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ABSTRACT 

This research estimated models for long-distance domestic passenger trips before and after the introduction 

of autonomous vehicles (AVs) and their application to a 10% synthetic US population. The authors 

synthesized 12.1M households and 28.1M individuals across 73,056 US census tracts. To generate 

disaggregated passenger trips, travel demand models, including trip frequency, season, purpose, party size, 

mode choice, and destination choice models and vehicle ownership models were estimated. Different 

datasets, including a 2021 long-distance AV survey, 2016/17 National Household Travel Survey (NHTS) 

survey, EPA Smart Location data, FHWA rJourney dataset, and a 2017 AV fleet survey, were used for 

model estimation. Assuming a $3500 technology cost premium (e.g., in year 2040), total person-miles 

traveled per capita in long-distance trips is estimated to rise 24% (from 370 to 349 miles per month). For 

the same scenario, associated vehicle-miles traveled rises from 149 to 186 miles per capita per month (a 

24.8% increase).  

 

Keywords: Long-distance Travel, Self-driving Vehicles, Travel Demand Modeling, Mode Shift, 

Destination Choice 
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MOTIVATION 

Long-distance (LD) trips constitute an important part of Americans’ intercity travels, with over 7 billion 

long-distance person-trips (weighted) over 75 miles in 2017 (FHWA 2017). Although these trips are a small 

portion of all trip counts by Americans (i.e., short- and long-distance), which was reported to be 371 billion 

person-trips in 2017, they represent almost 50% of the person-miles traveled (PMT) in the US (McGuckin 

2018). Thus, LD trips play an important role in traffic congestion and economic growth and it is critical to 

understand their patterns to control congestion (LaMondia et al. 2016a). Most LD trips are on ground, 

especially trips shorter than 750 miles. Autonomous vehicles (AV) and shared autonomous vehicles (SAVs) 

can rise this share, as these vehicles make driving easier and provide the option of traveling by car for some 

non-drivers. Most LD efforts have been dedicated to intraregional models (Childress et al. 2015, Harper et 

al. 2016) and no interregional study has considered the impacts of AVs on users’ destination and mode 

choice, which is the focus of this study.  

Most travel demand forecasting models are developed based on models developed for urban 

intraregional trips, which are different from LD intercity travels in that intraregional trips are differentiated 

based on homebased vs non-homebased trips, while LD trips are more likely categorized based on trip 

purpose, such as personal or recreational versus business trips (Schiffer 2012). LD travel patterns contain 

many other factors, including travel time and cost (Childress et al. 2015), travel party size (Li et al. 2020), 

and trip duration and schedule (Li et al. 2020, LaMondia et al. 2016b). Household and person-level 

demographics, such as household income (Sandow and Westin 2010), traveler’s age (Collia et al. 2003), 

education (Holz-Rau et al. 2014), and number of children (LaMondia 2016b), are other important factors 

reported in previous studies. 

The advent of AVs in the market is likely to boost LD passenger travels across the US in coming years. 

As mentioned earlier, most studies related to AVs focus on intracity trips. Using a LD survey in Michigan, 

LaMondia et al. (2016b) investigated the impacts of AVs on LD trip generation and mode choice by 

assuming lower VOTT for AV users relative to conventional non-autonomous vehicles and higher travel 

costs for AVs. They predicted the air mode to be the dominating mode for trips longer than 500 miles with 

43.6% share (70.9% of trips greater than 1000 miles). AVs were also anticipated to reduce the share of 

personal conventional vehicles and airplanes for LD trips shorter than 500 miles. Huang et al. (2019) studied 

passenger and freight mode splits before and after the introduction of AVs across the Texas Triangle 

megaregion. They estimated airline passenger travel to fall 82% in that region, as travelers switch to using 

AVs and SAVs instead. They also estimated that people will choose more distant locations, increasing the 

average Texas person-trip distance from 14 to 16 miles (using Year 2040 land use forecasts). Childress et 

al. (2015) investigated the impacts of AVs on travel patterns using an activity-based model for the Seattle, 

