especially for commuting trips. Therefore, 58 
one-way vehicle sharing has been popular in recent years, and is now becoming a major vehicle 59 
sharing service. Users can pick up and drop off rental vehicles at any allowed parking space (Lu 60 
et al., 2018). One-way vehicle sharing can be called station-based vehicle sharing if available 61 
parking stations are predetermined; otherwise, it is often called free-float vehicle sharing, and any 62 
prepaid or free parking spaces can be used (Balac et al., 2019). 63 

Existing studies mainly focus on two kinds of problems when designing a vehicle sharing 64 
system in a new vehicle rental market: strategic planning and operational decisions (Huang et al., 65 
2018). Strategic planning makes long-term decisions that include fleet size, vehicle assignment, 66 
and station location and capacity. Operational decisions focus on real-time vehicle movements, 67 
relocations, and pricing. Strategic planning often serves as the foundation of operational decisions, 68 
while the network performance can be leveraged to adjust planning strategies through feedback. 69 
Therefore, in a bi-level optimization model that considers both strategic planning and operational 70 
decisions, strategic planning is often formulated as an upper-level model while the operation 71 
decisions are the lower-level. 72 

One challenge of designing the vehicle sharing system is the vehicle assignment (or 73 
“vehicle initialization”) at the predetermined stations at the beginning of daily operations (Li et al., 74 
2020; Li and Liu; 2021). The vehicle assignment procedure determines the fleet size and the 75 
number of vehicles allocated to each parking station. An excessive number of vehicles deployed 76 
(or initialized) in traffic zones can lead to an underutilized vehicle fleet. However, if inadequate 77 
vehicles are deployed across the network, vehicle rental demand cannot be satisfied, leading to a 78 
loss of profits. Regarding this, an optimized vehicle assignment at the beginning of day can 79 
properly balance the vehicle use and avoid the two kinds of profit loss mentioned above. Existing 80 
studies often build mathematical optimization models that take the whole day’s demand into 81 
account (Huang et al., 2020a; Xu et al., 2018; Xu and Meng, 2019). However, it is difficult to track 82 
and capture detailed vehicle movements on road with such a model. Simulation models can fill 83 
this gap by recording detailed vehicle route choices and decisions (Illgen and Höck,2020). Even 84 
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so, the time-varying travel demand cannot be well reflected in simulation models. 85 
The case of different departure times across the day brings challenges to vehicle assignment, 86 

and has not been well explored. Most existing studies assume travel demand and departure time to 87 
be fixed based on historical or predicted data (Ranjbari et al., 2020; Jorge et al., 2015). In terms of 88 
the uncertainty in travel demand, only a few papers explored the case when departure time of 89 
vehicles leaving one traffic zone follows a distribution function (Lu et al., 2018; He et al., 2017).  90 

Furthermore, using autonomous vehicles is seen as future development direction of the 91 
carsharing system. It can largely reduce the personnel cost because imbalance problem between 92 
travel demand and vehicle supply is a key problem. The current method to address such a problem 93 
is to employ drivers to relocate vehicles or provide payment discount. When using autonomous 94 
vehicles (AVs), the operation cost can be reduced (Chen and Liu, 2022). Also, for the carsharing 95 
operator, the complex route planning of personnel movements is removed as AVs can drive to 96 
working place to pick up waiting clients easily.  97 

The main contributions of the paper are as follows. (I) We build a combined method of 98 
system optimization and simulation to handle the carsharing system planning and operation 99 
problem. It can exactly decide the vehicle allocation in the upper level based on mathematical 100 
optimization model, and track the vehicle movements in the lower level based on agent-based 101 
simulation. (II) The departure time uncertainty is considered in this paper. The subsequent 102 
challenge is to establish two-phase solution method with random departure time. (III) AVs are used 103 
to provide carsharing service which can avoid the personnel movement management problem.  104 

This paper aims to address the research gaps in dealing with the gasoline vehicle 105 
assignment problem under departure time uncertainties. Shared autonomous vehicles (SAVs) are 106 
used such that no staff are hired to drive and relocate vehicles. A Bi-level Mixed-integer Linear 107 
Programming (MILP) model is proposed, with an objective of maximum profit from the vehicle 108 
operator’s perspective. Decision variables include vehicle assignment patterns (i.e., number of 109 
vehicles initialized at each station) across traffic zones in the strategic planning level, and vehicle 110 
movements in the operational decision level with uncertain departure times. A two-phase solution 111 
method is established to solve this problem. Phase 1 is a mathematical optimization model that 112 
solves for the vehicle assignment pattern that maximizes profit, based on the base case setting. 113 
Leveraging the assignment pattern in Phase 1, the simulation model in Phase 2 is used to track 114 
exact vehicle movements. The scenarios with uncertain departure time are tested one-by-one. To 115 
demonstrate the proposed research methodology, this paper applies a case study of the 6-county 116 
Austin area with 2,210 traffic analysis zones (TAZs) and 3-hour morning peak travel demand. 117 

