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ABSTRACT 25 

This paper explores the effects of day of week and season of year demand variations for shared rides, 26 
along with realistic travel party sizes, on shared autonomous vehicle (SAV) services across the Austin, 27 
Texas region. Using the agent-based POLARIS program, synthetic person-trips that reflect travel-party 28 
size (from one to four persons) and demand variations over days and months, as evident in the National 29 
Household Travel Survey data were simulated in each scenario over a 24-hour travel day. Results show 30 
that realistic party sizes can bring considerable changes to SAV fleet performance, including up to 8.5% 31 
higher service rates (number of requests accepted within 15 minutes), 5-minute shorter journey times 32 
(wait time + travel time), 28% higher vehicle occupancies on weekends, and roughly 4% lower empty 33 
fleet VMT. Weekend travel is most impacted by season of year, with weekday travel patterns looking 34 
more uniform (thanks to work and school trips). Various performance metrics for the Austin network, like 35 
total and empty VMT, change by up to 30% when considering realistic variations in party size and time of 36 
year. This paper underscores the value of recognizing day-to-day and month-to-month variations in travel 37 
demand, and the importance of agent-based model equations to reflect travel-party size. Such realism can 38 
help quantify SAV seat occupancies more accurately, highlighting the importance of shared mobility. 39 
However, it also creates demand and supply issues for operators that now need more information on party 40 
size to manage dynamic ride-sharing, or those that may wish to shift their fleet vehicles to other regions 41 
for special events to protect profits while offering reasonable wait times to customers throughout the year. 42 
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INTRODUCTION 1 

While travel party size and seasonal travel shifts are sometimes approximated in travel demand modeling 2 
research (Bradley et al., 2016; Grigolon et al., 2013; Miller, 2004; Stefan et al., 2016), newer, agent-based 3 
simulations have put more emphasis on individual travelers – their activity sequences, departure times, 4 
and route choices, as well as dynamic traffic assignment outcomes (Fagnant and Kockelman, 2018; 5 
Gurumurthy et al., 2019; Maciejewski and Bischoff, 2018). For systems of shared autonomous vehicle 6 
(SAV) fleets, a single 24-hr workday is typically synthesized, neglecting seasonality and travel day or 7 
week, as well as party size (Dean et al., 2022; Nahmias-Biran et al., 2021; Winter et al., 2021). Given the 8 
general situation of lacking travel party size and demand variations over time in many current studies, this 9 
paper conducts agent-based simulations on the 6-county Austin, Texas region to explore how key metrics 10 
differ as realism is added, in the form of variable party sizes (that request SAV rides), day of week, and 11 
season of year.  12 

Travel party size is a meaningful factor in both long- and short-distance travel demand models (see, e.g., 13 
Fakhrmoosavi et al. 2022). People can travel in a party of two or more using either personal vehicles or 14 
public transport, e.g., buses or transportation network companies (TNCs). In agent-based simulation, it 15 
often makes no difference for a personal vehicle in terms of vehicle-trips simulated, but could be critical 16 
for ride-sharing services as it greatly alters the ride-sharing service patterns: 1) Trips made by a travel 17 
party greater than two can sometimes fail to be served due to limited seats in a TNC vehicle; 2) The 18 
average vehicle occupancy can be different because each person in the travel party should occupy one 19 
seat. Seasonal travel shifts are another key factor that impacts the agent-based simulation analysis. In 20 
reality, Americans tend to make more trips over the summer than in the winter, except during the holidays 21 
(e.g., Christmas and Thanksgiving), as indicated in NHTS 2016/2017 survey (McGuckin and Fucci, 22 
2018). Travel variations over months of a year and days of a week are often failed to be captured, even in 23 
many traditional travel demand models (four-step models or activity-based models). Capturing the 24 
fluctuations in travel demand (especially the peak demand) across a year can be important in identifying 25 
the bottleneck of network performance and the robustness of a service. This paper defines the seasonal 26 
travel shift as four seasons of a year, along with two types of days over a week: weekdays versus 27 
weekends. More importantly, party size can also vary in different seasons. For example, people may 28 
travel solo in the summer for leisure and business purposes, while in the winter, many people travel to 29 
visit family and have larger party sizes.  30 

As emerging technologies, like AVs, penetrate future transportation, the ride-sharing service provided by 31 
SAVs is anticipated to become popular due to lower cost and improved safety (Bösch et al., 2018; 32 
Clements and Kockelman, 2017), and thus there is an urgent need to incorporate detailed party size 33 
distributions and seasonal shifts in coordination with agent-based simulations to reveal realistic ride-34 
sharing efficacy and service patterns. This paper aims to explore the answers to two questions: (1) How 35 
does fleet performance vary in agent-based simulations of AVs’ ridesharing service considering seasonal 36 
travel trend? (2) What are the impacts of varying travel party size in agent-based simulations? Since 37 
NHTS 2016/2017 survey offers a good annual pattern of seasonal travel shifts and travel party sizes, this 38 
dataset is leveraged to offer the related seasonal and travel party distributions, which are further used to 39 
adjust the travel demand tables for use in POLARIS (Auld et al., 2016).  40 

The paper is organized as follows. The next section reviews current literature about travel party size and 41 
seasonal travel shifts. The NHTS data is then described in detail on these two quantities, before 42 
introducing the methodology of generating realistic travel party size and seasonal travel shifts as inputs 43 
for POLARIS. Scenario design and model results are then presented, before concluding the paper with 44 
recommendations for future research.  45 

LITERATURE REVIEW 46 

Travel party-size 47 
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Travel party size has been discussed in both short-distance and long-distance travel (Bradley et al., 2016; 1 
Stefan et al., 2016; Zhang et al., 2020) or tourism (Thrane and Farstad, 2011; Zhao et al., 2018). It is often 2 
considered a key step in traditional travel demand models and estimated jointly with other travel choices 3 
like mode choice, trip duration, and destination choice. Long-distance travel data (rJourney) for the year 4 
2010 from FHWA shows an average party size of 2.18 travelers (Federal Highway Administration, 2015), 5 
while a recent long-distance travel survey conducted by Huang et al. (2022) shows an average party size 6 
of 2.8 travelers for both business and non-business travel. The national household travel survey (NHTS) 7 
2016/2017 shows an average vehicle occupancy of 1.67 across all trip purposes (McGuckin and Fucci, 8 
2018). 9 