WA region. They made different assumptions about AVs’ value of travel time (VOTT) and cost changes 

relative to conventional passenger vehicles to modify the travel demand model, which was developed for 

currently available modes. They predicted a rise in VMT considering roadway capacity improvements due 

to AVs. All aforementioned studies either focused on LD non-AV trips or intraregional AV trips. Harper et 

al. (2016) estimated a 14% increase in annual light-duty vehicle-miles travelled (VMT) for the US 

population of 19 years old and older when AVs are an option in the future. They only considered increases 

in VMT due to the driving option for non-drivers, the elderly, and people with medical conditions that 

restrict their driving, and did not estimate travel demand models to investigate the impact of AVs on users’ 

mode and destination choices. Gurumurthy and Kockelman’s (2020) stated preference survey results among 

2588 Americans suggested that over 50% of the US passenger trips between 50 and 500 miles (one way) 

will be made in an AV or SAV in the future (when AV technology is ubiquitous, but human driving is still 

permitted). They also estimated a tripling in SAV mode share for such trips if the respondent’s annual 

household income is between $75,000 and $120,000 (versus higher or lower income levels), and a 67% 

increase when it is a business trip (versus personal trip). Their study mostly focused on the willingness of 

respondents to ride-share after AVs are introduced to the market. Perrine et al. (2020) added AVs as a new 

mode to the FHWA rJourney mode and destination choice models. In a scenario with AV operating costs 
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equal to 118% that of traditional cars, they predicted a shift in destination choice by AVs towards longer-

distance trips with personal cars (including AVs). They also estimated that the AV mode share would lead 

to a 53% loss in airline revenue. While adding AVs as a mode to estimate travelers’ mode and destination 

choice in the presence of these vehicles is a useful strategy, the FHWA rJourney data used in their study 

for mode and destination choices was gathered in 2010, which is rather outdated for this purpose. 

Recognizing the potential for such dramatic shifts in travel choices, this study forecasts the impacts of 

AVs on the destination and mode choices of long-distance passenger trips (over 75-miles one-way) within 

the US. The travel demand model of this study is composed of several sub-models for vehicle ownership, 

trip season, trip frequency, trip purpose, travel party size, mode choice, and destination choice. Each model 

is addressed separately herein. Different datasets were used to estimate these models, including an LD-AV 

survey (Huang et al. 2022), the 2016/17 National Household Travel Survey (NHTS) dataset, FHWA 

rJourney travel skim data, and EPA Smart Location dataset. The models were applied to a synthetic 

population consisting of 12.1M households and 28.1M individuals across 73,056 census tracts throughout 

the nation to estimate the shifts in travel caused by having AVs in market. 

The reminder of this paper is organized as follows. The next section summarizes the background studies 

on LD travel demand modeling and impacts of AVs on travelers’ choices. The next section elaborates on 

the datasets used in this study. The fourth section explains the framework and methods used to estimate 

different travel demand models and the application of these models to the synthetic population to generate 

disaggregate LD trips. Then, the effective parameters in different models will be explained and the projected 

impacts of AVs on American’s LD domestic travel will be summarized, followed by conclusions and 

limitations of this study. 

DATA  

This study leveraged data from different sources to estimate travel demand models before and after AVs 

are introduced into the market. The main data source capturing the presence of AVs is an LD-AV survey 

conducted in 2021 to anticipate Americans’ long-distance travel preferences when access to AVs is 

common. The survey contains responses from 1,004 U.S. respondents (45% residing in Texas and 55% in 

other US states) to revealed and stated preference questions about recent trips and future trip scenarios 

(Huang et al. 2022). Sample weights were generated using an iterative proportional fitting (IPF) method 

(Roth et al., 2017) to match the most recent five years of data from the American Community Survey 

(ACS).  