The remainder of this paper is organized as follows. In Section 2, the related literature in 118 
system optimization and simulation studies are reviewed. The problem setting with a general 119 
model is proposed in Section 3. The two-level method, mathematical optimization and simulation, 120 
are presented in Section 4. Section 5 details a case study in Austin’s 6-county area. Conclusions 121 
and future research directions are given in the last section. 122 
 123 
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2 Literature Review 124 
The literature of studies on fleet size optimization for shared vehicles is summarized in Table 1. 125 
This table differentiates studies using gasoline vehicles (GVs) and electric vehicles (EVs), as well 126 
as two solution methods, namely mathematical optimization, and system simulation. Moreover, 127 
related studies on demand distribution are reviewed in Table 1. The population’ total travel between 128 
OD pairs follows a distribution model. When deciding fleet size in an urban area, operators should 129 
consider the day-to-day demand fluctuation. 130 
 131 

Most papers adopt mathematical optimization models to plan vehicle assignment. With 132 
given travel demand, Kek et al. (2009), Fan (2014), Nourinejad and Roorda (2014), Repoux et al. 133 
(2015), Weikl and Bogenberger (2015), Vasconcelos et al. (2017), Lu et al. (2018), Xu et al. (2018), 134 
Li et al. (2019), Xu and Meng (2019) and Lu et al. (2020) optimized vehicle distribution among 135 
stations during daily operations. The vehicle purchase costs are often set in the objective function, 136 
and the known station capacity is set as a constraint. Fleet size, station location and station capacity 137 
are joined together in some other studies, such as Nair and Miller-Hooks (2011), Correia and 138 
Antunes (2012), Jorge et al. (2012), Jorge et al. (2014), Boyaci et al. (2015), Jorge et al. (2015), 139 
Deng and Cardin (2018), Huang et al. (2018) and Huang et al. (2020a). Joint optimization can 140 
avoid parking space waste and maximize the operator’s profit. However, the mathematical 141 
optimization assumes the travel demand occurs at the beginning of one time period, such as 10 or 142 
30 minutes. The vehicle movements cannot be exactly tracked during the optimization process. 143 

The simulation model can track vehicle behavior and location, but only a few studies exist 144 
(Huang et al., 2022a; Huang et al., 2022b; Yan et al., 2020). When deciding strategic planning, 145 
those existing simulation models use the given fleet size and vehicle assignment without 146 
considering the operations. When conducting the simulation, it needs to give the number of 147 
allocated vehicles by using heuristics algorithms. Combining optimization and simulation can 148 
avoid the limitation. For example, Monteiro et al. (2021) built an agent-based simulation model to 149 
obtain the system performance of vehicle sharing, while the fleet size is simply optimized by a 150 
mathematical model. Furthermore, the simulation model can track the battery capacity of EVs 151 
(Huang et al., 2020a; Xu et al., 2018; Xu and Meng, 2019; Zhao et al., 2018). Limited battery 152 
capacity and long charging times result in the solution difficulties. They will bring many challenges 153 
for vehicle sharing organization. In many studies, the charging station location problem is 154 
proposed when deciding electric vehicle fleet size in an urban area.  155 

When taking the uncertain departure times into account, vehicle sharing demand is usually 156 
assumed to follow a distribution, such as a Poisson or normal distribution (Lu et al., 2018; Li et 157 
al., 2019). Most existing studies focus on the uncertain demand but not departure time. For the 158 
uncertain demand, the total demand is assumed to follow a distribution model during the operation 159 
time. However, few studies consider the choice of departure time. Yang and Tang (2018) and Tang 160 
et al. (2020) explored the departure time choice behavior. A bi-level model is established when 161 
considering the mass transit railway system optimization. Few studies focus on shared vehicles 162 
with departure time uncertainty, and there is no mature methodology in this field. 163 
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 164 
3 Problem Setting 165 
This paper formulates a SAV system optimization problem under departure time uncertainty, in 166 
which the upper level is to decide the vehicle assignment and the lower level is to track the vehicle 167 
movements. The objective is to maximize the total profits of the vehicle sharing operator. The 168 
selected study region includes I   traffic zones with a certain zone denoted as i I∈  . The daily 169 

operation time periods are equally divided into T  time steps (or intervals) and one time period is 170 

defined as t T∈ . In the strategic level, number of vehicles iV  in each traffic zone i  are the decision 171 

variables. The optimal solution of vehicle assignments is used as an input to decide the vehicle 172 
sharing services ijtQ  and relocations ijtN  at the operational level. 173 