Back in 2004, Miller (2004) suggested improving travel demand model specifications for inter-city 10 
travelers and trip attributes, including party size. Bradley et al. (2016) modeled long-distance tours across 11 
the entire US, considering three main party size categories in the choice model (one person traveling 12 
alone as the base case, commute and business purpose with party sizes from 2 to 4+, and other trip 13 
purposes with party size from 2 to 6+). Grigolon et al. (2013) considered simple travel party choices 14 
(alone, with partners, with family, with friends, other, and “not planned yet”) in their binary mixed logit 15 
panel model for the vacation planning process. Unlike the traditional travel party choice models stated 16 
previously, Stefan et al. (2016) designed a logit model with three alternatives: all household members 17 
travel together, a subset of members travel together, or one household member travels solo. The solo 18 
traveler is selected through another logit choice model, while the “primary” traveler (e.g., a parent taking 19 
children along) is selected for the subset case (followed by another model to decide travel party size). 20 
However, this model considers travel only among household members, neglecting travel with colleagues 21 
and friends. Many studies have also demonstrated the interaction between other travel decisions like 22 
mode choice and destination choice (Hsieh et al., 1993; Rashidi and Koo, 2016).  23 

Agent-based simulations can sometimes recognize multiple travel-party situations in family travel, like 24 
picking up children or dropping off household members at the airport; however, not all agent-based 25 
simulations can capture that, and they often lack the case when people travel with friends and colleagues. 26 
Seating capacity is often specified in ride-sharing simulations, but travel party size is generally ignored 27 
since that information does not appear in the publications (see e.g., Fagnant and Kockelman, 2018; Hörl, 28 
2017; Loeb et al., 2018; Milakis et al., 2017). For example, Fagnant and Kockelman (2018) designed an 29 
agent-based model for SAV operation to explore the environmental benefits versus conventional vehicles 30 
with assumed party size of one, and noted such kind of limitation as future work. Loeb et al. (2018) 31 
simulated shared automated electric vehicle (SAEV) operations in Austin, Texas, to investigate the 32 
charging station placement and fleet performance based on battery range, charging times, and fleet size. 33 
The average party size is assumed unform for all travel parties and further used as an input for sensitivity 34 
analysis. Therefore, although there are specific modeling efforts to capture party size, travel party size is 35 
often ignored in agent-based simulations, especially in the context of ride-sharing service that requires 36 
detailed modeling of persons occupying seats in a vehicle. 37 

Seasonal Variation  38 

Seasonality in travel varies by definition, such as across the four seasons of a year, months of a year, days 39 
of a week, or weeks of the year. They are sometimes incorporated as variables in models to differentiate 40 
the seasonal impact on travel demand (see examples: Chakrabarti, 2018; Müller et al., 2020). Similar to 41 
the use case of party size, seasonal shifts are more closely related to tourism than normal day travel (Bar-42 
On, 2002; Martínez et al., 2020).  43 

Seasonal travel shifts are used for different travel demand forecast purposes. For example, Stamatiadis 44 
and Allen (1997) explored the use of seasonal adjustment factors to improve the estimation of daily 45 
volumes for each vehicle type. Dadashova and Griffin (2018) applied seasonal adjustment, which are 46 
monthly adjustment factors applied to short-duration counts for both pedestrian and bicyclist count data. 47 
Elango et al. (2007) explored the demographic impact on trip-making under different seasons. They found 48 
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that the variation in the number of trips per day by demographic factors for spring and fall was similar to 1 
that for the full year. However, households exhibit significant differences between annual and summer, 2 
except for those low-income households, single-person households, and households with no children.. 3 
Hasnine et al. (2021) leveraged historical Uber data from 2016 to 2018 and revealed that TNC demand 4 
from earlier months than September (as the base) has a positive correlation with the TNC trip generation 5 
in September.  6 

A 24-hour agent-based simulation (if not an analysis for just morning or afternoon peak times) often uses 7 
a synthetic population with corresponding travel behaviors (e.g., trip-making rates, destination choice, 8 
and mode choice) for a typical travel day (with schools in session), often defined loosely and based on 9 
“engineering judgement”. As seen from a review paper for agent-based simulations of automated vehicles 10 
back in 2020 (Jing et al., 2020), no paper considered demand variations over week or year in the 11 
scenarios, although demand variation over the 24-hour day is commonly considered (e.g., Bischoff and 12 
Maciejewski, 2016). 13 

Recognizing gaps in the existing literature, this paper’s contributions are significant: by incorporating 14 
both travel-party size and seasonal demand variations in agent-based simulations for SAV ride-sharing 15 
operations, this work delivers more realistic system-level findings for transportation policy and practice.” 16 

NHTS DATA SET 17 

Various data sources and surveys (California Department of Transportation, 2013; Federal Highway 18 
Administration, 2017) reveal the party size of the travelers. In this paper, the NHTS 2016/2017 data was 19 
leveraged to explore and generate party size as well as seasonality in travel demand. The NHTS 20 
2016/2017 was deployed in 2016, which collected the daily travel of Americans over the whole year from 21 
April 2016 to April 2017. The survey provides detailed demographic information of surveyed households, 22 
along with their travel history on a particular day during the survey time horizon. The trip, person, 23 
vehicle, and household records are weighted to represent the annual travel pattern of Americans. There 24 
are 923,572 person-trip samples collected from 263,991 persons in 129,696 households. Many trip details 25 
are revealed through the survey, including trip distance, departure and arrival times, travel mode, and trip 26 
purpose. Party size is revealed through a question that asks each respondent for the “number of people on 27 
trip including respondent” - with follow-up questions regarding the number of household members in the 28 
travel party. Knowing the exact travel day (in 2016 or 2017) allows us to explore season, day of week, 29 
and other effects. Therefore, the NHTS 2016/2017 data is a good source that can reveal the year-round 30 
travel variations, with sufficient data records suitable for statistical analysis.  31 