The 2016/17 NHTS data, containing 924,000 trip observations (~15,000 long-distance over 75 miles) 

made by almost 130,000 households and 264,000 persons, was used to estimate trip frequencies, trip season, 

trip purposes, destination choice, and travel party size models. Trips longer than 75 miles (15,100 trips) 

were filtered from this dataset to estimate trip season, trip purpose, and destination choice models. This 

dataset contains trip, person, and household tables. The vehicle ownership model leverages the household 

table and trip models are estimated using the trip table. The person table was matched with the trip table to 

include individuals’ demographics in different models. Sample weights reported in the NHTS data were 

used to match the sample with the entire US population. NHTS uses ACS data to create expansion factors 

to scale up survey data to 301 million persons (or 118 million households), making 371 billion person-trips 

(7 billion long-distance person-trips) every year (FHWA 2017).  

Ground and air travel time and cost skims are required to estimate mode choice and destination choices 

of users. For this purpose, the FHWA’s rJourney dataset were used containing a synthetic set of 1.17B long-

distance tours by US households, estimated for the year 2010. Travel time and cost estimates in this dataset 

are across 4,477 National User Model Areas (NUMAs) in the US. NUMAs were generated by FHWA using 

counties and Census Bureau Public Use Microdata Areas (PUMAs) across the US. FHWA overlays PUMAs 

and counties and selects the smaller zones as NUMAs. The EPA’s Smart Location dataset was used for 

land use details at all 73,056 tract zones, including population density and counts and job counts at each 

tract zone.  
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To simulate US travel patterns, the research team synthesized 10% of the US population at the census 

tract level (73,056 census tracts across the US). The synthesized population is based on marginals from 5-

year ACS data in 2019 (for the period between 2015 and 2019), using PopGen 2.0 software developed by 

Pendyala et al. (2011) and Ye et al. (2009). The household and person data were synthesized across 2,351 

“Public Use Microdata Areas” (PUMAs), to mimic the population distributed across the US (including 50 

states and the District of Columbia), consistent with census datasets and geographic-correspondence files. 

The authors used the datasets described in this section for estimating travel demand models and model 

applications. Table 1 summarizes the statistics of the synthesized population (used for model applications) 

and the 2016/17 NHTS data (used for travel demand model estimations before AVs). 

Table 1. Summary Statistics of Synthesized Population (10% Sample of 2019 US Population with 

28.1M Persons and 12.1M Households) and 2016/17 NHTS Data (264,000 Persons and 130,000 

Households) 

Variable Category 
2019 Synthetic 

Population 
2016/17 NHTS 

PERSON  

Sex 
Male 47.43% 49.07% 

Female 52.56% 50.93% 

Race 

White 73.54% 72.49% 

Black or African American 12.23% 12.71% 

Asian 5.38% 5.33% 

American Indian or Alaska Native 0.76% 0.86% 

Native Hawaiian/Pacific Islander 0.16% 0.28% 

Multiple responses selected 3.19% 3.96% 

Some other race 4.73% 4.37% 

Education 

High school graduate or GED 52.71% 33.51% 

Some college or associate degree 23.91% 28.56% 

Bachelor’s degree 14.72% 21.02% 

Graduate or professional degree 8.66% 16.90% 

Age 

Younger than 10 years old 11.99% 8.37% 

11–17 years old 10.10% 9.69% 

18–24 years old 8.49% 10.37% 

25–34 years old 13.79% 14.07% 

35–44 years old 12.80% 14.03% 

45–54 years old 13.34% 13.43% 

55–64 years old 13.29% 14.45% 

65–74 years old 9.44% 10.05% 

75 years or older 6.75% 5.12% 

HOUSEHOLD  

Household 

Size 

1-person HH 27.86% 27.88% 

2 persons in HH 33.93% 33.88% 

3 persons in HH 15.59% 15.67% 

4 persons in HH 12.90% 14.33% 

5 persons in HH 5.97% 5.42% 

6 persons in HH 2.30% 1.93% 

7 or more persons in HH 1.44% 0.89% 

Annual 

Household 

Income 

Less than $10,000 5.87% 7.51% 

$10,000–$14,999 4.33% 6.02% 

$15,000–$24,999 8.95% 9.78% 

$25,000–$34,999 8.97% 10.01% 

$35,000–$49,999 12.30% 12.37% 

$50,000–$74,999 17.26% 16.54% 

$75,000–$99,999 12.77% 12.30% 



Fakhrmoosavi et al. 