Travelers’ departure time is uncertain and may change from day to day. Let Ξ  be the set of 174 
daily departure time scenarios (can be seen as demand scenarios) and the probability of scenario 175 
ω∈Ξ  is 0ω >Ε  with 1ωω∈Ξ

=∑ Ε . The daily operational decisions are only decided based on the 176 

scenario ω∈Ξ . 177 
 178 
3.1 Notation 179 

This paper uses I  as the set of zones,with a certain zone donated as{ },{ }i j I∈ .  T  presents 180 

the set of time steps (or intervals) and one time period is defined as t T∈ . { }: ωΞ  is the set of 181 

demand scenarios with varying departure time from day to day.  182 
The parament references in this paper are shown below. fc  define the fixed costs per vehicle 183 

per day including depreciation, maintenance and insurance costs, while ec define the costs of power 184 

consumption of a vehicle running for one mile (0.625 km)  and rc  define the costs of relocating a 185 

vehicle per mile (0.625 km). pup is the pick-up payment per trip. Travel distance from traffic zone 186 

i I∈   to traffic zone  j I∈  is denoted by ijg .We use ijtq  to denote travel demand upper bound from 187 

traffic zone i I∈  to traffic zone j I∈  where i j≠  at time step t T∈ . s  is average speed of shared 188 
vehicles. ωΕ  is probability of demand scenario ω∈Ξ . 189 

The decision variables references in this paper are shown below. We use P   to denote the 190 
shared automated vehicle payment per mile (0.625 km). ijtQ is number of served travel requests 191 

from traffic zone i I∈   to traffic zone j I∈   where i j≠   at the beginning of time step t T∈  , and 192 

( )ijtQ ω  is ijtQ  in scenario ω∈Ξ . In a similar way, ijtN  is number of proactive vehicle relocations 193 

from traffic zone i I∈  to traffic zone ij I∈  where i j≠  at the beginning of time step t T∈ , and 194 

( )ijtN ω  is ijtN in scenario ω∈Ξ . iV   is number of vehicles in traffic zone i I∈  at the beginning of 195 

daily operation , itV  is iV  at the beginning of time step t T∈ , and ( )itV ω  is itV in scenario ω∈Ξ .  196 

The auxiliary variables references in this paper are shown below. itW  is number of vehicles 197 
idling in traffic zone i   at time instant t  , and ( )itW ω   is itW   in scenario ω∈Ξ  . ijtU   is number of 198 
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vehicles leaving from traffic zone i   to traffic zone j   at time instant t ，and ( )ijtU ω   is ijtU  in 199 

scenario ω∈Ξ . 200 
3.2 Price based elastic demand function 201 
The elastic demand of vehicle sharing is affected by the payment of users. Hence, elastic demand 202 
function Equation (1) is introduced. The potential demand will be lower when increasing the 203 
payment because users will be less inclined to use shared vehicles. On the contrary, a lower price 204 
will encourage more users to choose vehicle sharing. 205 

( )( ) ( ) 1+                      ijt ijt
t T j J i J t T j J i J

Q q Pω ω α ω
∈ ∈ ∈ ∈ ∈ ∈

≤ ∀ ∈Ξ∑∑∑ ∑∑∑  (1) 206 

For example, we can set α  as -0.2. When the price rises, the demand will drop. Figure 1 shows 207 
the elastic demand with varying price. A linear relationship is assumed and no users are expected 208 
at a very high cost of $8 per km ($5 per mile). Such an elastic demand function can be extended 209 
to other forms, like exponential or log-linear functions. 210 
 211 
Figure 1 The elastic demand with varying price 212 

 213 
3.3 Integrated model 214 

P0 ( )
,, ,

max + ( ) ( )f i e ij pu ijt r ij ijtN i I t T i I j I t T iU V jQ I I
c V P c g p Q c g Nωφ ω ω∈Ξ

∈ ∈ ∈ ∈ ∈ ∈ ∈

 
 = − + − −  

 
∑ ∑∑∑ ∑∑∑Ε  (2) 215 

Constraints (1), plus: 216 

( )1                                i iV Vω ω= ∀ ∈Ξ  (3) 217 

( ) ( )                             , , ,ijt ijtQ q i I j I t Tω ω ω≤ ∀ ∈ ∈ ∈ ∈Ξ  (4) 218 

( )( )+ ( )                                  , ,ijt ijt it
j I j I

Q N V i I t Tω ω ω ω
∈ ∈

≤ ∀ ∈ ∈ ∈Ξ∑ ∑  (5) 219 

( ) ( ) ( )                                                             , , ,ijt ijt ijtU Q N i I j I t Tω ω ω ω= + ∀ ∈ ∈ ∈ ∈Ξ  (6) 220 

