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ABSTRACT 

Shared autonomous vehicles (SAVs) will likely emerge in many urban settings over the coming 

decade and may significantly impact passenger travel. SAV fleet managers, the public, and 

policymakers may be attracted to all-electric drivetrains’ lower operating costs and environmental 

benefits but will need to account for charging times and range limitations of electric vehicle battery 

packs. Highly utilized fleets may also need periodic maintenance and cleaning. This study 

investigates a variety of potential electric SAV (SAEV) fleet designs and charging and 

maintenance strategies from the literature. The agent-based transportation tool, POLARIS, is used 

to simulate several scenarios serving passenger travel across Illinois’ Greater Chicago region. 

Results show a mixed fleet of short (30 kWh) and long (90 kWh) range SAEVs performs better 

than a homogenous short-range fleet. SAEVs in large regions like Chicago need to have high 

average state of charge across the fleet to serve all incoming requests, necessitating careful 

downtime management. Investing in battery capacity helps to reduce empty travel and increase 

utilization. Leaving charging stations early to meet new demand requests, only helps long-range 

vehicles. When maintenance and cleaning trips are modeled, SAEVs outperform gasoline fueled 

vehicles because charging can take place at more locations and act as a passive rebalancing 

strategy. 

Keywords: Shared autonomous electric vehicles; charging; maintenance; control heuristics; 

agent-based simulation. 

 

1. BACKGROUND 

Mobility-on-demand services provided by ridesourcing fleets or Transportation Network 

Companies (TNCs) can have negative or positive effects on urban congestion and emissions 

(Schaller, 2018; Balding et al., 2019; Union of Concerned Scientists, 2020). With autonomous 

vehicle (AV) deployments on the horizon, travelers may surrender their private vehicles (Menon 

et al., 2019) and rely increasingly on fleets of shared autonomous vehicles (SAVs) for their urban 

and interurban travel needs (Fagnant and Kockelman, 2014; Spieser et al., 2014; Fagnant and 

Kockelman, 2015; Bischoff and Maciejewski, 2016; Gurumurthy, 2018; Fagnant and Kockelman, 

2018; Stocker and Shaheen, 2019). Electric SAV fleets (SAEVs) may even emit 73% less 

greenhouse gases and consume 55% less energy than a gasoline-fueled alternative (Bauer et al., 

2018). Beyond electric vehicles’ environmental benefits, lower operating and maintenance costs 

compounded by high utilization rates should provide savings of $0.05-$0.08/mi for electric SAVs 

relative to hybrid and internal combustion engine (ICE) powertrains (Bauer et al., 2018; US EPA, 

2019), resulting in an estimated cost of $0.40/mi (Bösch et al., 2018; Loeb and Kockelman, 2019; 

Becker et al., 2020).  

 Most literature to date considers the tradeoff between increasing range and building a 

comprehensive network of EV charging stations (EVCS) in determining the minimum fleet size 

required. An increase in battery capacity increases range such that most trip requests are met 

without necessitating daytime charging, albeit at a higher upfront capital cost. In contrast, 

expanding EVCS availability through a higher density of spatially-distributed plugs lowers the 

range required of vehicles, although at higher land acquisition or leasing, capital, and operating 

costs (Huang and Kockelman, 2020). Through this dichotomous example, the sensitivity of 
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assumed fleet parameters and strategies related to charging a fleet of SAEVs on service quality is 

ignored and left to confound results. Thus, this study examines the effect that operational and 

technical charging parameters have on level of service metrics (e.g., vehicle utilization, average 

wait times, and empty travel, or eVMT) while varying fleet composition. Additionally, the authors 

are not aware of any prior detailed simulation effort assessing the impact of maintenance and 

cleaning-only trips, which is another contribution of this work. The rest of this paper is organized 

as follows – existing literature is reviewed next and assumptions on fleet, EVCS and charging 

behavior for SAEVs are consolidated; the simulation framework is explained; the results from the 

sensitivity analysis are discussed, followed by recommendations for good forecasting practice in 

large-scale models, and then concluding remarks.  

 

2. LITERATURE REVIEW 

The first two simulation-based studies of SAEVs examined fleet costs and fleet size by varying 

battery range (short- and long-range, 80- and 200-mile, respectively) and charging station type 

(Level 2 and Level 3/Direct Current Fast Charging (DCFC), with a 30-minute and 4-hour 

maximum charge time, respectively) across a 100-mile x 100-mile gridded region based on Austin, 

Texas (Chen and Kockelman, 2016; Chen et al., 2016). Farhan and Chen (2018) extended this 

work by allowing dynamic ridesharing (DRS), showing that adding a second passenger to each 

vehicle substantially reduces the number of vehicles and charging stations required (by 55.7% and 

32.2%, respectively). However, their model did not allow for real networks, actual land use 

patterns, or congestion feedback. 

 Bauer et al. (2018) developed an agent-based simulation of SAEVs in Manhattan using 

taxi-trip data to determine the trade-off between range and charger density under various charging 

speeds. A fleet of short-range (50-90 miles) vehicles accessing 11kW EVCS at a density of 66 

chargers per square mile or 22 kW EVCS at a density of 44 chargers per square mile had the lowest 

operating costs. Bauer et al. (2019) extended this work to San Francisco and New York City, 

finding the operating cost of an EV fleet reaches cost parity with an ICE fleet at a 15% utilization 

level of 50kW chargers that are more sparsely distributed (3 chargers per square mile) for a 238-

mile-ranged fleet. Their study differs from previous SAEV work by instituting a time-varying fleet 

size to model driver shifts in present-day TNCs. 

 Loeb et al. (2018) extended available SAV code (Bösch et al., 2016) in MATSim (Horni 

et al., 2016), an agent-based and activity-based travel demand model,  to consider the constraints 

of EVs. A 5% random sample of trip demands was served entirely by SAEVs, and EVCS were 

generated like in Chen et al. (2016). Similarly, fleet size varied as a ratio of SAEVs to traveler 

(from 1:3 to 1:9) with the similar trade-offs in range and charge speeds as in Chen et al. (2016). 

Empty travel due to charging (cVMT) was 23.0% of total eVMT, partially because charging 

vehicles could serve new rides. Loeb and Kockelman (2019) then incorporated a response-time-

based ridesharing-choice model for SAV users, leading to similar results. A comparison of battery 

range (60- versus 200-miles) and charging duration (30 versus 240 minutes) found that using long 

range vehicles with DCFC lowered average response times by 39% (from 8.4 to 5.1 minutes) and 

marginally lowered eVMT due to charging (1.3% to 1.1%).  
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 Vosooghi et al. (2020) also used MATSim to study SAEV performance by varying 

charging infrastructure across the Rouen Normandie metropolitan region in France. They placed 

charging stations using distance- and coverage-based optimization schemes using estimated SAV 

demand from prior work (Vosooghi et al., 2019), varied the vehicle-to-plug ratio, and explored the 

performance of battery swapping stations. Vosooghi et al. (2020) also used Bischoff et al.’s (2019) 

electric vehicle (EV) extension in MATSim, which allows for charger queueing. Since vehicles 

are sent to the nearest charger without regard for current availability, upgrading EVCS to faster 

chargers (43kW instead of 22kW) reduced queue times by 64-95% depending upon the EVCS 

siting algorithm, which corresponds to a 2-19% increase in fleet utilization. Interestingly, 

upgrading to 43kW chargers was roughly equivalent to increasing the number of 22kW EVCS 

plugs by up to 67% from a baseline ratio of 1 charger to 4 SAEVs, revealing a distinct tradeoff 

between faster charging and the spatial plug density.  