6 

 

Variable Category 
2019 Synthetic 

Population 
2016/17 NHTS 

$100,000–$124,999 9.17% 9.38% 

$125,000–$149,999 6.07% 5.35% 

$150,000–$199,999 6.84% 5.22% 

$200,000 or more 7.49% 5.50% 

#Children 

0 children 70.60% 69.92% 

1 child 9.69% 12.13% 

2 children 11.96% 12.29% 

3 children 5.18% 3.94% 

4 children 1.84% 1.22% 

5 or more children 0.72% 4.93% 

MODELING FRAMEWORK AND METHODS 

To investigate the impacts of AVs on travelers’ long-distance trips, this study generates disaggregate trips 

for the 10% synthetic population before and after AVs are available in the market. Figure 1 illustrates the 

datasets and steps to generate trips using a synthetic population. This figure shows the sequence of models 

required for generating trips and distributing them among different destinations and modes. Pre-trip models 

include the decision to participate in long-distance travel and departure time season, purpose, and frequency 

over the course of a year. Then, destination and mode choice models should be estimated, with mode choice 

conditioned on household vehicle ownership decisions and destination choice conditioned on the 

accessibility term (i.e., mode choice logsum). Party size for each tour should also be estimated before mode 

choice estimations. 

The number of long-distance trips per day was estimated at the individual level using a zero-inflated 

negative binomial (ZINB) model and the 2016/17 NHTS data. Based on the 2020 AV survey results and 

prior studies (Huang et al., 2020), it is assumed that trip frequency will increase 15% after AVs are in 

market. Population weights are applied to all models to ensure that parameter estimates better reflect the 

US household- and person-level populations. A multinomial logit model was used to estimate trip purpose 

and season models. Purposes include regular home-to-work “commute” trips (9%), as well as work-related 

business trips (7%), shopping excursions (18%), personal business (11%) and religious/community trips 

(1%), school/daycare trips (1%), medical/dental trips (4%), trips made to visit friends and family (19%), 

social leisure trips (28%), and other purposes (1%). The party size model also uses a negative binomial 

specification with the 2016/17 NHTS data set, to predict the number of individuals in a trip “party”, 

including non-household members.  

Mode choice relies on a joint revealed and stated preference multinomial logit model and the 2021 LD-

AV survey data, for all available modes (which vary by household, due to vehicle ownership decisions, and 

individual preferences). Survey respondents were asked to recall a recent long-distance trip, and were asked 

whether they would be willing to replace the mode used for that trip with AVs, provided the AVs are 

available with the same travel time as human-driven vehicles. The mode choices before and after the 

introduction of AVs were used in a joint revealed and stated preference mode choice model. A Poisson 

model was employed to estimate auto ownership before the advent of AVs. Quarles et al.’s (2021) AV 

ownership simulation approach was used to predict AV ownership in the future. Their approach estimates 

households’ willingness-to-pay (WTP) for AVs, where all capabilities found in today’s human-driven 

vehicles are maintained in all fully autonomous vehicles and compares the WTP to the technology price in 

each target year. 