( ) ( ) ( )                                                                   , ,it it ijt
j I

W V U i I t Tω ω ω ω
∈

= − ∀ ∈ ∈ ∈Ξ∑  (7) 221 

( ) ( ) { }1 ( )             , 1, 0, 1 ,it it jim ji
j I

V W U i I t T m = max t g sω ω ω ω+
∈

 = + ∀ ∈ ∈ − + − ∈Ξ ∑  (8) 222 

0, , ,  ( ), ( ) , ( ) ( ) ( )   ,                             , ,ijt ijt it ijti ijtN Q V U W i I j I tV Tω ω ω ω ω ω∈Ξ∈Ζ ∀ ∈ ∈ ∈  (9) 223 

The objective function (2) is to maximize profit for the vehicle sharing operator. It is equal to the 224 
revenue minus the vehicle fixed cost, power consumption cost caused by the vehicle sharing 225 
service and proactive relocation. The revenue and cost of vehicle movements are obtained in 226 
random demand scenarios, so that the probability [ ]ω∈ΞΕ is used. In the following explanation, we 227 

omit (ω ) in all the decision variables for notation simplicity. 228 
Constraints (3) require the number of vehicles at the beginning of daily operation to follow 229 

a static vehicle assignment planning. In Constraints (4), the number of served vehicle sharing 230 
requests ijtQ  cannot be larger than total demand ijtq . Constraints (5) require that the number of 231 

served requests cannot exceed the number of available vehicles (either at the station or relocated 232 
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from other zones) in traffic zone i  at the beginning of time step t . Constraints (6) calculate ijtU , 233 

the total number of vehicles moved from traffic zone i   to traffic zone j   at time instant t  . 234 
Constraints (7) calculate the total number of vehicles itW  idling in traffic zone i  at time step t . 235 

Constraints (8) calculate the total number of available vehicles in traffic zone i  at next time instant 236 
1t +  . itW   indicates the number of idling vehicles. jimj I

U
∈∑   indicates the number of vehicles 237 

arriving i   between time step t   and 1t +  . Constraints (9) specify the domain of the decision 238 
variables. 239 
 240 
3.4 Non-linear challenge 241 
The established model P0 is not positive definite (PSD), because the term ( ) + ( )e ij pu ijtP c g p Q ω −   242 

in the objective function is a square equation. Hence, model P0 cannot be solved by using a 243 
commercial solver. One of the solution methods is to use a dynamic iteration that sets a fixed value 244 
of price and then solve the optimization model. 245 
 246 
4 Solution Method 247 
4.1 Optimization-based method 248 
In the optimization-based method, the demand in the base case setting is used to optimize the long-249 
term vehicle assignment. The vehicle sharing operator should consider the average demand, but 250 
not a special day. Hence, all randomness ω∈Ξ  is removed. New variables of ijtQ , ijtN , itV  and 251 

itQ  are introduced in this model. The following shows the mathematical model. 252 

 253 
P1 ( )

, ,,
max + ijtf i e ijt pu r ijtijtN i I t T i I j I t T i I j IU V Q

c V p c g p Q c g Nφ
∈ ∈ ∈ ∈ ∈ ∈ ∈

 = − + − − ∑ ∑∑∑ ∑∑∑  (10) 254 

Subject to: 255 
Constraints (3)-(8), plus: 256 

0, , , ,                                                                 ,,   ,ijt i it ijt ijtijtN Q V V U W i I j I t T∈Ζ ∀ ∈ ∈ ∈  (11) 257 

The objective function (10) maximizes profit for the vehicle sharing operator with the 258 
expected demand. Constraints (11) specify the domain of the decision variables. 259 
 260 
4.2 Simulation-based method 261 
SUMO simulation setup 262 
Based on the values of 1iV  from the optimization model, the simulation model further offers a 263 
realistic representation of traffic flow. The simulation exercise is conducted using simulation of 264 
urban mObility (SUMO), which is an agent-based simulation tool that enables detailed real-time 265 
vehicle and passenger tracking. The mesoscopic version of SUMO is used, to offer faster 266 
computation speeds for the vehicle-sharing demand, while still capturing the key system 267 
performance. The link transmission model is leveraged instead of the car-following model and 268 
lane-changing model in the mesoscopic version for the traffic flow model.  269 
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The vehicles are initialized based on the pattern suggested in the optimization model. A 270 
person is assumed to make a request at the parking lot, so the vehicle can pull out immediately. 271 
The vehicle then heads towards the destination parking lot using the shortest travel time path. After 272 
the vehicle arrives at the destination station, the person parks and leaves the vehicle. The vehicle 273 
is then available for others to use. When there is no vehicle available in the parking lot, the request 274 
is considered a failed match, and the revenue is lost.  275 

