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ABSTRACT 
Electric vehicle (EV) charging patterns significantly influence power grid operations and 
investment needs. This study utilizes the Regional Energy Deployment System (ReEDS) 
model to assess various EV charging strategies in the U.S., including unmanaged charging, 
daytime and nighttime smart-charging programs with two different participation rates, and 
fully managed EV charging. These strategies are examined under two EV demand projections: 
TEMPO and Fast Adoption. The analysis focuses on their effects on grid emissions, the power 
capacity and generation mixes, and associated investment and operating costs. Key findings 
reveal that with the TEMPO EV demand projection, fully managed charging could reduce 
system costs by 2% and carbon emissions by 6% over 25 years, assuming that all new light-
duty vehicles in the U.S. are EVs by 2035. In contrast, unmanaged charging necessitates a 
significant increase in battery storage capacity compared to smart-charging or fully managed 
strategies, highlighting the critical role of strategic charging management in addressing the 
infrastructural challenges posed by rising EV penetration. The smart-charging program 
definitions presented in this study are based on Dean and Kockelman’s (2024) online survey 
results, from assessing U.S. adults’ perspectives on plug-in electric vehicles (PEVs) and their 
preferences for smart-charging initiatives. The novelty of this paper resides in its 
comprehensive comparison of costs versus benefits of smart-charging programs and their 
impact on the U.S. power sector. In the TEMPO case, the highest avoided emissions costs per 
participating-EV-year are realized in the Central and Midwest regions ($69 and $67 per EV-
year), while the lowest are observed in the Arkansas-Louisiana region (at a loss of $81 per EV-
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year). Nighttime charging is preferred over daytime charging to minimize emissions. The 
Central region (containing North Dakota, South Dakota, Nebraska, Kansas, and Oklahoma) 
enjoys significant smart-charging benefits under both the TEMPO and FA cases. Conversely, 
the lowest avoided electricity system costs per EV are experienced in the Florida and Texas 
regions in the FA case. Per EV-year, the benefits from grid savings are likely to be much larger 
than emissions costs savings.  
 
Keywords: Electric Vehicles, Power Sector, Smart-Charging, Capacity Expansion, Energy 
System Modeling 
 
1. INTRODUCTION 
Climate change is a major threat, with many nations, cities, and organizations working to 
decarbonize transportation and power systems as quickly as possible. Electric vehicle (EV) 
adoption is a major intervention for decarbonizing the transport sector and reducing other 
emissions (Liang et al., 2019). The number of EVs on world roads rose to 10 million in 2020 
from nearly zero a decade earlier, and is expected to hit 250 million by 2030 (Powell et al., 
2020). EVs are projected to account for 58% of all vehicle sales globally by 2040 (Goldman 
Sachs, 2022). Forecasts tend to rise every year as more nations unveil ambitious targets and 
policies (S&P Global Mobility, 2023). 
 
Cars and light-duty trucks are responsible for 17% of total U.S. greenhouse gas emissions (Pan 
et al., 2023). Passenger vehicles were directly responsible for 60% of PM2.5 and 43% of NOx 
emissions from on-road U.S. transportation sources in 2017 (Zawacki et al., 2018). The Biden 
Administration set a target for half of all U.S. vehicle sales to be zero-emission vehicles (ZEVs) 
by 2030, and pledged $7.5 billion for EV charging station provision under the Bipartisan 
Infrastructure Law (USDOT, 2023). California is leading the nation with a roadmap to sell only 
ZEVs by 2035 (CARB, 2022). Ten other U.S. states have mandated that certain shares of 
passenger-vehicle sales be EVs (Ou et al., 2021). 
 
Rapid growth in EV ownership, use, and charging may stress existing electricity networks 
(Coignard et al., 2019). When EVs start charging as soon as customers plug them in 
(unmanaged charging), power demand may require turning on peaker power plants and 
releasing more emissions per kWh generated (Gschwendtner et al., 2023). If EV charging can 
be managed and timed to match wind, solar, and other clean power sources, EVs can become 
an asset to the electricity grid (thanks to coordinated or “smart” charging). When EV charging 
is coordinated, EVs can be charged during times of low demand and/or surplus generation. EV 
charging can be started during times of excess renewable energy (RE) generation, which 
reduces RE curtailment. In this way, smart-charging adds stability and flexibility to the power 
grid. Such demand management is especially valuable when a region’s generation is dominated 
by non-dispatchable/intermittent generators (e.g., solar and wind). 
  