Multinomial logit models were also used to predict destination choice of domestic trips considering 

NUMAs as different destination zones, which are finer than US counties in the nation’s heavily populated 

big-county regions (like southern California). The destination choice model calibration process tested 

controls for attraction details (i.e., the logarithm of different job-type counts summed over each destination 

tract, logsum over mode choice utilities, and population density), in two distinct model equations for 
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business and personal trips. Land use data were extracted from the EPA Smart Location data by mapping 

NUMA zones to US tracts’ Federal Information Processing System (FIPS) codes. The FHWA rJourney 

travel time and cost skims were used for the mode choice logsum estimates, which are the accessibility 

terms. Given the very large destination-choice set, Lemp and Kockelman’s (2012) strategic sampling 

approach was used for tractability and reasonable computing time. Strategic sampling for large-set 

estimation relies on a simple upstream choice logit model with 299 destination alternatives chosen 

randomly (out of 4477 NUMA zones), alongside the actual chosen zone. A special probability-adjusted 

logit model is used to draw the 300 alternatives in proportion to initial choice-probability estimates. The 

sensitivity of this strategic sampling approach to the number of sample alternatives is investigated by Lemp 

and Kockelman (2012). The travel demand models were run in sequence for the synthesized household and 

person data and the models were validated by comparing the estimated long-distance trip frequency, 

purpose, season, party size, modes, and destinations before AVs with those of the NHTS dataset. Then, 

these specifications were estimated for future scenarios when AVs are readily available. 

 

Figure 1. Steps for Applying Travel Demand Models to the Synthetic Population to Generate 

Disaggregate Trips Before and After AVs 

RESULTS AND DISCUSSIONS 
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This section summarizes travel demand models and the model application results before and after AVs are 

readily available. Table 2 illustrates the practically and statistically significant variables in the long-distance 

trip frequency model, along with the impacts for a one standard-deviation increase in each covariate (as a 

measure of practical significance). Results of the ZINB model for long-distance trip frequencies suggest 

that shifting the population-weighted sample toward the male gender by 1 SD increased the sample’s 

average long-distance trip frequency by 21.6%. A 1 SD increase in households’ vehicles increased long-

distance trip-making rates by 21.6%. Shifting the sample toward having at least an associate degree by 1 

SD also increased trip frequency 24%. 

Table 3 presents the coefficient estimates of the multinomial logit model to estimate trip season with 

summertime travel as the base alternative. The probability of taking a long-distance journey in the spring 

rises with age. Fall is a less popular time for long-distance trips among adults than summer.  

Table 2. ZINB Model for Long-distance Trip Frequency Using 2016/17 NHTS Household Data 

Negative binomial (NB) model coefficients  

Variable Estimate t-stat P-value Pract. Sign. 

(Intercept) 0.799 3.62 0.000 - 

Male 0.172 7.85 0.000 0.216 

Age  -0.002 -3.52 0.000 -0.099 

Ln (HH income) ($) -0.079 -2.72 0.006 0.507 

Education associate degree or higher 0.191 6.84 0.000 0.216 

#Adults -0.228 -14.71 0.000 -0.460 

Worker -0.080 -3.95 0.000 -0.077 

HH vehicle count 0.141 12.40 0.000 0.657 

ln(θ) 15.45 6.44 0.017 - 

Zero-inflation (ZI) model coefficients  

Variable Estimate t-stat P-value Pract. Sign. 

(Intercept) 7.125 31.49 0.000 - 

Ln (HH income) ($) -0.043 -4.04 0.000 0.507 

HH vehicle count -0.410 -19.80 0.000 0.657 

   n = 201,820, Pseudo-R2 = 0.015 

Table 3. Coefficient Estimates of the MNL Model for Trip Season (Base Season: Summer) 

 Fall Trip Winter Trip Spring Trip 

Estimate t-Stat P-value Estimate t-Stat P-value Estimate t-Stat P-value 

(Intercept) 0.034 0.341 0.733 -0.630 -6.92 0.000 -0.828 -6.55 0.000 

Male 0.270 6.16 0.000 0.270 6.16 0.000 0.270 6.16 0.000 

Age - - - - - - 0.010 7.55 0.000 

College 

Educated or 

Higher 

0.167 2.49 0.013 0.217 3.07 0.002 0.117 1.775 0.076 

Income ($1000) 0.001 1.45 0.147 - - - - - - 

HH Size -0.097 -5.03 0.000 -0.097 -5.03 0.000 -0.097 -5.03 0.000 

#Vehicle Owned 0.091 4.88 0.000 0.091 4.88 0.000 0.091 4.88 0.000 

Employed? -0.250 -5.56 0.000 - - - -0.250 -5.56 0.000 

#Adults -0.113 -3.54 0.000 - - - 0.084 2.73 0.006 

: 0.00132Adj. Rho, 10,455=  n 
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Table 4 presents the coefficient estimates of the multinomial logit trip purpose models with 10 