The parking lots are initialized at an existing edge of the responding TAZ, and this edge is 276 
considered as the only destination of all the trips entering/leaving this TAZ. The parking lots are 277 
assumed to have unlimited capacity but when all the available vehicles have left a certain parking 278 
lot, this parking lot cannot offer vehicles to serve more people. The vehicle sharing clients in one 279 
TAZ are free to use the available vehicles at the edge of the current TAZ. 280 
 281 
Simulation framework 282 
The simulation starts with the optimization model to obtain the profit-maximizing vehicle 283 
assignment pattern, which is fed into the simulation model. These vehicles will be initialized at the 284 
parking lots and serve riders for the morning peak period. At each timestep, the desired departures 285 
and arrivals are examined. For the desired departures, the list of the people who would like to use 286 
the vehicles at this timestep are checked. If there are available vehicles at the parking lot, a random 287 
vehicle is assigned to serve this person. In terms of arrivals, the list of all vehicle arrivals at each 288 
time step is examined so that destination parking lots are identified, and the parking lot information 289 
is updated accordingly. Finally, the vehicle and system performance are collected after the 290 
simulation ends.  291 
 292 
5 Case Study 293 
5.1 Austin traffic network 294 
The proposed methodology is adopted in the traffic network of Austin, Texas. All 6 counties of the 295 
Austin area are involved, including 2,210 traffic analysis zones (TAZs) and 23,576 links. Figure 2 296 
illustrates the traffic network. As the purpose of this study is to explore the vehicle sharing system 297 
optimization, the shortest routes among TAZs are selected. 298 
 299 
Figure 2. SUMO simulation traffic network in Austin, Texas 300 
 301 
K-means clustering 302 
The optimization-based method faces a challenge due to the large-scale network and discrete 303 
operation time. For the decision variables of satisfied demand ijtQ  or relocation operations ijtN , 304 

the optimization-based method will have 4,884,100 (2,210*2,210) variables for just one time step. 305 
To reduce the computation burden, TAZ clustering is desired. In this paper, a k-means clustering 306 
method is proposed such that a total of 2,210 TAZs are aggregated into 100 traffic zones (shown 307 
in Figure 3). K-means is a classic method in data clustering analysis. The local optimal group size 308 
is based on the Euclidian distance between the cluster center and each TAZ center. In the Austin 309 
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network, after 52 iterations, the optimal clusters are obtained. 310 
 311 
Figure 3. K-mean clustering for the 6-county Austin network 312 
 313 
Demand generation with dynamic travel time 314 
The travel demand from 7 am to 10 am is used in this case study. The initial optimization time step 315 
size tested 1 second as a unit, which led to a long computation time. Therefore, we divide the 3-316 
hour operation period into 36 time steps, with 5 minutes per time step. Vehicle movements are 317 
allowed at the beginning of each time period.  318 
 319 
5.2 Optimization results 320 
Base case 321 
In this paper, the parameter settings were adopted from existing studies (Huang et al., 2018 & 322 
2020a & 2020b; Loeb and Kockelman, 2019; Segal and Kockelman, 2016; Gurumurthy and 323 
Kockelman, 2020). The optimization model is solved on a laptop with Gurobi 9.1.1 solver on an 324 
i7 processor @3.60GHz, 32GB RAM in a Windows 10 64 bit operating system. Since the non-325 
linear constraints have been relaxed by optimization and simulation solution method, Gurobi is a 326 
preferred choice of solver. 327 

The basic setting assumes a fare of $1.6 per (traveler-occupied) km ($1 per mile), fuel cost 328 
of $0.096 per km ($0.06 per mile), vehicle relocation cost of $0.192 per km ($0.12 per mile), and 329 
vehicle depreciation, maintenance & insurance cost of $0.64 per km ($0.40 per mile). To reflect 330 
the uncertainty and variations (across settings) in the real world, sensitivity analyses are conducted 331 
on the cost assumptions, with 3 levels of price, relocation costs, and depreciation, maintenance & 332 
insurance costs. The optimization results are shown in Table 2. 333 