Figure 1 shows the number of total person-trips made each week from April 2016 to April 2017. The 32 
travel pattern fluctuates due to the occurrence of holidays and possible weather conditions, but the overall 33 
pattern shows that people travel more (sum of weekdays and weekends) during spring and summer than in 34 
cold-weather months. Low trip rates are observed at both ends of the survey-year (the first week and the 35 
last week of the NHTS survey periods), since sample size was halved in those overlapping periods.  36 
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 1 

Fig. 1 Number of person-trips (in billions) by the week of year 2 

In terms of party size, NHTS 2016/2017 data shows an average value of 1.43 travelers per trip across all 3 
automobile modes for party sizes smaller than four. Figures 2 and 3 show the share of person-trips by 4 
party size for seasonal shifts and different times of day, respectively, on weekdays and weekends. Figure 5 
2 indicates that the share of person-trips by party size does not vary much across seasons, especially on 6 
weekdays, with solo travelers and 2-person travel parties making up more than 50% and 30% of all trips 7 
made, respectively. Compared to weekday trips, weekend trips favor multiple-traveler parties, shifted 8 
from solo travelers. Figure 2 also shows that 4-person travel parties occur more often in spring, and 9 
typically on the weekends, than in other seasons. Figure 3 demonstrates the shares of person-trips by party 10 
size across six times of day, on weekdays and weekends. Time of day bins are chosen so that they align 11 
with the timing choice model using in POLARIS. This allows shifting demand according to the variation 12 
observed in the NHTS data. Night, AM peak, AM off-peak, PM off-peak, PM peak, and evening are, 13 
respectively, “midnight to 6 am”, “6 am to 9 am”, “9 am to 12 pm”, “12 pm to 4 pm”, “4 pm to 7 pm”, 14 
and “7 pm to 12 am”. Solo travelers are most observed in nighttime hours, accounting for 76% of person-15 
trips on weekdays and 59% on weekends. Similarly, people tend to travel solo more on weekdays than 16 
weekends across the six times of day.  17 
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 1 

Fig. 2 Share of person-trips by party size across four seasons 2 

 3 

Fig 3 Share of person-trips by party size across six times of day 4 

METHODOLOGY 5 

Austin’s POLARIS model 6 

Agent-based micro-simulations have been a key method to explore SAV services (Jing et al., 2020). They 7 
track individual travelers and vehicles across detailed networks to infer key operational metrics (like 8 
person- and vehicle-miles traveled, average response times, and vehicle idle times) to anticipate 9 
environmental, safety, economic, and land use impacts (see e.g., Chen and Kockelman, 2016; Clements 10 
and Kockelman, 2017; Gurumurthy and Kockelman, 2022; Horl et al., 2019; Huang et al., 2021; Kondor 11 
et al., 2019; Simoni et al., 2019). SAV modeling efforts have focused on off-street parking, emissions, 12 
vehicle assignment strategies, road pricing and fare strategies, vehicle charging, and many other areas 13 
(Dean et al., 2022; Gurumurthy and Kockelman, 2022; Hyland and Mahmassani, 2018; Levin et al., 2017; 14 
Simoni et al., 2019). The agent-based travel demand and traffic simulator called POLARIS (Auld et al., 15 
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2016) was enhanced in this work, to explore the effects of variations in party-size and seasonal travel 1 
shifts on shared fleet operations across the Austin, Texas region. 2 

POLARIS is an end-to-end travel demand simulator in that it provides a population synthesizer that fits 3 
the agent population characteristics across several categories to the regional cross-tables iteratively (Auld 4 
and Mohammadian, 2010). A series of activity models are executed on the synthetic population to 5 
generate, schedule, and plan each agent’s travel day (Auld et al., 2011). Destination, mode, and route 6 
choice is then conducted to have a cogent 24-hr day plan for each person agent in the simulation (Auld 7 
and Mohammadian, 2011, 2012; Gurumurthy et al., 2020). The synthesizer allows scaling of person 8 
agents simulated allowing flexibility to model different proportions of the population. POLARIS is a 9 
powerful C++ framework that is able to simulate 100% of most regional populations in relatively low 10 
runtimes, so a scaling factor of 1.0 is used throughout this study. Austin’s 1.9 million population making 11 
530,500 TNC person-trips is simulated in under 2 hours on a supercomputer utilizing about 40 GB of 12 
memory.  13 

 14 

Fig 4 Austin 6-county POLARIS model 15 

The Austin network shown in Figure 4 is comprised of over 22,863 bi-directional links and 17,231 nodes 16 
with different controls (two-way or four-way stop, or signal control). The 6-county region is spread over 17 
5,480 sq. mi and the local MPO consolidates this region into 2,161 traffic analysis zones (TAZs). About 18 
94% of all travel is made with an automobile (personal or TNC). 19 

In order to isolate the effect of seasonality and party-size impacts on fleet operations, a fixed travel 20 
demand was used. Figure 5 illustrates the network loading from an Austin simulation, defining the clear 21 
bimodal peaks that are wider in the PM. The trip data from this simulation was converted as a fixed travel 22 
demand input for POLARIS. By using all travel demand, the speed profile for the region will remain 23 
consistent and reflect routes chosen by SAVs that react on-demand in the simulation. The oscillations 24 
from a certain point from the profile indicate an increase in the replanning process of the agents as the 25 
network congestion changes. At the beginning of the day, trips made are predominantly work-related 26 
trips. Routine activities are considered fixed in start time and duration as planned at the beginning of the 27 
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simulation day. There is little flexibility, typically, in when work starts and it’s a more frequent activity 1 
made, so travelers are assumed to be capable of assessing the variability in morning traffic. Trips made 2 
after the AM peak arise as subtours related to work, and other activities that are flexibly scheduled. 3 