alternatives, keeping the commute trips as the base. The trip purposes considered in the model include 

commute (9%), business (7%), shopping (18%), personal business (11%), school (1%), medical/dental 

(4%), religious or community (1%), visits to friends and relatives (19%), social leisure (28%), and other 

purposes (1%). The purpose model predicted that as household income increases, the probability of making 

long-distance business trips and personal trips (except medical/dental trips) increases as compared to daily 

long-distance work (commute) trips. There is a high probability of making business trips in the spring and 

fall seasons. With an increase in age, individuals tend to make more medical/dental, business, shopping, 

religious, and other social leisure trips than commute and school trips. 

Table 4. Coefficient Estimates of the MNL Model for Trip Purposes (Base Purpose: Commute) 

 Business Shop 
Other 

Personal 
School 

Medical 

& 

Dental 

Religious 

Visit 

friends/ 

relatives 

Social 

leisure 
Other 

Intercept −0.543* 2.916*** 2.498*** 2.051*** −0.156 −1.665*** 2.806*** 3.237*** −11.123*** 

Worker? - −2.178*** −1.870*** −3.997*** −3.244*** −2.013*** −2.131*** −2.392*** - 

Age 0.012*** 0.007*** 0.013*** −0.130*** 0.041*** 0.020*** 0.005*** - 0.093*** 

Male? - −0.499*** −0.658*** - −0.197 - −0.731*** −0.622*** - 

Fall Trip? 0.738*** - −0.247** 1.018*** 0.202 - 0.337*** - - 

Winter 

trip? 
- −0.602*** −0.556*** −0.567*** - - - −0.616*** - 

Spring 

trip? 
0.683*** −0.374*** −0.679*** - - - - −0.663*** 3.172*** 

Associate 

degree or 

higher? 

0.422*** 0.279*** - 1.980*** - - 0.358*** 0.391*** - 

HH size −0.074* −0.126 −0.103** - - −0.106 −0.205*** - - 

#Adults −0.858*** −0.436*** −0.188** - - - - −0.419*** - 

HH 

income 

($1000) 

0.014*** 0.007*** 0.006*** 0.016*** −0.018*** 0.009*** 0.007*** 0.009*** 0.022*** 

White? - 0.273*** - −0.548* - - - 0.396*** - 

#Vehicle −0.101** - −0.115*** −0.255** - - −0.202*** - −0.990*** 

n = 11,414 & Pseudo R2 = 0.2501, *0.01 to 0.1, **0.001 to 0.01, ***0.000  

Figure 2 illustrates the practical significance of all statistically significant variables in the vehicle 

ownership (Figure 2a) and party-size (Figure 2b) models. Figure 2a indicates that a 1-SD change in each 

household’s income or the number of workers per adults in the household increase predicted vehicle 

ownership counts by 24% and 12%, respectively. A 1-SD rise in the population density (logged) of the 

census tract of the household home location reduces this ownership by about 27%. Increasing the number 

of drivers in a household by 1-SD increases the vehicle ownership by more than 80%. The average model-

predicted number of passengers in a long-distance travel party falls by 25% when the commute-purpose 

variable rises by 1 SD, and by 19% when the business trip indicator rises by 1 SD. A 1 SD increase in the 

female gender indicator increases party size by 11%.  
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a) 

 

b) 

 
Figure 2. Impacts of Statistically Significant Covariates on a) Vehicle Ownership, b) Trip Party 