The base case scenario demonstrates a profit of $10.86 per vehicle over the 3-hour morning 334 
peak period, with a total fleet size of 11,000 vehicles satisfying 67.12% of the vehicle-sharing 335 
travel demand. When increasing the vehicle rental price from $1.28 per km ($0.80 per mile) to 336 
$1.92 per km ($1.20 per mile), the average profits per vehicle decrease to $7.91 during the 3-hour 337 
morning peak period. If extending to 24-hour operation, the average profit per vehicle is $63.30 338 
and the overall fleet size decreases by 22.0%. The percentage of served/satisfied requests drops 339 
significantly with the increase of fare, thanks to the smaller fleet size. Results indicate that 340 
arranging 11,963 vehicles with a rental price of $1.28 per km ($0.80 per mile) in the Austin area 341 
is a stable strategic planning that will not cut off too many vehicle sharing requirements.  342 

Moreover, we conduct the relocation cost comparative analysis by fixing the price and 343 
vehicle depreciation, maintenance & insurance cost to examine how the relocation cost affects the 344 
vehicle sharing system performance. With the increase of vehicle relocation cost, the number of 345 
relocation operations drops lightly. Another finding is that the vehicle relocation cost does not 346 
affect the fleet size decision. Also, the sensitivity of vehicle fixed cost is provided to analyze the 347 
profits and fleet size changes. With the increase of vehicle fixed cost, the fleet size drops by about 348 
26.1%, and number of relocations increases by 20.0%. In this way, the satisfied demand falls from 349 
75.1% to 59.0%.  350 
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 351 
Vehicle allocations 352 
Vehicle allocation results in this section are based on the base case settings of price, fuel cost, 353 
vehicle relocation cost and vehicle maintenance cost in the above section. The total profits are 354 
$119,489 by serving 67.12% vehicle sharing demand. A total of 11,000 vehicles are assigned to 355 
Austin in the morning peak hours, and 58 proactive vehicle relocations are conducted to move 356 
vehicles to high-demand areas. Vehicle in-service rate is 23%, as indicated by 41.52 minutes 357 
driving time during the 3-hour morning peak hours. Table 3 shows the vehicle distributions at the 358 
beginning of the daily operation. The average number of vehicles in traffic zones is 110, with the 359 
maximum value being 770, although some zones are not initialized with any vehicles. It shows 360 
that traffic zones #26, #37, #57, #80, #83 and #88 are high-demand zones that might be residential 361 
zones. 362 
 363 
5.3 Simulation results 364 
Based on the output of vehicle arrangement in optimization results, 30 scenarios are tested in this 365 
case study. The departure time of trips leaving one station during 3-hour morning peak hours 366 
follows a uniform distribution. Table 4 shows the simulation results. 367 

The system performance in terms of service rate is quite robust with mean values varying 368 
within 0.10%. The low coefficient of variation (CoV) in service rate, average travel distance and 369 
average service time (all less than 1%) also prove that the proposed vehicle sharing operation 370 
mechanism is robust across 30 demand scenarios. Such results indicate that the proposed two-371 
phase solution method can ensure a steady service rate and handle random departure scenarios via 372 
flexible vehicle sharing operations. 373 

Due to the steady performance in average service rate, 30 scenarios are shown to be 374 
sufficient to represent the departure time uncertainties in the case study. Going through the 375 
literature in vehicle sharing studies under uncertainty, we found that most studies also adopted a 376 
relatively small number of scenarios due to computation resource constraints. For example, 377 
Brandstätter et al. (2017) and Fan (2014) adopted 7 scenarios to simulate the stochastic demand in 378 
a week. He et al. (2017) chose 30 demand scenarios with the operation data between March and 379 
April 2014, and Biondi et al. (2016) used 46 scenarios with the dataset covering the period from 380 
May 17 to July 1, 2015. Only Lu et al. (2018) adopted 1000 scenarios to explore the profitability 381 
and quality of service in vehicle sharing systems. In this Austin case study, a total of 100 zones 382 
and 36 time steps together are considered. A larger number of scenarios will certainly further 383 
improve the accuracy in system performance evaluation, yet at the cost of huge computation time. 384 
 385 
5.4 Comparative analysis  386 
To verify the advantage of the proposed simulation-based method, a comparative analysis is 387 
provided. The first case is to use SUMO simulation in Phase 2, while the second case is to conduct 388 
mathematical optimization in Phase 2. The vehicle arrangements among 100 traffic zones are given 389 
based on the solutions of Phase 1, and travel demand in Scenario 1 is used in Phase 2. 390 
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Satisfied demand reaches 80.75% in the simulation model, while it reaches 75.7% in the 391 
optimization model. The simulation model has better performance in terms of tracking vehicle 392 
movements in the operational level. It also means that the proposed methodology of using an agent-393 
based simulation model in Phase 2 is compatible in the study framework. The average vehicle-394 
traveled distance and service time of vehicles increase by 47.52% and 49.76%, respectively. This 395 
may be because serving long-distance easily leads to larger profits. 396 