 Zhang et al. (2020) leveraged a version of MATSim called BEAM (Sheppard et al., 2017) 

to site and size charging stations subject to service metrics and investigated the costs of various 

SAEV configurations (e.g., fleet size, vehicle range, and charger type) in the San Francisco Bay 

Area. Their findings reveal that the lowest-cost option was a fleet of short range (75-mile) vehicles 

accessing 50kW chargers. In contrast, Loeb and Kockelman (2019) found long range (200-mile) 

vehicles accessing these fast chargers to be the most profitable. In summary, a handful of studies 

have explored tradeoffs between charger speeds (more broadly categorized as Level 2 and 3) and 

range (short-range and long-range) by assuming exogenously-given SAV demands, no congestion 

feedbacks, and and/or simplified networks. Advancements in agent-based simulation tools, 

particularly since the development of MATSim, allowed for further trade-off work with the 

opportunity to model DRS. 

 More recently, Vosooghi et al. (2020) incorporated alternative modes and battery swapping 

stations to minimize charging times. Close examination of the literature reveals a highly variable 

set of assumptions about EV behaviors, with little to no common ground for comparison.  

Moreover, although some papers use MATSim, their underlying specifics such as congestion 

feedback or EVCS configuration (e.g., ratio of EVCSs to SAEVs, charger plugs per station, and 

power levels) are not apparent for an apples-to-apples comparison. Recognizing such differences, 

the sub-sections below characterize SAEV simulations by the decisions of when to send vehicles 

to charge, the state of charge (SOC) buffers, and the flexibility of vehicle states as it relates to 

charging. 

 

2.1 Decision to Charge 

Maximizing fleet utilization (i.e., trips per SAV per day) while minimizing eVMT can help 

increase operator profits. High utilization is made possible by ensuring available vehicles can 

service ride requests within a passenger’s maximum allowable wait time and by proactively 

charging vehicles. Beyond this temporal aspect, fleet operators may wish to proactively reposition 

vehicles to locations of anticipated demand, albeit at a cost of eVMT (Dean et al., 2022; Winter et 

al., 2020). Without relocation strategies or SAEV cruising (like current TNCs), vehicles idle upon 

arriving at a traveler’s destination. This may be at the destination or at a nearby parking lot 

(Fakhrmoosavi et al., 2022; Yan et al., 2020). Most models have SAEVs wait in place until they 
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are assigned a new trip or at least one of the following charging conditions is met: a minimum 

battery level (e.g., 20% SOC), range is insufficient to meet the next trip request, or a minimum 

idle time (e.g., 30 min). Table 1 presents a review of relevant papers with charging decision 

parameters. The first condition, minimum battery SOC, is particularly problematic for undersized 

and short-range fleets – a high threshold represents a high opportunity cost for the operator by 

limiting the supply of vehicles that could serve an additional trip. It is clear from Table 1 that 

conditions to charge vary widely. Minimum SOC ranges from 5% to 35% and minimum idling 

time ranges from 5 min to 30 min. Moreover, studies with idle time charging decisions may have 

unnecessary charging trips from underutilized vehicles. Future work using this heuristic should 

add an additional check for low SOC. 

Table 1 Summary of SAEV Decision-to-Charge Conditions 

Variable Study Parameter or Condition 

Minimum 

battery 

threshold 

(SOC) 

Iacobucci et al. (2018a) 35%a 

Iacobucci et al. (2019) 20% 

Bauer et al. (2019) 20% 

Lokhandwala and Cai (2020) 20% 

Vosooghi et al. (2020) 20% 

Zhang et al. (2020) 10% 

Loeb et al. (2018) 5% 

Loeb and Kockelman (2019) 5% 

Insufficient 
vehicle 

range 

Chen et al. (2016) To complete trip request 

Loeb and Kockelman (2019) To complete trip request and below 80% SOC 

Bauer et al. (2019) To complete trip request and reach nearest charger with capacityb 

Vosooghi et al. (2020) To complete trip request and reach nearest charger 

Minimum 

idle time 

Loeb et al. (2018) 30 min 

Bauer et al. (2019) 15 min and driving time to nearest chargerc 

Iacobucci et al. (2018a) 5 min 
a Vehicles are sent to charging stations once 35% SOC is met, however, vehicles can still accept requests before this 

threshold is met, unless the estimated range will lead to a 20% or lower SOC at its destination. 
b Bauer et al. (2019), like Bauer et al. (2018), includes charger capacity and will assign vehicles to chargers that have 

available plugs. In contrast, Vosooghi et al. (2020) sends vehicles to the closest charger regardless of current 

occupancy, but forces queuing until a spot becomes available. 
c Bauer et al. (2019) set the idling threshold to equal the time a vehicle could have driven to the closest station and 

charged for 15 minutes. 

 

2.2 Electric Vehicle and Charging Parameters 

In addition to sending vehicles to charge, the underlying assumption on charging behavior and 

battery parameters is important. Electric vehicles charge nonlinearly and charging efficiency is not 

constant during charging, especially at the extremes of the battery level. While charging and 

discharging rates are governed by C-rates (Collin et al., 2019), large-scale models have assumed 

either a constant rate bounded by minimum and maximum SOC or a two-step process to simplify 

constant voltage constant current (e.g., Loeb et al., 2018). The buffers that limit the designed 

capacity of a battery (often 10-20%) help to prevent enhanced battery degradation because of 

higher charging stress at the boundaries of SOC (Argue, 2019). Table 2 summarizes charging 

parameters that are unique to EVs in SAEV simulation literature, including maximum SOC, 

charging speeds, and charger sizing. The variation in charging cutoff is lower than the lower 
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bounds on decisions to charge described in the previous section. Most studies assume a maximum 

SOC threshold between 80-90%, but this can also depend on the type of charger used. Charging 

speeds range from 7kW to 50kW and assume homogenous charger type such that results 

correspond to a specific charger level. Vosooghi et al. (2020), on the other hand, is the only known 

study to use a mixture of charger types. The ratio of vehicles-to-plugs varies typically from 1.9 to 

32.5 as does the  underlying number of plugs per station (e.g., 60 plugs per station in Vosooghi et 

al. (2020) versus 1 plug per station in Chen et al. (2016), respectively), often subject to charger 

speed, fleet range, and spatial characteristics of the region studied. 

 As electricity consumption (or battery discharge) is a function of the vehicle’s auxiliary 

power demands, like on-board computers and climate-control, and the vehicle’s trajectory across 

different transportation facilities, reasonably accurate and precise discharge models can strengthen 

the validity of SAEV simulation results. Demir et al. (2014) categorized energy discharge models 

as factor-based, macroscopic, or microscopic, as used in Basso et al.’s (2019) EV routing problem. 