The SAV module (Gurumurthy et al., 2020) was extended to read in and execute party-size restrictions 4 
for shared trips. Since the focus was on party-size restrictions and seasonal variations, an existing 5 
algorithm for dynamic ride-sharing (DRS) was used (Gurumurthy and Kockelman, 2022), with 6 
modifications to ensure the total parties involved in a shared trip are less than or equal to the vehicle’s 7 
seated capacity. The algorithm considers vehicle location and the directionality of a trip request, while 8 
trying to control for detours imposed on all traveling parties. When the trip request aligns with the 9 
direction of travel (if any) for the SAV, and the maximum detour for any parties already in the vehicle is 10 
not violated, a match is confirmed, and the SAV finds the shortest path to execute the series of pickup and 11 
drop-offs. For more details on the DRS ride-matching algorithm, refer to (Dean et al., 2022). 12 

 13 

Fig 5 Network loading in Austin’s 6-county region 14 

Seasonal travel adjustments 15 

The seasonal travel variations reflect the fluctuations of demand across the year. As mentioned in the 16 
NHTS summary statistics, travelers present different behaviors in reaction to weather and temperature. 17 
Setting up the seasonal travel demand adjustment is based on the following considerations and 18 
assumptions:  19 

1. The seasonal travel shifts are only reflected in the amount of travel demand. They do not 20 
distinguish between the trip purposes (home-based vs. non-home-based), destination choices (inter-21 
city or intra-city), or mode choices (car vs bus, under extreme weather conditions), since most of 22 
them have already been captured in agent-based simulations. The travel shifts aim to tackle the 23 
drawback of an “average” day that is often assumed in agent-based simulations. 24 

2. The seasonal travel shifts are mainly revealed through four seasons of year (spring, summer, fall, 25 
and winter) and two types of days (weekday vs. weekend). This gives a lower resolution of the 26 
temporal picture compared to 12 months of a year and seven days of a week, but it provides relatively 27 
clear distinctions among the demand patterns. Four seasons of a year can better represent the 28 
temperature and activity changes across a whole year, while a weekday-weekend setup can often tell 29 
the commuting trips of a weekday pattern apart from the leisure trips of a weekend activity pattern.  30 
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3. It is assumed that the NHTS 2016/2017 data can represent the seasonal shift and party size 1 
distributions. This indicates another average in the spatial pattern because the travel shifts are 2 
different between the Northern states and the Southern states. A Southern state like Texas or a 3 
Southern city like Austin would likely see more trips in winter compared to the Northern states and 4 
cities. However, the US pattern is assumed to be suitable for the Austin area, due to the lack of 5 
datasets that can present seasonal shifts and party size distributions within the Austin area.  6 

4. The travel demand level is reflected at a daily level, since the 24-hour simulation is usually the 7 
time horizon for most agent-based simulations. This is achieved by comparing the seasonal average 8 
with the annual average to obtain the adjustment factor for both weekdays and weekends. Weekdays 9 
are usually the assumption for most agent-based simulations, as they incorporate commuting trips. 10 
Therefore, weekday is set as the base, and adjustment factors are applied for weekends across four 11 
seasons. The average person-trips for weekdays and weekends are divided by 5 and 2, respectively, 12 
for a reasonable level of daily travel comparison to get the daily person-trip ratio of a weekend to a 13 
weekday.  14 

5. Factors for seasonal shifts (similar to the party size) are calculated based on the “auto” mode in 15 
NHTS 2016/2017, which consists of the modes of car, SUV, van, pickup truck, rental car, and TNCs. 16 
This can help properly adjust the level of total demand and the party size simultaneously. In terms of 17 
the adjustment factors from weekdays to weekends, only TNC data was explored. This offers a better 18 
distinction for the use of TNCs on weekdays and weekends.  19 

Table 1 shows the adjustment factors obtained after processing the NHTS data that capture the change in 20 
travel demand across four seasons of year (𝑓𝑠) and two types of days (𝑓𝑤) relative an annual average. 21 
People make more daily trips on weekends as compared to workdays except in summer. Daily automobile 22 
use is even higher on weekends in the winter since they are less likely to drive personal cars or use public 23 
transit due to weather conditions. An overall reduction in trips, however, occurs generally in fall and 24 
winter in contrast to spring and summer, which have about 5% more trips. After applying the adjustment 25 
factors, there are eight sets of travel demand (four seasons by two types of day) for the process of party 26 
size generation.  27 

Table 1. Adjustment factors for seasonal daily travel shifts, by weekday vs weekend 28 

Adjustment Factors Weekday → Weekends (𝑓𝑤) 
Annual Avg → Season Avg (𝑓𝑠) 

Weekends Weekdays 
Spring 1.39 1.04 1.05 
Summer 0.86 1.04 1.06 
Fall 1.15 1.00 0.96 
Winter 1.91 0.92 0.93 

 29 

Party size generation 30 

Party size distribution is obtained from the NHTS data to reflect a realistic party-trip instead of a single 31 
person-trip, so that the true vehicle occupancy is simulated. The party size distribution in this paper 32 
considers the variation in seasonal travel shifts (four seasons plus two types of day) as well as the 33 
departure time of day. However, travel party sizes are assumed unaffected by trip distance, purpose, and 34 
destinations, although the trip purpose and destination choice may be partially captured by the departure 35 
time of day. For example, an afternoon trip could be a family trip while a commuting trip in the morning 36 
is more likely to be a solo trip.  37 
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A few papers have discussed the potential of different SAV seat configurations for different services 1 
(Alonso-Mora et al., 2017; Huang et al., 2022a, 2021; Inturri et al., 2021), but many agent-based 2 
simulations still introduce SAVs as a vehicle with four available seats (Farhan and Chen, 2018; 3 
Lokhandwala and Cai, 2018). The NHTS 2016/2017 data have trips made by a travel party of more than 4 
four people, but the situation is rarely observed, and those trips often occurred with other modes, like bus 5 
or school bus. In addition, more than 4 people using a dynamic ride-sharing service could lead to more 6 
detours unless their routes align very well. Therefore, this paper follows the commonly used vehicle size 7 
of four seats, while party sizes over four (the request of which can never be served) are considered outside 8 
the scope of this paper.  9 