To decarbonize the electricity sector, there has been increased penetration of RE, making 
demand management (including EV smart-charging, smart thermostat controls, and variable 
power pricing) fundamental to maintaining a reliable power grid with low-cost electricity. The 
main objective of this study is to evaluate the impact of EV charging strategies on the U.S. 
electricity grid in terms of emissions, future capacity expansion, generation dispatch, and 
investment and operating costs. It particularly concentrates on smart-charging strategies, 
examining both the detrimental and beneficial impacts of EVs on the grid with and without 
these strategies. 
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This paper evaluates different charging strategies for EVs across two cases for EV adoption: 
Transportation Energy and Mobility Pathway Options (TEMPO) and Fast Adoption (FA). 
NREL’s ReEDS model is employed to project the capacity expansion of the U.S. power sector 
for each scenario of EV adoption and charging strategy. This study considers six charging 
scenarios for each EV adoption case: unmanaged charging, daytime and nighttime smart-
charging programs, each with two different participation rates, and fully managed EV charging. 
Unmanaged and fully managed charging scenarios represent the extremes of the spectrum from 
no intervention to complete control over EV charging times, providing insight into the potential 
impact on grid investments, costs, and emissions. The smart-charging program definitions 
presented in this study are based on (Dean and Kockelman, 2024), who conducted an online 
survey assessing U.S. adults’ perspectives on plug-in electric vehicles (PEVs) and their 
preferences for smart-charging initiatives. These programs involve shifting 25% to 50% of EV 
demand between daytime and nighttime periods. The novelty of this paper resides in its 
comprehensive comparison of costs versus benefits of smart-charging programs and their 
impact on the U.S. power sector. The costs analyzed in this study encompass future investments 
in generation and storage capacity, dispatch costs, and incentives provided to customers for 
participating in EV smart-charging programs. Conversely, the accrued benefits are measured 
in terms of avoided installed capacity, reduced storage requirements, emissions reduction, and 
effective demand-supply management, thereby alleviating grid stress. 
 
  
2. RELATED LITERATURE 
In recent years, a significant number of studies have been conducted to assess the impact of 
EV charging on power grids. These studies utilize market-based modeling tools and are often 
tailored to a specific country’s context, focusing on evaluating emission reductions, 
maximizing RE penetration, and understanding the implications for electricity pricing with the 
integration of EVs into the electricity system. Table 1 lists a variety of recent EV charging-
strategy papers with the regions of study and tool or methodology used. Some of these papers 
emphasize emissions reductions and flexibility potential for European settings. For example, 
Bellocchi et al. (2018) analyzed EV-RE synergies in Italy in terms of power system costs, CO2 
emissions, and RE curtailment through 2050. A year later, they used EnergyPLAN to simulate 
different futures for both Italy and Germany, assuming increases in RE generation and EV 
penetration (Bellocchi et al., 2019). With a sixfold expansion of RE capacity and complete 
electrification of private transportation, Italy and Germany could reduce CO2 emissions by 
22% and 39%, respectively, by aligning EV charging with periods of RE generation. Lauvergne 
et al. (2022) simulated the costs of large-scale EV adoption in France using uncontrolled 
charging, time-of-use tariffs, and smart unidirectional (grid to vehicle) charging. They 
estimated that smart-charging lowers power costs by €16.2 per capita per year. With the mass 
integration of EVs into the power grid, the flexibility of the network needs to be taken care of 
appropriately. An agent-based model was employed to study the flexibility goals of EV 
charging based on four metrics: peak reduction, flatness of the load curve, increase in midday 
load, and total load shift under unmanaged and managed charging strategies for the case of 
Switzerland (Gschwendtner et al., 2023). 
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Table 1 Literature related to EV charging strategy & focus of the current study  

Author and Year Study Focus Country Focus Tools/Methods 

Bellocchi et al. (2019) Emissions reduction Germany & Italy EnergyPLAN (Lund 
et al., 2021) 

Bellocchi et al. (2018) Renewable energy 
penetration Italy EnergyPLAN 

Booysen et al. (2022) Solar energy use 
maximization Uganda simulation model 

Broadbent et al. (2022) Emissions reduction Australia system dynamics 
Ullah et al. (2023) Solar energy maximization Pakistan scheduling model 
Sambasivam and 

Sundararaman (2023) Emissions reduction India optimization & 
simulation model 

Jones et al. (2022) Charging’s response to TOU 
pricing Synthetic network simulation model 

Gschwendtner et al. 
(2023) Demand flexibility potential Switzerland agent-based demand 

modeling 

Lauvergne et al. (2022) Technical & economic 
impacts France Antares-Simulator 

(RTE, 2022) 