The factor model is the most simplistic and assumes a uniform energy discharge in kWh/mi (e.g., 

0.25 kWh/mi). Thus, the total energy consumption for a trip is the sum of energy discharged from 

the battery along each link on the route (Bauer et al., 2018; Iacobucci et al., 2018a, 2018b; Moawad 

et al., 2021). Vosooghi et al. (2020) implemented an energy consumption model to calculate 

battery discharge, which does not appear to have visible effects on fleet performance – eVMT in 

the range of 18.3-22.8% matches other studies but an average wait time between 13.2 and 13.9 

minutes is high – however, this is likely a result of no maximum allowable wait time or relocation 

strategy.  

Table 2 Electric Vehicle Charging Parameters, as Assumed in the SAEV Literature 

Variable Study Parameter or Condition [unit if unclear] 

Maximum  

SOC 

 

Iacobucci et al. (2019) 90% 

Zhang et al. (2020) 85% 

Farhan and Chen (2018) 80% 

Iacobucci et al. (2018a) 80% 

Chen et al. (2016) 80% for Level 3 Charging, 100% otherwise 

Loeb et al. (2018) 80% for Level 3 Charging, 100% otherwise 

Zhang and Chen (2020) 80% for Level 3 Charging, 100% otherwise 

Vosooghi et al. (2020) 80% for Level 3 Charging, 100% otherwise 

Charging 

Speeds 

Chen et al. (2016) 30, 240 min 

Loeb and Kockelman (2019) 30, 240 min 

Loeb et al. (2018) 30, 240 min 

Farhan and Chen (2018) 45, 240 min 

Bauer et al. (2018) 7, 11, 22, and 50kW 

Bauer et al. (2019) 7.7, 22, and 50kW 

Iacobucci et al. (2018a) 10kW 

Iacobucci et al. (2018b) 10kW 

Iacobucci et al. (2019) 20, 50kW 

Vosooghi et al. (2020) 22kW, 43kW 

Vehicles-to-

plugs 

Chen et al. (2016) 1.9, 2.4, 2.5, 13.3a 

Bauer et al. (2018) 2.8 – 3.3, 6.5, 32.5a 

Vosooghi et al. (2020) 4.17b 

a As reported in Vosooghi et al. (2020) 
b Estimated using information in Vosooghi et al. (2020) 
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2.3 Flexibility of Vehicle Charging States 

Bauer et al. (2019), Loeb et al. (2018), and Zhang and Chen (2020) permitted charging vehicles to 

serve ride requests (i.e., service priority policy), but under different conditions. The first allowed 

any vehicle to accept a request, resulting in many short-charging episodes. The second sent only 

the highest SOC vehicles if SAEVs within the response time and minimum SOC thresholds were 

not available. The third permitted only vehicles above 80% SOC to accept requests. Having the 

flexibility to increase supply given periods of high demand is important for fleet operators, but 

some cities may not be willing to accept additional eVMT due to short-charge periods, particularly 

in the short-term when AVs may not provide congestion relief (Litman, 2021). Under current 

thresholds and relocation schemes in the literature, the operator forgoes the opportunity to 

concurrently assign vehicles to charging stations in zones with predicted demand, thereby 

minimizing eVMT. Li et al. (2019) allowed for relocating EVs to charge at a waypoint if the 

required relocation distance exceeded the estimated battery range. However, they did not permit 

vehicles exiting this waypoint charging station to serve nearby trips if local demand was 

exceptionally high, but rather had vehicles continue onto their existing relocation destination. 

Additionally, vehicles sent to an EVCS either because of a minimum idling or SOC threshold do 

not have the flexibility to serve new transport requests. In the future, fleet operators may wish to 

assign new trip requests to vehicles already en route to charge due to idling if the detour does not 

cause the SOC to fall below the minimum value (similar to the flexibility in the minimum SOC of 

35% in Iacobucci et al. (2018a)).  

 

2.4 Maintenance and Cleaning Trips 

Vehicle maintenance and cleaning trips are absent in simulation studies, though analytical cost 

models do parse out the scaled per-mile variable costs from these trips (Becker et al., 2020; Bösch 

et al., 2018). Unlike present-day TNC vehicles, drivers will not be present to clean vehicles 

between trips. This means that vehicles must drive to centralized service depots where technicians 

can clean or perform routine maintenance for vehicles. Depending on the frequency of cleaning, 

one study estimates the cleaning alone takes up 29% of operating costs (Bösch et al., 2018). Even 

if cleaning is performed every 40 trips, which may not be enough to lower hygiene anxiety post-

pandemic (Curtale et al., 2021), cleaning costs will constitute at least one-quarter to one-third of 

operating costs, especially in high-income countries (Becker et al., 2020). 

 

3. SIMULATION FRAMEWORK 

This study uses POLARIS, an agent-based modeling tool designed for large-scale transportation 

networks (Auld et al., 2016) that has the capability to model TNCs (Gurumurthy et al., 2020), 

SAVs (Gurumurthy and Kockelman, 2022), and now SAEVs. Since individual agents can be 

tracked real-time, including vehicle trajectories at the link level, post-processing the outputs helps 

illuminate how SAEV parameter assumptions can impact fleet and network operations. In 

POLARIS, travel decisions are made to align with an agent’s daily schedule, subject to near and 

long-term constraints (e.g., workplace choice and vehicle ownership). Like MATSim, dynamic 
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traffic assignment is able to capture congestion effects (Verbas et al., 2018; Auld et al., 2019) but 

POLARIS differs slightly in its use of a mesoscopic traffic flow model which captures greater link-

level traffic flow behavior (de Souza et al., 2019) but at a mesoscopic scale. Figure 1 captures the 

overview of the POLARIS architecture as used in this study which consists of the typical steps 

involved in an agent-based activity-based model. POLARIS’ novelty arises in being able to capture 

100% of a region’s synthetic population. A typical day’s travel demand resulting from one 

POLARIS run is used to lock in each agent’s trip choices (e.g., departure time, mode choice, 

destination choice) so that the results shown in this study reflect the outcome of operational 

changes and not any underlying change in demand. TNC fleet operations in this fixed demand 

setting continue to operate as an on-demand service. If the passenger cannot be picked up within 

their maximum allowable wait time, then the trip is artificially simulated with a ghost TNC vehicle. 

 

 

Figure 1 Simplified Overview of the POLARIS Architecture 

 The SAV module in POLARIS (Gurumurthy et al., 2020) is expanded here to allow for 

range-constrained EVs. Although some travelers are more environmentally conscientious than 

others, the demand for SAEVs is expected to mimic that for an SAV. The fleet operator’s goal is 

to provide a high-quality service at low operating costs to ensure a sound return on investment. 