In addition, the party size of TNC users is considered to have the same distribution as other automobile 10 
modes, like SUVs, vans, pickup trucks, and rental cars, as mentioned in the seasonal shift section. 11 
Although these vehicles are distinct in the number of seats designed, variations in traveling party size 12 
using different vehicles remain an unclear picture. Due to insufficient data on the party size distribution of 13 
TNC users, the automobile mode in NHTS 2016/2017 is used as a proxy to generate party size 14 
distributions. An inherent assumption here is that different party sizes would have the same rate of 15 
requests as shown in the NHTS data. This could vary in different networks, but a larger travel group size 16 
may tend to use personal vehicles to travel so they often have lower request rates.  17 

This paper leverages the existing Austin POLARIS model’s travel demand and then factors in the 18 
seasonal travel shifts and party size distributions. The existing person-trip data comes from a robust run of 19 
dynamic traffic assignment in Austin’s POLARIS model. Like other agent-based simulations, this person-20 
trip data (or demand) can be read in to serve as input in POLARIS for other scenarios or testing purposes. 21 
One important advantage of making adjustments based on a fixed demand is to mitigate the randomness 22 
out of most agent-based simulation models, especially the population synthesis and land use simulations, 23 
which often alter the demand and spatial pattern from scenario to scenario. The fixed demand for the 24 
Austin network has been well-tested in previous work (Dean et al., 2022) and offers balanced origin-25 
destination pairs across the whole of Austin’s 6-county area.  26 

In POLARIS’ baseline demand data, Austin’s TNC serves just 1.5% of the region’s 5.3 million person-27 
trips (per day). Considering a future of SAV fleet services, the original mode share of TNC (in person-28 
trips) was adjusted to be 10%, based on predictions and discussions mentioned in previous studies 29 
(Milakis et al., 2017; Narayanan et al., 2020). This mode share was further tuned by applying two factors 30 
shown in Table 1 to pivot off the original number of person-trip records (𝑁0), and shift from an annual 31 
average to a seasonal average (𝑓𝑤), and from a weekday to a weekend (𝑓𝑠). This provides the number of 32 
person-trips calling on SAV fleets after considering the seasonal shifts (i.e., 𝑁𝑠 = 𝑁𝑜 × 𝑓𝑤 × 𝑓𝑠). 33 
Moreover, Figure 3 is used to scale down person-trip records to reflect actual party sizes. In this way, the 34 
number of party-trips for each party size (𝑃𝑛) relies on total number of person-trips 𝑁𝑛,𝑡 of party size n at 35 
time-of-day t divided by party size n:  36 

𝑃𝑛 = ∑
𝑁𝑛,𝑡

𝑛
𝑡

      ∀𝑛 = 1, 2, 3, 4 37 

where 𝑁𝑛,𝑡 is calculated based on the shares (𝑝𝑛,𝑡) of person-trips by party sizes n and time of day t (as 38 
shown in Figure 3):  39 

𝑁𝑛,𝑡 = 𝑁𝑠 × 𝑝𝑛,𝑡       ∀𝑛, ∀𝑡 40 

Therefore, the total number of party-trips will be: 41 

𝑁𝑝 = ∑ ∑
𝑁𝑠 × 𝑝𝑛,𝑡

𝑛
𝑡𝑛

 42 
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New party-trips are defined by adding a travel party size feature to existing person-trip records. However, 1 
the final number of person-trips probably does not align with the number of party-trips needed. After 2 
processing the seasonal shift and the party size, if the overall number of person-trip falls (i.e., if 𝑁𝑝 <3 

 𝑁𝑜), redundant person-trips are discarded randomly. However, if total person-trips rises (so 𝑁𝑝 >  𝑁𝑜), 4 
the extra person-trips are complemented by duplicating existing person-trip records by random selection. 5 
It is recognized that removing and duplicating some existing trips may break some spatial patterns such 6 
that requests at origins and destinations may be aggregated more or less. The purpose of using random 7 
selection is to mitigate such imbalances as much as possible.  8 

RESULTS 9 

This section discusses Austin POLARIS simulation results by comparing the seasonal shifts and the 10 
incorporation of party size to the available travel demand. The seasonal shifts are compared among the 11 
four seasons of year and between weekdays and weekends.  The party-size scenarios are compared with 12 
the non-party-size scenarios to see the true impact of SAVs’ ride-sharing service when considering party-13 
trips. Austin’s base case, which assumes an annual average of population synthesis and trip-making 14 
patterns, gives a service rate (percentage of requests that are fulfilled) of 93.5% for 530,500 total TNC 15 
requests, using an SAV fleet of about 15 thousand vehicles (assuming one SAV for every 35 requests). 16 
The average trip service time is 28.74 minutes, including an average 6.75-minute wait time. The average 17 
vehicle occupancy (AVO) is 1.61 in terms of person-miles traveled (per revenue VMT by SAVs). The 18 
same fleet size was used for all seasonal shift scenarios and party size scenarios for a fair comparison, as 19 
shown in Table 2.  20 

System-wide fleet performance 21 

Table 2 provides clear insights into how simulations would differ when travel party size comes into play. 22 
The service rate rose under seasonal shifts, from a 0.64% increase (on summer weekdays, vs. non-party-23 
size scenario) to an 8.5% increase (on winter weekends, vs. non-party-size scenario). The leading reason 24 
for this increase is that there are not as many requests as the case when the party size is always 1 person, 25 
since a party of two people makes just one request (rather than 2). Fewer requests also lead to the 26 
improvement in passenger travel and wait times: about 5 minutes savings in total journey time and more 27 
than 1 minute wait time on weekends (for the same number of total passengers, theoretically, but with 28 
fewer requests made). In addition, the SAVs in the party-size scenarios rarely have to accommodate 4 29 
different travel parties when a portion of the travel parties already occupy two or more seats. Although the 30 
number of available seats in an SAV may lead to some rejections of requests (e.g., a vehicle with one seat 31 
cannot serve a party of two travelers), this situation avoids long detours for every travel party and 32 
demonstrates more efficient ride-sharing than typical results from agent-based simulations.  33 