Size (% Average Change in Predicted Y Following a 1 SD Increase in the X Covariate) 

Mode and destination choice models for long-distance domestic trips were estimated for business and 

non-business trips in a joint model before and after AVs become available using the 2021 long-distance 

AV survey.Uncommon existing long-distance modes (including bus, rail, and boats) were not included, so 

only air, rental car, personal car, and AVs were permitted. To consider chain trips, we summed the time 

and costs of all legs of trips. The specifications of the joint revealed and stated preference logit models for 

non-business trips with AVs are presented in Table 5. The operational cost of AVs was considered $0.70 

per mile. Operational cost of human-driven personal vehicles was assumed $0.50 per mile, while the cost 

of a rental car was $50 per driving day (minimum 1 day) in addition to $0.10 per mile. To avoid the 

correlation between travel costs and times, the residuals of travel cost from travel times were considered in 

the mode choice models. The specifications of the mode choice model for non-business trips show that 

users are more willing to use airplanes for trips longer than 500 miles. In addition, AVs have an adverse 

relationship with age and a direct relation with having at least a college degree. Rental cars have a higher 

utility for trips with higher party size.  Due to the low number of observations in the survey for business 

trips, the non-business model was adjusted by lowering the impact of cost in these trips’ mode choice. 

Table 5. Specifications of the Logit Mode Choice Model After AVs Using Joint Stated Preference 

and Revealed Preference LD-AV Survey Data, EPA Smart, and RSG rJourney Data 

 Estimate t-ratio P-value 

ASC car 0 - - 

ASC air -1.187 -7.464 0.000 

ASC rental car -0.710 -10.803 0.000 

ASC AV -0.090 -0.291 0.385 

Travel time x car -0.281 -5.469 0.000 

Travel time x air -0.270 -2.282 0.011 

Travel time x rental car -0.103 -3.618 0.000 

Travel time x AV -0.113 -4.815 0.000 
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Access/egress distance x air -0.028 -3.666 0.000 

Residual of cost from travel time -0.002 -3.777 0.000 

Long-distance>500 mi x air 1.914 4.120 0.000 

Party size rental x car 0.129 2.591 0.005 

Female x car -0.207 -1.336 0.091 

Age x AV -0.023 -3.472 0.000 

Associate degree x AV 0.725 2.459 0.007 

μ revealed preference 1.000 - - 

μ stated preference 0.992 11.398 0.000 

n = 584, R-squared: 0.3513    

The destination choice models with the strategic sampling of 300 alternatives are presented in Table 6. 

The results of the destination choice model suggest that the number of retail, industrial, service, public 

administration, and medical jobs at the destination tract are important contributors of business and non-

business trips. The utility of destination rises when the accessibility term and/or the population density 

increases at the destination’s tract. 

Table 6. Destination Choice Model Specifications Using 2016/17 NHTS, EPA Smart Location, and 

rJourney Data 

 Non-business Trips Business Trips 
 Estimate t-Stat P-Value Estimate t-Stat P-Value 

Mode choice logsum 0.017 122.96 0.000 0.011 50.49 0.000 

Destination population 

density at the tract level 

(persons/sq mi) 

0.002 1.60 0.109 0.005 2.61 0.009 

#Retail jobs in tract -0.068 -8.62 0.000 -0.049 -2.38 0.017 

#Industrial jobs in tract 0.027 3.20 0.001 0.021 1.04 0.297 

#Service jobs in tract 0.019 2.17 0.030 0.057 2.56 0.010 

#Public administration jobs 

in tract 
-0.019 -3.90 0.000 - - - 

#Medical jobs in tract - - - -0.044 -2.81 0.005 

 n = 9,325, Pseudo-R2: 0.060  n = 1802, Pseudo-R2: 0.060 

The application of the models presented in Tables 2-6 and Figure 2 to the 10% synthetic US population 

indicated 0.85 vehicles per capita in 2019, which is consistent with the vehicle per capita of 0.83 in 2020 

based on the US census data. After AVs are in market in the future (e.g., in year 2040) with AV technology 

premium of $3,500, 61% of households are estimated to have AVs. The model applications suggest that 