Ride requests, trip matching, charging and maintenance decisions are centrally monitored to this 

end. The operator assigns vehicles to riders by a zone-based assignment (Bischoff and 

Maciejewski, 2016; Gurumurthy et al., 2020) to ensure nearby vehicles serve nearby rides, which 

reduces overall eVMT and ensures low response times. Although this is not a nearest-neighbor 

assignment, since available vehicles are aggregated at the zone level for operators, the relative size 

of the traffic analysis zones (TAZs) in locations with high SAV use is small enough to yield an 

acceptable sub-optimal solution. Once this initial assignment is made, the vehicle makes routing 

choices to minimize travel times and records trip information like distance, time, and empty travel 

at the path level. DRS is allowed through the existing SAV module as highlighted in (Gurumurthy 

and Kockelman, 2022). A heuristic to DRS matching is followed where trips are matched to 

vehicles en route depending on seat availability and the directionality of the trip being served with 

respect to the new trip that may be added to the tour. DRS introduces new parameters such as 

controlling for maximum allowable delay (both as a percentage of solo travel time and absolute 

value), degree of directionality, and maximum seats in the vehicle.  
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3.1 SAEV Module 

Previous SAV work has shown an average daily VMT between 230-430 miles per SAV depending 

on the assumed parameters and region simulated (Farhan and Chen, 2018; Loeb et al., 2018; 

Simoni et al., 2019; de Souza et al., 2020a, 2020b; Gurumurthy and Kockelman, 2022; Vosooghi 

et al., 2020). Thus, the current four-seater battery electric vehicles (BEVs) available in the U.S. 

advertising 84 mile to 373 mile ranges would need to recharge at least once a day if used 

intensively, as expected for shared fleets (EVAdoption, 2019). To prevent stranding vehicles, the 

fleet operator checks vehicle range and SOC at different levels of the vehicle-to-request 

assignment. In addition to finding the closest SAEV for trip assignment using a zone-based list 

(Bischoff and Maciejewski, 2016; Gurumurthy et al., 2020), the operator verifies the vehicle meets 

a minimum pre-defined SOC and range (say, 20% and 30 miles) before allowing the pick-up so 

that there is sufficient range remaining to allow the SAEV to go charge. DRS trips are added en 

route and do not follow an aggregate matching strategy so checks at the beginning and end of a 

tour (chained trips representing pick-ups and drop-offs) are not sufficient. The vehicle 

continuously updates the available range, and the minimum SOC and range requirement are 

verified before executing the next trip in the tour. When an additional DRS rider is set to join a 

vehicle, the remaining required range is estimated using Euclidean distances between planned 

pick-ups and drop-offs. If the SOC or available range falls below the minimum threshold that is 

pre-defined, or is not sufficient to complete existing trips, additional trips are not accepted so that 

the vehicle can recharge at the end of the tour. This also maximizes sharing, as permitting by other 

parameters, with the vehicle preparing to charge while completing previously assigned trips.  

 SAEV battery capacity (or “range”) is another input and the module allows for a 

homogenous fleet with a single range, or a mixed-range (MR) fleet denoted as a discrete 

distribution of specific battery capacities to mimic bulk purchases of different models. The MR 

scenario is a unique contribution in simulating a combined fleet of both short (SR) and long-range 

(LR) vehicles. Also, these vehicles are expected to have a distribution of initial SOC to reflect a 

continuous multi-day operation when testing only one 24-hour period. All simulations start with 

the battery level normally distributed with a mean of 70% and standard deviation of 5%, which 

allows for some variability compared to a fixed 70% for Iacobucci et al. (2019) and 100% for 

Zhang et al. (2020). Battery consumption is estimated not on mile-equivalents with link lengths, 

but rather through a machine learning (ML) model developed by combining POLARIS trajectory 

outputs with EV consumption estimates from Autonomie (Moawad et al. 2022). Interested readers 

are referred to that paper for more details. 

 Maintenance checks to clean sensors, download software, and update hardware are 

necessary but have been neglected in the literature. Service trips will increase eVMT, repositioning 

vehicles to central depots for maintenance may increase passenger wait times and these trips can 

drain the battery, especially for low-range vehicles. Trips may be scheduled in advance for all 

vehicles, subject to crew scheduling and available service bays, or done through a decentralized 

heuristic. Service trips in this paper are assumed to follow a uniform distribution and take the same 

amount of time. Depots are co-located with a few charging stations, such that during routine 

maintenance trips the SAEVs can also utilize service bay chargers. This allows for investments in 

any electrical upgrades for charging stations to also be extended to service depots. When an SAEV 
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receives a maintenance trip request from the operator, it fulfills its trips before driving to the 

nearest depot. In addition to nearly once-daily maintenance trips, which could be less frequent, the 

modeler can require short cleaning trips after every n trips. Although the SAEV may not require 

cleaning before the maintenance trip if riders are financially responsible for their mess, the 

COVID-19 pandemic has heightened rider’s expectation of routine cleanings 

(PricewaterhouseCoopers, 2021). By requiring cleanings after many consecutive trips, rider’s 

satisfaction with the service may increase. During cleaning-only trips, staff may choose to wash 

the vehicle and thus charging is not permitted. 

Figure 2 is the flowchart that conveys the relationship between charging and serving trips 

once a vehicle has completed any trip. The middle box (“Idle”) indicates that vehicles wait in place 

between trip requests after arriving at a trip’s destination. In this study, SAEVs do not have to 

drive to the nearest parking lot to wait for vehicle assignments. Once the vehicle is idle after 

arriving at a destination, there are a series of checks to ensure that vehicles perform routine 

charging and maintenance trips. As a heuristic, the order of checks reflects the prioritization of 

trips. The first check tries to guarantee that vehicles can go to a service depot for routine vehicle 

maintenance. If the simulation is not yet at the vehicle’s assigned service hour the next check is 

whether the vehicle has completed n consecutive trips. This ensures that vehicles that are highly-

utilized are sanitized. If a service trip (for maintenance or cleaning) is required, the vehicle finds 

the nearest service depot by Euclidean distance and travels to the assigned location. The next two 

checks determine if an idle vehicle should charge. While the first will send a vehicle to go charge 

if below a minimum SOC, the second is a passive charging policy of charging underutilized 

vehicles. If the operator decides to charge vehicles using idle thresholds, the vehicle will start 

counting the time it sits idle before finding a charging station. To avoid unnecessary charging of 

idle vehicles with high range, only idle vehicles below a certain SOC will advance to the second 

idle time check.  

The charging station selection process is not as simple as selecting the nearest location. 

There is a search process of the nearest five locations to find the station with the lowest charging 

trip downtime. This calculation takes in the previous quarter hour’s average queue time and the 

estimated time spent charging. The latter considers the current SOC, the estimated consumption 

of traveling to the charging station, and the time spent charging to the cutoff level. If no plugs are 

available, the SAEV will queue until the vehicle starts charging. At every charging time step, the 

vehicle will assess its current SOC, and, if the operator enables service priority, determines if the 

vehicle has a minimum SOC of 60% to serve demand that no other SAEV can meet. The SAEV 

stops charging at the cutoff level and exits the EVCS to idle for the next assignment. 
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Figure 2 Flowchart for SAEV End-of-Trip Charging and Maintenance Decisions 

 

 Before an idle SAEV is assigned to a pick-up request, the operator first checks to see if the 

vehicle has sufficient range to drive to the pick-up trip and drop-off the passenger and not drop 

below the minimum battery thresholds. Under DRS, the process is similar but requires more range 

checks. DRS already has checks to ensure adding an additional passenger does not exceed total 

and marginal delay and the direction of the pick-up request is in the same direction as the ongoing 

route. Simulating SAEVs needs an additional range check to ensure that the vehicle range of the 

added detours does not diminish range past the minimum battery thresholds. This process can be 

computationally intensive if actual routing distances are queried from the POLARIS router, so the 

Euclidean distances for ordered pick-up and drop-off trips are calculated and a multiplicative factor 

of 2 is applied to provide a conservative range reduction estimate. If the approximated range 

exceeds the available range or if it would trigger the minimum battery threshold, the vehicle 

becomes unavailable to new requests. 