Table 2 also shows that people tend to use SAV services more during winter and spring weekends than 34 
during summer and fall weekends. The NHTS data suggest 44% more daily person-trips made in spring 35 
and winter weekends (versus summer and fall summed together), although total number of trips (5 * daily 36 
weekday trip counts + 2 * daily weekend trip counts) are still observed higher during summer and fall 37 
(see Figure 1). For both party-size and non-party-size scenarios, seasons that have more travel requests 38 
observe longer wait and travel times per party. More requests also increase the possibility that a large 39 
party (3 or 4 persons, for example) will not be served, so service rates are also higher in summer and fall. 40 
Weekday trips saw almost equally distributed person-trips across all four seasons, with slightly more 41 
requests in spring and summer.  42 

Table 2. SAV fleet performance metrics 43 

Scenarios 
Party-size scenario Non-party-size scenario 

Spring Summer Fall Winter Spring Summer Fall Winter 
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Week- 
ends 

Service rate 93.5% 95.0% 94.2% 92.6% 88.7% 94.1% 93.2% 84.1% 
Avg travel time 
per party-trip 25.5 min 25.3 25.4 26.0 30.0 28.7 29.4 30.6 

Avg wait time 
per party-trip 6.0 min 5.5 5.8 6.4 7.8 6.5 7.1 8.2 

empty VMT 
(million) 1.20M mi 0.79 0.98 1.46 1.86 1.27 1.56 2.11 

VMT (million) 3.63M mi 2.55 3.04 4.25 5.02 3.66 4.33 5.59 
% eVMT 33% 31% 32% 34% 37% 35% 36% 38% 

AVO  2.15 
persons 2.09 2.12 2.16 1.68 1.61 1.65 1.71 

Party-trips per 
SAV per day 

28.5 
trips/d 19.4 23.4 34.0 43.1 30.5 37.0 48.4 

Person-trips per 
SAV per day 45.3 30.8 37.3 53.2 43.1 30.5 37.0 48.4 

Total person-
trips served by 
SAVs per day 

680k 462k 559k 797k 647k 458k 555k 726k 

Scenarios 
Party-size scenario Non-party-size scenario 

Spring Summer Fall Winter Spring Summer Fall Winter 

Week- 
days 

Service rate 94.4% 93.9% 94.8% 94.9% 93.1% 93.3% 94.0% 94.0% 
Avg travel time 
per party-trip 26.8 min 26.7 26.7 26.4 29.3 29.3 28.8 28.8 

Avg wait time 
per party-trip 6.1 min 6.1 6.0 5.9 7.0 6.9 6.6 6.6 

empty VMT 
(million) 1.10M mi 1.07 1.00 0.97 1.36 1.45 1.33 1.30 

VMT (million) 3.27M mi 3.21 3.02 2.96 3.75 4.09 3.81 3.73 
% eVMT 34% 33% 33% 33% 36% 36% 35% 35% 

AVO 1.92 
persons 1.94 1.92 1.91 1.66 1.64 1.62 1.61 

Party-trips per 
SAV per day 

26.0 
trips/d 25.5 23.7 23.3 32.5 34.7 32.0 31.3 

Person-trips per 
SAV per day 34.7 34.8 32.1 31.5 32.5 34.7 32.0 31.3 

Total person-
trips served by 
SAVs per day 

521k 523k 482k 472k 488k 520k 481k 469k 

 1 

Similarly, party-size variations enable better use of vacant seats, so the share of empty vehicle-miles 2 
traveled (eVMT) also falls, by as much as 37.4% (on summer weekends). Interestingly, due to larger 3 
weekend party sizes, the average eVMT reduction is 35.2% (averaged across four seasons), versus 23.8% 4 
across weekdays - when more Americans travel solo. More balanced use of the available seats is also 5 
demonstrated in the AVO result. AVO rises 28.3% on weekends (from 1.66 to 2.13 persons per vehicle, 6 
averaged over four seasons and all times of day), and 17.8% on weekdays (from 1.63 to 1.92 persons). 7 
Again, weekday AVO increases are less notable, due to more solo travelers, leading to lower overall seat 8 
utilization. 9 

Person-trips served per SAV per day are similar across party-size and non-party-size scenarios, across all 10 
four seasons. This is due to the approximately equal total number of person-trips simulated, with an 11 
adequate fleet size, delivering relatively high service rates (i.e., few SAV ride requests turned down due 12 
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to inadequate vehicles). As expected, larger travel parties require fewer SAV trips, since more seats are 1 
occupied at once (more people are served at once in those parties), which is about 68% of the total one-2 
person parties in non-party-size scenarios.  3 

Fleet performance by party sizes 4 

A closer look at the fleet performance with various party sizes offers more insights into how the system 5 
reflects the true travel demand. Weekends generally have more people traveling together, compared to 6 
weekdays, with 5% more served requests for party sizes of three and four, on average. In contrast, solo 7 
travelers and two-person trips had a 4-5% drop in the number of overall served requests during weekends. 8 
When the overall travel party size shifts to larger group sizes, the average number of parties seated in the 9 
same vehicle drops. This indicates that SAVs make fewer detours to pick up additional parties along the 10 
way, and therefore, there is less wait time after SAVs accept the requests and the travel parties can arrive 11 
at their destinations with less detour time. This is revealed through the drops in both average wait time 12 
and average travel time from weekday to weekend, and from solo traveler to parties of larger sizes. 13 
Clearly, for four-person parties, the SAV picks them up and heads directly to their destination without 14 
considering other requests, so the wait time is minimized, and the travel time is not impacted by detours. 15 
Table 3 shows that the impact of larger party sizes (party size of 4 vs. 1) is most outstanding on weekdays 16 
during summer, with a 7.5-minute (27.7%) reduction in average travel time and a 1.3-minute (21.8%) 17 
reduction in average wait time. 18 