Americans conducted 2.00 long-distance trips per person per month in 2019. Based on the results of the 

2020 AV survey and previous studies, such as Huang et al. (2020), it is assumed that AVs will increase trip 

counts by 15%. As shown in Figure 3, Mode splits for long-distance, domestic trips prior to AV access 

were estimated as 79% by private automobile, 18% by rental car, and 3.02% by air. After AVs become 

available for purchase (with a premium cost of $3,500) and SAVs are available with $0.70/mile operation 

cost, mode splits shift to 42% by conventional human-driven vehicle, 10% by conventional rental car, 26% 

by AV, 19% by SAVs, and 2.6% by air. Figures 4 summarizes the results of the destination choice model 

for the synthetic population. Assuming a $3,500 AV technology cost premium in 2040 in today’s dollars, 

total person-miles traveled (PMT) per capita in long-distance trips is estimated to rise 24% (from 250 to 

309 miles per month). For the same AV technology cost premium scenario, vehicle-miles traveled (VMT) 

in long-distance trips increases from 149 to 186 miles per capita per month as many travelers shift from air 
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to cars and shorter trips. Air-miles traveled falls from 20 miles to 19 miles per capita per month in this 

scenario. 

 

Figure 3. Mode Share Shift Before and After AVs Are in Market with Technology Cost of $3500 

 

Figure 4. Shift in Person-miles Traveled (PMT) of Long-distance Trips after AVs are in Market 

 

CONCLUSIONS 

This research forecasted implications of automated cars on long-distance (over 75 miles one-way) domestic 

passenger travel frequency, destination, mode, party size, and scheduling inside the US. Different datasets 

were used to derive equations for such choices with and without AVs using Poisson, negative binomial, 

zero-inflated negative binomial distributions, and multinomial logit models.  These estimations relied on 

the nation’s Public Use Microdata Sample (PUMS) with 2015-19 data (as released in 2019), a survey of 

1,004 US respondents (45% residing in Texas and 55% in other US states) in 2021 to revealed and stated 

preference questions about recent trips and future trip scenarios (Huang et al. 2022), the 2016/17 NHTS, 

the EPA Smart Location data (for land use attributes at the tract level), and FHWA’s rJourney data for long-

distance passenger trips in 2010 (to extract travel time and cost skims). To simulate US long-distance 

domestic passenger travel, this study used synthesized household and person data and the set of estimated 
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travel demand models for trip frequency, trip season, travel purpose, vehicle ownership, party size, mode 

choice, and destination choice models. The synthetic population is comprised of 28.1M persons in 12.1M 

households across 2,351 Public Use Microdata Areas (PUMAs), to mimic the nation’s population 

distribution (across 50 states and the District of Columbia). The synthetic population is consistent with 

census datasets using the nation’s 73,056 census tracts.   

Model applications with the 10% US synthetic population suggested that the average party size of 2.04 

persons for long-distance trips, which is assumed to remain stable after the introduction of AVs. Vehicle 

ownership model application estimated 0.85 vehicles per capita for 2019, which is consistent with the 

vehicle per capita of 0.83 in 2020 based on the US census data. 2.00 LD trips over 75 miles per month per 

capita were estimated for the 10% synthetic population, which matches the NHTS data. Assuming a $3,500 

technology cost premium (e.g., in year 2040), total person-miles traveled per capita for existing long-

distance trips are estimated to rise 24% (from 250 to 309 miles per month). For the same scenario, associated 

vehicle-miles traveled rises from 149 to 186 miles per capita per month (a 24.8% increase). For future 

research, the shift in trip destinations should be investigated using a stated preference survey, like the mode 

choice of this study. In addition, potential impacts of AVs on international trips, especially to Canada and 

Mexico, should also be investigated. 
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