 Since maintenance and cleaning actions will likely require human technicians and cannot 

be fully automated like self-docking (or wireless) charging, there are fewer service depots. Relative 

to charging, maintenance and cleaning trips should have significantly more empty travel. To 
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counteract the expected increase in empty travel, a convenience-based maintenance check can stop 

DRS if the vehicle’s destination is very close to a service depot and schedule maintenance at the 

end of a trip. Figure 3 presents the logic of DRS and convenience-based service checks within a 

vehicle scheduling function. 

 

 

Figure 3 Flowchart for SAEV Mid-Tour Charging and Maintenance Decisions 

 

3.2 EV Charging Stations (EVCS) & Depot Locations 

The SAEVs utilize a network of fleet-owned DCFC stations, designed based on recommendations 

from the literature (i.e., station density and vehicle-to-plug ratio). Previous work has resorted to 

heuristics to site charging stations to prevent stranding vehicles or using historical SAV demand 

(Chen et al., 2016; Loeb et al., 2018; Loeb and Kockelman, 2019; Vosooghi et al., 2020).  

Likewise, a new station with a default x plugs is created if there is not one within y miles of the 

vehicle once the decision to charge is met. If an SAEV queues at an EVCS longer than z minutes, 

a new plug is added (while ensuring that the capacity limit v is respected). If the SAEV does not 

have sufficient range to meet a charger in the generation phase, a new EVCS is generated. This 

heuristic was used to generate two distinct EVCS networks – one that has more stations with fewer 

plugs (“distributed”) and one that increases spacing and base number of plugs (“concentrated”). 

 The EV charging model is based on the vehicle’s battery capacity and the charger speed. 

Although battery charging could be modeled by a constant-current constant-voltage model, the 

vehicles are assumed to charge at a constant linear rate. Furthermore, numerous studies find 
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degradation in battery capacity after many charging cycles (see Han et al., (2014)), but like 

Iacobucci (2018) and Sheppard et al. (2019), capacity fade is not incorporated into the model. 

Detailed charging behavior of batteries is ignored, and efficiency is assumed constant regardless 

of SOC since SAEVs are between the minimum and maximum thresholds that are preset to retain 

efficiency. Additionally, this paper does not factor in charging station overhead time that arises 

from docking the vehicle, but a queueing approach is followed at each EVCS where SAEVs wait 

at the charging station for the next available plug. The SAEVs that are queuing are assumed to 

find space at the charging station and do not create network spillbacks. The SAEV operator can 

stop an SAEV from charging if needed, given that its SOC at that instant is above a threshold. A 

60% threshold is used in this study when overriding a charging session. Charging priority and 

charging override are both tested to evaluate which strategy helps improve SAEV fleet 

performance. 

 

3.3 Case Study of Chicago, Illinois 

For this study, EVCS were generated in a simulation run with all LR (90 kWh) vehicles while 

prioritizing charging and a 30-minute idle charging threshold to minimize investment costs across 

the region. An initial dry run generates the two EVCS networks that are used for the scenarios 

(e.g., distributed and concentrated). A minimum of x plugs is assumed at an EVCS and a new 

station is generated when an existing EVCS is not within y mi for both cases to cover the sprawling 

region of Chicago sufficiently. To prevent stranding vehicles, if at the end of a tour an SAEV had 

insufficient range to meet the nearest EVCS, regardless of whether one existed within a y mi 

Euclidean radius, a new station is generated.  This results in a ratio of about 36 vehicles per plug 

for a fleet set at a ratio of 1 SAEV per 150 people. The station density for these fleet-owned 

charging stations, which are located exclusively within the service area (or geofence), is 32.7 

square miles per EVCS for the distributed network and 237.82 square miles per EVCS for the 

concentrated network. Figure 4 shows a map of the Chicago metro with the service area, links, and 

two charging station networks. Table 3 shows the SAEV, EVCS, and depot modeling assumptions 

used in this paper 

 The intent of comparing the charging strategies with a combination of battery capacity and 

charging station densities is to situate the results in this study with that in the literature. The 

metropolitan network has 1,961 TAZs, 31,900 links, and 19,400 nodes across 11,246 square miles, 

of which the fleet operates in nearly a quarter of the area (23.5%), catering to 80% of the region’s 

population. In additional to nearly 15.46 million daily person-trips from a 50% synthesized 

population, the Chicago region has significant freight traffic, which makes up 7.5% of daily VMT.  
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(a)  

(b)  

Figure 4 Chicago Road Networks with EVCS Locations (a – Distributed, b – Concentrated) and 

Sizing by Plug Count 

 

Table 3 Summary of Model Inputs 
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DCFC EVCS Distributed Concentrated 

Heuristic: v (capacity), x (plugs), 

                 y (miles), z (min) 

40 plugs, 1 plugs,  

5 mi, 15 min 

150 plugs, 10 plugs,  

15 mi, 15 min 

Number of Plugs 870 825 

Number of Stations 80 11 

Charger Speed (kW) 50 50 

    Battery Capacity 30 kWh 90 kWh 

Short-range (SR) only (%) 100% 0% 

Long-range (LR) only (%) 0% 100% 

Mixed-range (MR) (%) 50% 50% 

Fleet Size   

Fleet Size (Vehicles) 28,578  

People-to-SAEV Ratio 150:1  

Decision-to-Charge Parameters    

Minimum SOC (%) 15%  

Minimum Absolute Range (mi) 30 mi  

Maximum Idle Check SOC (%) 40%  

Minimum Idle Time (min) 15 min 60 min 

    EV Charging Parameters    

Maximum SOC (%) 95%  

Service Priority Minimum SOC (%) 60%  

Exit Charging Early Yes No  

    Base SAEV Assumptions    

Starting SOC (%) Normal (𝜇 = 70,  𝜎 = 5)  

Vehicle Efficiency 30 kWh per 100 mi  

Depot Assumptions   

Number of Depots 5  

Number of Service Bays/Depot 50  

Maintenance Duration (min) 30 min  

Cleaning Duration (min) 5 min  

Cleaning Trip Frequency (nth trip) 10 trips  

Convenience-Based Service Distance 2 mi  

 

4. RESULTS 

Table 3 also shows the EVCS network inputs and outputs alongside the fleet of SAEVs by range 

configuration with additional categories of SAEV fleet specification, resulting in a set of 24 all-

electric SAV scenarios for the Greater Chicago region. The effect of minimum range or battery 

cut-off was seen as negligible for a smaller case study not described here, so only charging versus 

service priority and low versus high idle time strategies were studied. The tables below report key 

characteristics that are of interest to the operator, planner, and users: median wait times, percent 

empty travel (and the breakdown by ongoing operation), trips served per SAV per day, and average 

wait time at charging stations if a vehicle had to wait. The focus here is on the effect of charging 

versus service priority, when to charge a vehicle based on idle time, the three vehicle range fleet 

options, and EVCS network design. 