VMT and PMT also vary among party sizes. Here, eVMT for a party size category is the empty VMT 19 
associated with picking up parties of that size. VMT is vehicle-miles traveled when the party of that size 20 
is on board the SAV. During weekdays, solo travelers contribute half of the PMT, but just 35% of 21 
regional PMT during weekends. It is worth noting that PMT share from 4-person parties almost doubles 22 
on weekends, and actual PMT more than doubles for spring (factor of 2.4) and winter (factor of 2.7). 23 
Interestingly, two-person parties traveled more person-miles than solo travelers on weekends, although 24 
their PMT share is slightly larger than that on the weekdays. This shows that, from weekdays to 25 
weekends, people mostly shift from traveling solo to party sizes of three or more, with a small shift to 26 
two-person parties. In either case, the importance of incorporating party size is noteworthy, since 1-27 
person PMT is simulated in most SAV use models, though their PMT is less than half of the total taking 28 
place. VMT and eVMT from parties of larger sizes take a smaller share (due to people traveling in a 29 
group), but weekends still observe a higher rate than weekday. And larger travel parties result in more 30 
efficient SAV seat (and thus fleet) use, they have fewer emissions, empty VMT distances, and congestion 31 
impacts per person-mile served (For example, 200 people make 100 trip requests, rather than 200 32 
different trip requests, if those 200 persons always travel in parties of 2.).  33 

Table 3. SAV fleet performance metrics across 1- to 4-person travel-party sizes 34 

 Party 
size 

Weekday Weekend 
Spring Summer Fall Winter Spring Summer Fall Winter 

Requests 
served  

1 37% 36% 36% 36% 32% 32% 31% 32% 
2 40% 39% 39% 40% 34% 34% 34% 34% 
3 11% 12% 12% 11% 16% 17% 17% 16% 
4 12% 13% 13% 13% 18% 18% 18% 18% 

Avg. wait 
time per 

party 
(minutes) 

1 6.2 min 6.2 6.0 5.9 6.1 5.7 5.9 6.5 
2 6.1 6.0 6.0 5.8 5.9 5.4 5.6 6.3 
3 6.2 5.9 6.3 5.9 5.9 5.2 5.8 6.1 
4 5.3 4.9 5.4 5.3 5.1 4.5 5.0 5.5 
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Avg. travel 
time per 

party 
(minutes) 

1 27.3 
min 27.3 27.1 26.9 26.5 26.5 26.5 27.0 

2 26.0 25.5 25.9 25.4 24.9 24.5 24.6 25.4 
3 24.5 24.0 24.9 24.5 23.6 22.9 23.8 23.7 
4 20.8 19.8 20.6 21.1 20.0 19.9 20.1 20.2 

PMT shares 

1 50% 48% 49% 49% 35% 35% 34% 35% 
2 33% 33% 32% 33% 35% 35% 37% 38% 
3 13% 14% 13% 13% 19% 18% 18% 17% 
4 4% 5% 5% 5% 11% 12% 11% 10% 

VMT 
shares 

1 70% 69% 69% 69% 56% 57% 56% 56% 
2 23% 23% 23% 23% 29% 29% 30% 31% 
3 6% 7% 6% 6% 10% 10% 10% 9% 
4 2% 2% 2% 2% 5% 5% 4% 4% 

eVMT 
shares  

1 74% 73% 73% 74% 60% 61% 60% 60% 
2 19% 20% 20% 19% 27% 27% 28% 28% 
3 5% 6% 6% 5% 9% 9% 9% 8% 
4 1% 2% 2% 1% 4% 4% 4% 4% 

 1 

Average vehicle occupancy variations 2 

The incorporation of realistic party sizes also brings AVO shifts, as illustrated in Figure 6, which shows 3 
the pattern in winter. The overall shifts are similar between weekdays and weekends, and between 4 
seasonal and annual averages: the morning peak and afternoon peak enjoy higher AVOs, as compared to 5 
other times of day. Weekend AVOs are much higher than on weekdays (thanks to less work and school 6 
focused trip-making), enabling better SAV fleet use across weekend hours. This is not only due to higher 7 
ride-sharing demand over the weekend, but also larger party sizes. In the base case scenario (when party 8 
sizes are all one), the weekend still shows higher AVOs due to higher travel demand (thanks to more 9 
destinations or activities per person, as well as longer-distance excursions, thanks to avoidance of long 10 
work and school days), although the morning peak and afternoon peak are similar in AVOs, respectively.  11 
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 1 

Fig 6 Average vehicle occupancies across a day in winter 2 

Therefore, fewer total requests, lower average travel and wait times, more efficient DRS services, less 3 
eVMT, and higher AVOs are the key impacts from incorporating party size, as compared to past 4 
simulations.  5 

Seasonal variations in fleet performance 6 

Table 2 presents the shifts between the seasons and between weekdays and weekends. During summer 7 
weekends, people are less likely to use SAVs, as seen from fewer person-trips and higher service rates, 8 
which aligns with Table 1 assumptions. The performance across the four seasons is mainly impacted by 9 
the total number of requests or person-trips, as more requests under a fixed SAV fleet size leads to lower 10 
service rate, longer travel and wait times, and higher AVOs. The relative shifts among the four seasons 11 
are also similar between party-size scenarios and non-party-size scenarios. In addition, the seasonal shift 12 
across the four seasons is more distinct on weekends than on weekdays, because weekday travel demand 13 
is stable, and travel patterns are uniform.  14 

One particular insight from the seasonal shifts is how the system performance would change compared to 15 
the agent-based simulation results that have been demonstrated so far. Table 4 shows the comparison 16 
between the base case scenario and the extreme values (maximum and minimum values) from seasonal 17 
shift scenarios with party size incorporated. The source column shows the particular season and day of 18 
week for that value. One can see that many network performance metrics can be more than 30% off, like 19 
eVMT, VMT, and the number of person-trips and party-trips served per SAV per day. And some of the 20 
metrics do not even fall within the maximum and minimum value that we expect from scenarios with 21 
party-size consideration. For example, the base case has biased-high average travel time and wait time, 22 
biased-high percentage of eVMT, and biased-low AVOs.  23 

Table 4. Comparisons between the base case and the boundary values in seasonal shift scenarios 24 

 Base Party-size scenario 
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Max Source % diff Min Source % diff 
Service rate 93.5% 95.0% Summer-Weekend 1.6% 92.6% Winter-Weekend -1.0% 