 397 
5.5 Practical applications 398 
In practice, the departure time of vehicle sharing clients are not fixed. For example, clients would 399 
depart earlier or later than peak hours to avoid traffic congestion. Only a few studies explore the 400 
influence of flexible departure time on the SAV system optimization. Hence, to address the 401 
research gaps, this paper optimizes the vehicle assignment problem and tracks exact vehicle 402 
movements under departure time uncertainties.  403 

It is important for the profits and operation costs of SAV operation. The traditional method 404 
is to make strategic planning decisions based on the demand of a special day. Such a method cannot 405 
obtain the optimal solution. Decisions of vehicle assignment made for holidays would not be 406 
suitable for working days. Hence, this paper proposes an innovative optimization-simulation 407 
method to combine the advantages of two aspects: the optimization model can make macroscopic 408 
planning decisions, and the simulation model can track microscopic vehicle movements. Such a 409 
method can help the SAV operator make more effective decisions. 410 

 411 
Conclusion 412 
This study explores the SAV systems optimization under departure time uncertainty. A two-phase 413 
solution method is proposed to address the uncertainty problem. In Phase 1, a mathematical 414 
optimization model is established to decide the vehicle arrangement at the beginning of the day, 415 
using mean values of vehicle sharing demand. Based on the optimization results, the agent-based 416 
simulations under 30 demand scenarios are conducted in Phase 2 to analyze the system 417 
performance. The case study is conducted on the 6-county Austin traffic network with uncertain 418 
departures at 3-hour morning peak hours. 419 

The optimization results show that maximum profits can be obtained when deploying 420 
11,000 shared vehicles in the Austin area under the base case setting. Higher profits can be obtained 421 
when vehicle rental price is set as $1.28 per km ($0.80 per mile), compared to prices at $1.6 per 422 
km ($1 per mile) or $1.92 per km ($1.20 per mile). When increasing the relocation cost from 423 
$0.096 per km ($0.06 per mile) to $0.32 per km ($0.20 per mile), the number of vehicle relocations 424 
decreases from 61 to 55. The profit of serving each trip is $10.20 when using a high-cost vehicle, 425 
while using a low-cost vehicle can bring profits of $11.60 for each trip. Furthermore, the SUMO 426 
simulation results indicate 86% of requests are satisfied. With more satisfied demand, the average 427 
service time is 30 minutes in the SUMO simulation, which is longer than the average value of 23 428 
minutes of all travelers in the optimization model. The low CoV proves that the proposed two-429 
phase solution method has strong robustness. The proposed optimization-simulation solution 430 
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performs better than the existing optimization method. Using an agent-based model in Phase 2 can 431 
improve the service rate by 6.7%. 432 

The departure time uncertainty problem is proposed and explored in this paper, but the 433 
solution to the problem can be improved in future research. One of the limitations lies in the 434 
departure time centralization in Phase 1’s optimization problem. When calculating the average 435 
departure time in 30 demand scenarios, the values are more likely to occur around the middle of 436 
the time horizon. This led to a higher peak demand than expected, leading to a larger fleet size. 437 
Moreover, the limited computation memory allows the scenario of only 100 traffic zones with 438 
2,210 TAZs, which might cut off some optimal solutions. Solving the large-scale system 439 
optimization problem is another possible research direction. Another limitation is that we have not 440 
fulfilled the stochastic optimization. A direction for future studies would be to build a loop 441 
framework between the two phases. In this way, an optimal solution can be obtained, as the 442 
feedback from Phase 2 can affect the optimization in Phase 1. 443 
Data Availability Statement 444 
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Table 1 Literature of vehicle sharing fleet size study 569 

Literature 
Vehicle type Solution method 

Uncertain demand 
GV EV Optimization Simulation 

Barrios and Godier (2014) X   X  
Boyaci et al. (2015) X  X   

Correia and Antunes (2012) X  X   
Correia et al. (2014) X  X   

Deng and Cardin (2018) X  X  X 
Fan (2014) X  X  X 

Huang et al. (2018) X  X   
Huang et al. (2020a)  X X   
Jorge et al. (2012) X  X X  
Jorge et al. (2014) X  X   
Jorge et al. (2015) X  X   
Kek et al. (2009) X  X   
Lu et al. (2018) X  X  X 
Lu et al. (2020) X  X   
Li et al. (2019) X  X  X 

Monteiro et al. (2021) X   X  
Nair and Miller-Hooks (2011) X  X   
Nourinejad and Roorda (2014) X  X   

Repoux et al. (2015) X  X   
Xu et al. (2018)  X X   

Xu and Meng (2019)  X X   
Vasconcelos et al. (2017) X  X   

Weikl and Bogenberger (2015) X  X   
Zhao et al. (2018)  X X   

 570 
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Table 2 Shared automated vehicle fleet performance during 3-hour peak hours (with various price and cost 571 
settings)  572 