 After generating baseline demand for SAV service in Chicago with a sufficiently large fleet 

size (i.e., 50,000 vehicles), this resulting trip table was used in all operational scenarios to 

understand the impact of operational decisions. As expected, a fleet size that is 40% smaller than 

what was used to generate demand for this mode cannot serve all trip requests. This is similar to 
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how travelers check expected wait times on the TNC app of their choice and decide against taking 

a trip or this mode. Although this demand reduction is high, it is likely because the distribution of 

trips (spatially and temporally) in Chicago’s service area of 2,616 square miles is not concentrated 

enough. If a fleet of mostly gasoline-powered SAVs are subjected to service requirements, then 

the sparser depot locations negatively impact performance and there could be a 20% reduction in 

demand from the no-service baseline. As there are more charging locations than service stations, 

the all-electric fleet tends to serve more trip requests then the conventionally fueled SAV fleet. 

 Vehicle utilization, the service region’s sprawl, and average number of trips can explain 

the expected average daily VMT per vehicle. Each vehicle has an average of 9-12 person-trips per 

day, though the maximum person-trips for a vehicle ranges from 49 to 62. To compensate for low 

utilization in exurban and suburban neighborhoods, the operator could increase the fare price, 

which may help to offset the higher empty travel costs between pickup locations. The average 

vehicle sits idle 43% of the day (or 10.3 hours) across all 24 SAEV scenarios. In the future, vehicles 

could serve as delivery vehicles between distribution centers and retail storefronts when not 

serving passengers, which could increase vehicle utilization and revenue-generating opportunities. 

Other trips that contribute to total VMT are maintenance trips (24% of SAEVs do either 

convenience-based or are available at the assigned maintenance hour), cleaning trips (31%), and 

charging trips (percent of fleet vehicles charging depends on range). Overall, this region can expect 

about 125 miles per vehicle per day, with some driving considerably more. 

 The average trip’s travel time within the fleet’s service area is around 35 minutes, which 

suggests that individuals are utilizing this service for non-leisure trips, which tend to be longer in 

duration and distance. Additionally, the average vehicle occupancy over revenue miles is 1.61 

across all 24 SAEV and 2 SAV scenarios, thanks to the assumption that all riders are willing to 

share a vehicle up to a 5 minute or 5% detour in travel time, whichever is less. For a sprawling 

region like Chicago, this occupancy rate indicates the potential for congestion relief and energy 

savings if riders are incentivized to share.  

 

4.1 Fleet Range Composition (Short-Range, Long-Range, and Mixed-Range) 

An increase in battery capacity (i.e., vehicle range), and all else constant, only helps to reduce the 

likelihood of needing to charge vehicles, given an average VMT per vehicle of 125 miles. The SR 

fleet and fleet with a 50-50 combination of two ranges (MR), unsurprisingly, will have more 

charging trips. Only about 28% of LR vehicles need to charge during the day while 54% of MR 

vehicles and 74% of SR vehicles must charge, which is why the share of charging VMT to total 

empty VMT is about three times less for LR vehicles than SR vehicles. As a result, SR fleets give 

up an average of 2 trips per vehicle per day. In this case study, that results in not serving about 

57,000 trips. 

 As charging is a type of rebalancing, an increase in charging trips may lead to a spatial 

imbalance of idle vehicles to passenger pick-up locations. Fortunately, there is no evidence that 

SR fleets have higher median wait times than LR fleets. Charging downtime is another critical 

aspect that should influence fleet range composition decisions. Although there are some vehicles 

(and chargers) rated at a maximum charge power of 250 kW, the investment and operating costs 

(through electricity demand charges) may nudge operators to invest in the more common 50 kW 
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chargers. Assuming there are 50 kW chargers and a linear charge rate, a 30-kWh vehicle with some 

SOC buffers can charge in less than 30 minutes. In contrast, a 90-kWh vehicle charging from a 

low SOC constraint could charge for more than 90 minutes. If there are too few charging plugs, 

one would expect the queue time for LR vehicles to take longer than SR vehicles. This should only 

hold for regions where the average daily mileage forces vehicles to go charge. Since nearly 3 in 4 

SR vehicles must charge, the average wait time (when a queue is present) is 14 to 24 minutes 

longer than shown with a LR fleet. 

 Fleet range may even affect whether vehicles can perform routine maintenance. In a fleet 

of SR vehicles, 21% to 23% visit a depot for routine maintenance while 26% of LR vehicles do 

maintenance. A plausible explanation for this difference is that the SR vehicle hits the low SOC 

constraint while checking whether new passengers can be added to an existing trip tour, forcing 

the vehicle to go charge and missing the reserved service hour because of long wait times at the 

charging station. If vehicles can charge during 30 minutes of routine maintenance, as assumed, 

this stands to benefit the 1 in 5 SR vehicles (or 1 in 4 for LR fleets) that perform a service trip.  

 A mixed fleet of SR and LR SAEVs performs better than a complete SR fleet but worse 

than the LR fleet in certain service metrics like average trips served, percent eVMT and average 

charging queue times. The MR fleet inherits high daily charging trips from an SR fleet but also 

fewer charging trips from an LR fleet, resulting in more balanced charging episodes. This fleet 

composition scenario suggests that if fleets start with cheaper SR vehicles and wait for next-

generation battery technology to mature and lower in price, that the transition to an all-LR vehicle  

fleet is promising (i.e., higher vehicle utilization, less time spent queueing at charging stations).



 

 

18 

 

 

Table 4 SAEV Fleet Performance in Chicago for a Distributed EVCS 

Range 

HI 

(60 min)/  

LI  

(15 min) 

CP / SP 

Median 

Wait 

Time 

(min) 

Avg. 

Daily 

Person-

Trips 

per SAV 

Avg. 

Daily 

SAV 

VMT 

Revenue

-Trip 

AVO 

% 

eVMT 

% 

cVMT 

(in 

eVMT) 

% 

mVMT 

(in 

eVMT) 

Avg. 

Daily 

Charging 

Trips per 

SAEV 

Avg. 

Wait 

Time at 

EVCS, if 

waited  

(in min) 

% 

Demand 

Change 

Gasoline-

powered 

SAV (no 

service) 

- - 6.8 min 
13.8 

trips/day 
140 mi 1.57 pax 29.3% 0.0% 0.0% - - - 

Gasoline-

powered 

SAV 

- - 7.1 11.0 125 1.60 35.2% 0.0% 23.0% - - -20.15% 

LR 

(90 kWh) 

  

LI 
SP 7.1 12.2 136 1.59 34.9% 5.7% 20.5% 0.30 109 -11.3% 

CP 7.2 11.9 134 1.59 34.7% 5.4% 5.3% 0.28 112 -13.5% 

HI 
SP 7.1 12.2 135 1.59 34.8% 5.2% 15.1% 0.28 118 -11.9% 

CP 7.0 12.0 133 1.60 34.5% 4.9% 15.1% 0.26 134 -12.8% 

  
SR 

(30 kWh) 

  

LI 
SP 7.0 10.3 120 1.62 35.8% 15.8% 16.1% 0.75 126 -25.8% 

CP 7.1 10.3 121 1.62 35.9% 15.5% 15.8% 0.74 136 -25.3% 

HI 
SP 7.1 10.3 122 1.62 35.5% 14.9% 12.2% 0.72 142 -25.7% 

CP 7.0 10.4 120 1.62 35.8% 14.8% 12.0% 0.73 143 -25.0% 

  
MR 

(30 kWh 

& 90 

kWh) 