Average travel 
time per party-trip 28.7 26.8 Spring-Weekday -6.8% 25.3 Summer-Weekend -11.9% 

Average wait time 
per party-trip 6.8 6.4 Winter-Weekend -5.5% 5.5 Summer-Weekend -18.2% 

empty VMT 
(million) 1.4 1.5 Winter-Weekend 7.7% 0.8 Summer-Weekend -41.4% 

VMT (million) 4.0 4.3 Winter-Weekend 7.6% 2.6 Summer-Weekend -35.4% 
percentage of 

eVMT 34.22% 0.342 Winter-Weekend -0.1% 0.31 Summer-Weekend -9.4% 

AVO 1.6 2.2 Winter-Weekend 34.4% 1.9 Winter-Weekday 18.9% 
Party-trips per 
SAV per day 24.9 25.9 Winter-Weekend 4.0% 14.3 Summer-Weekend -42.4% 

Person-trips per 
SAV per day 24.9 37.5 Winter-Weekend 50.3% 21.7 Summer-Weekend -12.9% 

Total person-trips 
(thousands) 496 797 Winter-Weekend 60.8% 462 Summer-Weekend -6.8% 

 1 

Figure 7 is an illustration of the seasonal shifts regarding the service rate across different party sizes. It is 2 
straightforward that small party sizes (i.e., one or two) can be served more easily, because they can fill in 3 
the vacant seats quickly, in contrast to large party sizes. For a similar reason, there is not much of a 4 
difference in the service rate between party sizes of one and two. In summer the service rates are robust to 5 
party sizes for various days, as they are all above 92%. Despite the seasonal discrepancy, the overall 6 
service rate is acceptable, because the lowest rate is still near 90% for 4-person parties on weekdays in the 7 
fall. 8 

 9 

Fig 7 Service rates by party size 10 

CONCLUSION 11 
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This paper explores the inclusion of realistic day of year demand variations and travel party sizes in 1 
agent-based simulations of SAV fleets and its impact on fleet performance. The NHTS 2016/2017 data 2 
was leveraged to offer detailed demand variations and travel party size distributions to simulate SAV 3 
operations, including dynamic ride-sharing among strangers, across the Austin area. Using POLARIS 4 
code, annualized averages were compared to variable counts and party sizes that mimic demand across 5 
four seasons (spring, summer, fall, winter), both on weekdays and weekends.  6 

If SAVs are assumed to capture 10% of person-trips in the region, on any given day, a fleet size of 15,000 7 
SAVs can serve 93.5% of single-person calls within 15 minutes for 530,500 total TNC ride requests on a 8 
typical day (an average annualized day), with an average ride-service time of 28.7 minutes (from call 9 
placed to drop off at destination), and an average vehicle occupancy (AVO) of 1.61 persons during 10 
revenue service. Reflecting realistic party sizeswhile keeping fleet size constant increased service rates by 11 
up to 8.5% (in the case of weekends in winter, from 84.1% to 92.6%), and lowered travel and wait times 12 
(resulting in 5 min total journey time savings), more efficient dynamic ride-sharing service, roughly 30% 13 
less eVMT, and 28% higher AVOs on weekends (averaging 2.13 persons per revenue-mile). A larger 14 
party can arrive at their destination with less detour time, as no other parties need to be accommodated, 15 
revealed through the drops in both average wait time and average travel time from weekday to weekend, 16 
and from solo traveler to larger party sizes. Fleet performance differences are also notable across seasons, 17 
and day of week. Summer and weekdays offer less demand, so fleets are more idle and able to offer 18 
higher service-completion rates. But high demand in other seasons means less demand served (with 15-19 
minute wait times) overall, once demand variability is explicitly recognized. NHTS data, which was fed 20 
into the party size generations of SAV use in this paper, suggest that Americans have 44% more daily 21 
trips during weekends in winter and springtime than during fall and summer weekends. More requests for 22 
the same fleet make it harder to serve all trips, so trips-served rates are higher/better during summer and 23 
fall weekends (when demand for SAVs is lower). Interestingly, weekday travel demands are almost 24 
equally distributed across all four seasons. 25 

Fleet performance of various party sizes offers more insights into how the system reflects the true travel 26 
demand. Weekends witness more people traveling together (i.e., more 3- and 4-person parties than 1- and 27 
2-person parties). As expected, when party sizes rise, ride-pooling or dynamic ride-sharing among 28 
strangers is less common, and SAVs take fewer detours en route (to pick up strangers). This comes with 29 
lower average wait times and travel times (with weekdays having longer times, on average. From 30 
weekdays to weekends, travelers shift from moving solo to party sizes of three or more, with a small shift 31 
to 2-person parties. Solo travelers’ total PMT ends up being less than half of weekday PMT and just 35% 32 
of weekend PMT. Such results underscore the importance of reflecting party size in agent-based 33 
simulations, to better appreciate fleet performance.  34 

Future work in this general topic area may explore more local demand variations (in time and space), 35 
rather than relying on a national sample (and broad seasons). For example, Texans may travel more in 36 
winter months than those living in snowy states, and those in hot southern latitudes may head to cooler 37 
zones for summertime vacations. Special events like Austin’s City Limits, UT Austin football games, 38 
South by Southwest (SxSW), and other within-region demand variations can make a big difference in 39 
how well a single-sized (Austin/local) fleet can serve demand while avoiding being idle on other days of 40 
the year. Fleets can also be shared across regions, much like rental cars move with travelers, to meet 41 
demand at a wider scale: over time and space. Regional specific party-size and seasonality distributions 42 
can help improve results instead of using the US trend from NHTS data. Some randomness in party-size 43 
generation and the multi-threaded nature of POLARIS will exist, but may not be observable enough when 44 
reporting metrics for an average day. More experiments can be conducted to explore the randomness of 45 
party sizes that form different ride-sharing patterns. Holidays are also special, and should be explicitly 46 
simulated. Finally, behavioral models with endogenous demand equations to directly estimate party size, 47 
trip-making, destination and scheduling choices can be valuable in POLARIS and other agent-based 48 
systems.  49 
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