Items 

Price and 
cost ($ per 
mile, $ per 
0.625km) 

$ Profits 
per SAV 

No. of 
SAVs 

VMT per 
SAV (mile, 
0.625km) 

VHT per 
SAV 
(min) 

Satisfied 
demand 

(%) 

Proactive 
relocations 

Key price 

$0.8 
$14.04 
/SAV 

11,963 
SAVs 

19.88 
mi/SAV 

39.17 
min/SAV 

71.77 
(%) 

69 
SAVs 

1 10.86 11,000 21.62 41.52 67.12 58 

1.2 7.91 9,330 23.49 45.10 58.78 53 

Vehicle 
relocation cost 

0.06 10.87 10,999 21.63 41.52 67.11 61 

0.12 10.86 11,000 21.62 41.52 67.12 58 

0.20 10.86 10,997 21.63 41.52 67.10 55 

Vehicle 
depreciation, 

maintenance & 
insurance cost 

0.30 11.60 12,664 20.44 39.25 75.12 72 

0.40 10.86 11,000 21.62 41.52 67.12 58 

0.50 10.23 9,358 23.46 45.03 58.98 60 

 573 
Note: bolded values are base case settings on these three variables; price is in a unit of $/mile paid by vehicle users; 574 
vehicle relocation cost is in a unit of $/mile paid by the fleet operator; vehicle fixed cost includes depreciation, 575 
maintenance, and insurance cost, in a unit of $/mile paid by the fleet operator. 576 
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Table 3 Vehicle distributions in 100 traffic zones577 
Traffic zone No. of vehicles 

#1 46 SAVs 
2 41 
3 0 
4 310 
5 125 
6 28 
7 45 
8 33 
9 90 

10 31 
11 28 
12 363 
13 96 
14 258 
15 47 
16 168 
17 272 
18 45 
19 18 
20 78 
21 253 
22 43 
23 153 
24 169 
25 23 
26 564 
27 1 
28 136 
29 26 
30 52 
31 18 
32 4 
33 255 
34 46 
35 67 
36 39 
37 535 
38 12 
39 242 
40 12 
41 67 
42 29 
43 26 
44 185 
45 28 
46 32 
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47 1 
48 61 
49 63 
50 11 
51 55 
52 59 
53 64 
54 25 
55 18 
56 4 
57 681 
58 54 
59 105 
60 13 
61 49 
62 54 
63 28 
64 163 
65 170 
66 77 
67 108 
68 33 
69 6 
70 66 
71 95 
72 221 
73 77 
74 2 
75 97 
76 47 
77 94 
78 209 
79 51 
80 770 
81 12 
82 172 
83 652 
84 217 
85 40 
86 13 
87 102 
88 556 
89 49 
90 19 
91 7 
92 53 
93 73 
94 0 
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95 163 
96 0 
97 1 
98 0 
99 89 

100 12 
 578 
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Table 4 Vehicle distributions in 100 traffic zones 579 
Scenarios Satisfied demand (%) Average travel distance (Mile, 0.625km) Average service time (min) 

1 85.99 15.51 29.34 
2 86.19 15.58 29.60 
3 86.14 15.68 29.73 
4 86.22 15.56 29.69 
5 86.22 15.69 29.91 
6 86.22 15.57 29.62 
7 86.13 15.51 29.52 
8 86.17 15.52 29.44 
9 86.02 15.63 29.59 
10 86.22 15.62 29.63 
11 86.18 15.58 29.52 
12 86.04 15.53 29.30 
13 86.02 15.66 29.76 
14 86.10 15.56 29.45 
15 86.25 15.59 29.72 
16 86.03 15.63 29.53 
17 86.14 15.62 29.61 
18 86.05 15.70 29.94 
19 86.01 15.59 29.58 
20 86.16 15.56 29.59 
21 86.01 15.51 29.33 
22 86.09 15.66 29.61 
23 86.12 15.64 29.74 
24 86.02 15.60 29.61 
25 86.15 15.61 29.69 
26 86.18 15.51 29.52 
27 85.93 15.64 29.43 
28 86.06 15.57 29.43 
29 85.95 15.65 29.62 
30 85.99 15.66 29.53 

Minimum value 85.93 15.51 29.30 
Mean value 86.10 15.60 29.59 

Maximum value 86.25 15.70 29.94 
CoV 0.10% 0.37% 0.51% 

  580 
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Figure 1. The elastic demand with varying price 581 
Figure 2. SUMO simulation traffic network in Austin, Texas 582 
Figure 3. K-mean clustering for the 6-county Austin network 583 
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