  

LI 
SP 7.0 11.6 131 1.61 35.5% 10.4% 11.5% 0.54 93 -16.2% 

CP 7.1 11.7 133 1.60 35.7% 10.3% 11.3% 0.54 98 -15.3% 

HI 
SP 7.0 11.6 131 1.60 35.4% 10.0% 13.9% 0.53 98 -15.8% 

CP 7.1 11.5 130 1.60 35.5% 10.2% 14.3% 0.52 102 -16.9% 

Abbreviations: LR = Long Range, SR = Short Range, MR = Mixed Range, HI = High Idle, LI = Low Idle, CP = Charging Priority, SP = Service Priority, Pax = 

Passengers. 
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Table 5 SAEV Fleet Performance in Chicago for a Concentrated EVCS 

Range 

HI 

(60 

min)/  

LI  

(15 min) 

CP / SP 

Median 

Wait 

Time 

(min) 

Avg. 

Daily 

Person-

Trips 

per SAV 

Avg. 

Daily 

SAV 

VMT 

Revenue-

Trip 

AVO 

% 

eVMT 

% 

cVMT 

(in 

eVMT) 

% 

mVMT 

(in 

eVMT) 

Avg. 

Daily 

Charging 

Trips per 

SAEV 

Avg. 

Wait 

Time at 

EVCS, if 

waited  

(in min) 

% 

Demand 

Change 

Gasoline-

powered 

SAV (no 

service) 

- - 6.8 min 
13.8 

trips/day 
140 mi 1.57 pax 29.3% 0.0% 0.0% - - - 

Gasoline-

powered 

SAV 

- - 7.1 11.0 125 1.60 35.2% 0.0% 23.0% - - -20.15% 

LR 

(90 kWh) 

  

LI 
SP 7.3 12.0 136 1.60 37.5% 16.3% 13.6% 0.28 61 -13.4% 

CP 7.2 11.9 134 1.60 37.5% 16.9% 13.5% 0.29 60 -14.1% 

HI 
SP 7.2 11.9 135 1.60 37.3% 16.1% 13.7% 0.28 71 -13.7% 

CP 7.2 11.8 134 1.60 37.0% 15.8% 13.7% 0.27 59 -14.5% 

  
SR 

(30 kWh) 

  

LI 
SP 7.0 9.0 121 1.64 43.9% 43.9% 9.0% 0.77 84 -34.7% 

CP 6.9 8.9 119 1.64 43.6% 43.5% 9.2% 0.74 73 -35.5% 

HI 
SP 6.9 8.8 118 1.63 43.7% 43.5% 9.2% 0.74 76 -36.0% 

CP 7.0 8.8 119 1.64 43.2% 43.2% 9.1% 0.73 74 -36.0% 

  
MR 

(30 kWh 

& 90 

kWh) 

  

LI 
SP 7.0 8.9 120 1.64 43.6% 43.7% 9.2% 0.76 75 -35.4% 

CP 7.0 8.9 120 1.64 43.8% 43.7% 9.0% 0.76 82 -35.2% 

HI 
SP 6.9 8.9 119 1.63 43.5% 43.4% 9.1% 0.74 78 -35.8% 

CP 7.0 10.8 131 1.62 40.4% 29.3% 11.8% 0.54 119 -21.5% 

Abbreviations: LR = Long Range, SR = Short Range, MR = Mixed Range, HI = High Idle, LI = Low Idle, CP = Charging Priority, SP = Service Priority, Pax = 

Passengers. 



 

 

20 

 

 

4.2 Charger Priority versus Service Priority 

The service priority policy allows for unassigned trip requests to be served by a charging vehicle 

that has at least 60% SOC. The trade-off here is that interrupting charging and subsequent back-

to-back trip assignments may lead to another charging trip. The SP charging policy results in more 

trips served and LR fleets stand to benefit the most. LR vehicles that have an interrupted charge 

will still have more remaining capacity (nearly double that of a SR vehicle) and can meet more 

trips before having to charge again. To understand whether there is a long-term difference in fleet 

average SOC, Figure 5 plots the hourly difference in this measure. Note, a positive value indicates 

that the equivalent CP scenario results in a higher fleet SOC than SP. Line dashing is used to 

highlight the difference in idle charging decisions times (dashed = low idle, solid = high idle). The 

color explains the difference in charging station networks (orange = concentrated, green = 

distributed) and the shading distinguishes the range of vehicles (darker = long range, lighter = short 

range). The mixed range fleet includes a filled in marker to further differentiate between SR and 

LR charging strategies. 

 There is largely no difference in fleet average SOC until more vehicles move in the network 

and initiate the end-of-trip decision process, which coincides with the morning peak. Charging to 

the maximum SOC should result in positive values for all time steps and this plot shows that most 

scenarios are at or above 0. LR fleets with a low idle threshold for charging has a consistently 

higher average fleet SOC at the end of the day for CP than SP. The greater the battery capacity, 

the higher the average fleet SOC when vehicles are forced to charge until the maximum cutoff 

level. Since idle vehicles can only charge once below 40% SOC, vehicles with larger batteries will 

skew fleet average SOC if forced to charge longer, and when given more opportunities to charge 

(via a low idle threshold). In contrast, SR vehicles tend to have better battery performance with a 

SP policy for a distributed charging station network. Fortunately, the results show there is no wide 

variation in fleet average SOC (greater than 2% by the end of the day). If need be, SP could be 

restricted to peak hours to fulfill more ride requests while CP is implemented after the evening 

peak to raise SOC at the end of the day. 
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Figure 5 Difference in Fleet State of Charge by Time of Day Between Charging and Service 

Priority Policies 

 

4.3 Charging Station Density 

 This study used two charging station archetypes, a distributed and concentrated station 

network. The distributed charging network had 40 locations with a total of 870 plugs while the 

concentrated station had 11 locations and 825 plugs. Although the average daily VMT had no 

discernable difference, the percent of empty travel increased for the concentrated charging station 

network (an added 3% for LR vehicles and 8% for SR vehicles). If SR vehicles are adopted, the 

increasing number of charging trips and percent of vehicles charging will lead to a greater increase 

in percent of daily VMT going to charging. Although the operator would have far less land 

acquisition/leasing costs with a concentrated station network, each SR vehicle gives up 1.4 trips 

per day and the LR vehicle an additional 0.2 trips per day. This may appear small, but relative to 

conventionally fueled no-service SAVs, the SR fleet faces a 35% reduction in trips served with 

sparser charging stations versus 25% with more locations. A fairer comparison between 

powertrains reveals a 19% reduction in trips served versus a 6% reduction from SR vehicles on 

sparser and denser charging station networks, respectively. If a fleet transitions from a SR fleet to 

a LR fleet (i.e., a MR fleet), then the act of rebalancing vehicles via charging, albeit less frequently 

than an entire SR fleet, allows for more passengers served. However, this assumption may only 

hold if the number of charging stations is greater than service depots, as in this study. 

 The concentrated station network has less wait time (between 55 and 65 min) when 

counting only vehicles in the queue. Since the wait time estimation is reactive and may not reflect 

an increase in wait time from vehicles yet to arrive, a concentrated network with more plugs 

appears to solve this issue. However, a more accurate wait time algorithm could remedy this 

problem and help realize the benefit of distributed stations. 
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 Figure 6 plots a distribution of the fleet average SOC by time of day. The image shows a 

clear difference between the station types with a concentrated network (orange lines) increasing 

SOC faster after the morning peak hours. Since our study only simulated a 24-hour period, the rate 

of SOC increase was linearized for the early morning hours of the next day, since average SOC at 

the beginning of the day remains more or less constant. Assuming the rate holds, only SR fleets 

using a concentrated charging station network would recoup the fleet average SOC. This is in large 

part because the charge on idle heuristic requires a SOC less than 40%, which most SR vehicles 

should meet after the morning peak, and that the concentrated network has less queue time, 

allowing vehicles to charge faster. Since distributed stations have systematically lower fleet 

average SOC, fleets could improve the decision-making rule of selecting charging stations or 

simply add more chargers. Finally, LR fleets using a concentrated charging station network have 

near similar fleet average SOC profiles after 6 pm as fleets accessing distributed charging stations. 

While this combination would less infrastructure cost and increases the number of trips served 

(albeit at an upfront cost for 90kWh batteries) it comes at a cost of high charging downtime.  

 

 

Figure 6 Difference in Fleet State of Charge by Time of Day Across All Policies 

 

4.4 Fleet Utilization 

Figure 7 highlights the fleet’s utilization across different scenarios as a function of percent eVMT 

and percent idling time. The circles highlight the effect of range and charging infrastructure on 

these two metrics. If vehicle battery prices do not fall and the investment in charging stations is 

constrained, the first generation of SAEV fleets will likely use SR vehicles and a concentrated 

charging station network (orange circle with the dotted line in the figure).  This study shows an 
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additional 5% congestion impact, as measured in percent empty travel, from using SR vehicles 

over LR vehicles with this charging station network. If the fleet invests more in distributed 

charging stations, then the congestion impact could be greatly reduced, even more than increasing 

battery capacity. However, LR vehicles serve more trips per day than SR vehicles and helps to 

explain the difference in average idle time. Increasing vehicle range can help mitigate the impact 

of charging station design on percent empty travel, since these vehicles charge less often. Lastly, 

fleets using concentrated charging stations have far less variation in percent empty travel and 

percent of the day spent idling even after accounting for the differences in idle times and charging 

versus service priorities (see spread within the circles).  

 

Figure 7 Fleet Utilization as a Function of Percent Empty VMT and Percent Idling Time  
(Note: Orange = Concentrated, Green = Distributed, Sold Line = LR, Dashed Line = MR, Dotted Line = SR)  

 

CONCLUSIONS 

The use of EVs is slowly catching up and the future of shared vehicles is better off with an electric 

powertrain to minimize the carbon footprint of transportation. SAEV fleet operations are studied 

in detail here, through a variety of fleet compositions and charging strategies. Over 24 scenarios 

were simulated for the Greater Chicago, IL region using the agent-based tool POLARIS to learn 

the impact of fleet choice and charging strategy on fleet performance and system impact.  

 The decision to use an SR, LR or MR fleet is important to manage the added congestion 

through eVMT. Irrespective of whether charging or service is prioritized, the all-electric SR fleet 

experienced a marginal increase in percent empty travel compared to an SAV fleet (+3.6%) versus 

+2.5% for LR SAEV fleets. When comparing SAEVs to SAVs, there are two distinctions to be 

made. If studies do not model routine maintenance or periodic cleaning trips, say after the nth 
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consecutive trip, then the reference SAV case may be underestimating average percent empty 

travel by 16.7% (i.e., there is a magnitude difference of 5.9% %eVMT). Assuming that service 

depot locations are sparser than charging stations, since charging could be performed 

autonomously with wireless charging or self-docking technology, switching powertrains to battery 

electric vehicles could help reduce the impact of maintenance trips on fleet performance. 

Moreover, some maintenance checks can be performed while a vehicle is charging, which can 

recoup lost energy from the vehicle traveling to the service depot. In fact, this study found that LR 

vehicles serve more trips than SAV fleets when adding these service trips.  

 Prioritizing service over charging is useful in improving the average daily trips served per 

SAEV and should be pursued, so long as operators ensure that vehicles with at least 60% SOC are 

released. Service priority makes the most sense at peak times of day and using a low idle threshold 

for charging can help recoup fleet state of charge during off-peak periods faster. Since this study 

had a relatively high utilization rate of vehicles temporally (i.e., vehicles were idle about 10 hours 

of the day on average), a higher idle time for charging resulted in only marginally longer wait 

times and lower SOC. 

 The use of charging station capacity and queuing adds realism that some prior models 

missed. Even with 50kW charging outlets, SAEV vehicles may wait between 1 to 2 hours if there’s 

a queue. This is in part due to relying on charging heuristics, however strategic, to schedule 

charging trips after a vehicle finishes a tour. If instead vehicles could decide to charge during the 

early morning hours, in advance of demand, the fleet could reduce charging wait times and perhaps 

serve more trips in the case of SR vehicles. Additionally, the SOC at the end of one day did not 

exceed the starting SOC distribution for this case study. New research could assume a starting 

SOC range of 60% to 65% instead of the 70-100% assumptions in the literature.  

 Demand reductions seen from an SAV fleet with no service is expected, but the magnitude 

is rooted in the fleet composition, charging station design, and finally in charging strategies studied 

here. Larger regions may need more SAEVs per capita for adequate service (trips and response 

time), but the average daily trips per vehicle would likely decrease. Constraining the service area 

of these fleets to areas with a higher concentration of trip requests can help increase vehicle 

utilization. Additionally, if SAV fares were adjusted to recoup the costs of longer travel lengths to 

pick-up locations or if per-mile/per-minute prices were higher in regions with lower demand, then 

perhaps the fleet could justify the less than ideal average daily vehicle utilization rate.  

 This simulation study comes with a limitation arising from the use of heuristics that helps 

study large samples of demand. While the approach is reasonable, optimal solutions are preferred 

in many cases, and the tradeoff arises between modeling travel demand behaviorally well versus 

making distributional assumptions to focus on optimizing an objective function. Studies like Shi 

et al. (2019) and Al-Kanj et al. (2020) have shown the value add from optimizing operations, but 

incorporating it into a demand model that tracks all forms of travel is not yet done and will likely 

be done in due time. 

 

ABBREVIATIONS 

AV Autonomous Vehicle 



Strategic Charging and Maintenance of Shared Electric Fleets 

 

25 

 

 

cVMT Charging Vehicle-miles Traveled 

DCFC Direct Current Fast Charging 

DRS Dynamic Ride-sharing 

EV Electric Vehicle 

EVCS Electric Vehicle Charging Station 

eVMT Empty Vehicle-miles Traveled 

ICE Internal Combustion Engine 

SAEV Shared Autonomous Electric Vehicle 

SAV Shared Autonomous Vehicle 

SOC State of Charge 

TAZ Traffic Analysis Zone 

TNC Transportation Network Company 

VMT Vehicle-miles Traveled 
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