Jenn (2023) Emissions reduction California 

Grid Optimized 
Operation Dispatch 

(GOOD) model (Jenn 
et al., 2020) 

Li et al. (2021) Emissions reduction China Switch model 
(Johnston et al., 2019) 

Powell et al. (2022) Grid impacts U.S. Western 
Interconnection 

economic dispatch 
model 

Jones and Leibowicz 
(2019) 

SAEV contribution to 
climate mitigation Austin, Texas, U.S. OSeMOSYS 

(Howells et al., 2011) 
Brozynski and 

Leibowicz (2018) 
Electricity & transport 
sector decarbonization Austin, Texas, U.S. OSeMOSYS 

This Study (Sambasivam 
et al. 2023) Grid & emission impact Entire U.S. ReEDS model (Ho et 

al., 2020) 
 
Other studies focus on the world’s two biggest emitters: the U.S. and China. For example, Li 
et al. (2021) use the SWITCH-China model to anticipate feedstock use and emissions from 
high EV penetration rates (70% of private light-duty vehicles, buses, and taxis), while targeting 
Paris Agreement goals (Gallagher et al., 2019). The result shows that in the long term, large-
scale deployment of EVs with unmanaged charging requires 14% additional storage capacity 
in China, as compared to employing a smart-charging strategy. Also, smart-charging helps to 
save between $43 and $123 per vehicle annually in 2050 compared to the unmanaged charging 
strategy. California leads the U.S. in long-term EV integration targets. Jenn (2023) evaluated 
the impact of managed and unmanaged EV charging strategies in the Western Electricity 
Coordinating Council (WECC) interconnect, with California as the main focus, using the Grid 
Optimized Operation Dispatch (GOOD) model. In the light-duty transportation sector in 
California, with a managed charging strategy, there is a potential for 1 billion tons of 
cumulative CO2 reduction through 2045. Using an economic dispatch model, Powell et al. 
(2022) analyzed the impacts of different EV adoption levels on the U.S. WECC interconnect 
region. The results show that EV smart-charging can increase RE consumption and 
consequently reduce emissions, storage, and ramping requirements. Jones and Leibowicz 
(2019) developed an energy system optimization model to evaluate the charging patterns of 
electric shared autonomous vehicles (SAEVs) and electric privately owned vehicles (ePOVs) 
with two scenarios for Austin, Texas. In one scenario, SAEVs and ePOVs are charged only 
during night hours; in the other, SAEVs are charged anytime during the day, and ePOVs only 
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at night. The study results show that if SAEV charging is optimally aligned with renewable 
electricity generation, there are significant economic and environmental benefits. With Austin, 
Texas as a case study, Brozynski and Leibowicz (2018) developed an energy system 
optimization model to study EV charging and V2G discharging. They conclude that optimal 
EV charging aligns with solar PV availability, and thus providing charging infrastructure 
availability at workplaces would add system-wide value to the electricity system. 
 
The next set of studies highlights the importance of aligning EV charging with periods of high 
RE generation, using case studies from Africa, Asia, and Australia. A simulation environment 
was developed to maximize solar PV consumption in public charging of minibus taxi public 
transport in Kampala, Uganda. The authors used spatiotemporal and solar PV analyses to 
evaluate the required number of stops needed for the taxis to maximize the available solar 
energy (Booysen et al., 2022). Using a case study from India, the impact of passenger EV 
charging on a renewable energy-dominated electricity system is investigated through 
optimization and simulation approaches. Two charging scenarios are examined: day and night 
charging. The study reveals that encouraging night charging can effectively reduce emissions 
within the electricity system (Sambasivam and Sundararaman, 2023). Ullah et al. (2023) 
simulated an optimal scheduling algorithm for the maximum utilization of solar PV for EV 
charging in a solar-based grid-tied charging station in Islamabad, Pakistan. The results show 
that the scheduling model can increase the annual solar PV consumption by around 60% and 
reduce the system cost by around 25%. With a macroeconomic model, Broadbent et al. (2022) 
conducted a nationwide study to project Australia’s future road transport demand and transition 
to renewable electricity by 2050 using five scenarios considering the growth in the economy, 
population, and RE targets. The results show that a rapid transition to RE generation and 100% 
battery EVs in new vehicle sales could help to achieve net-zero emissions for Australia by 
2050. 
 
There is also an EV charging study with time-of-use (TOU) pricing using a synthetic grid. TOU 
pricing is implemented in electricity systems to reduce peak system demand. Jones et al. (2022) 
analyzed the impact of customer EV charging demand on TOU rates for a synthetic grid using 
a simulation approach. The study results show that unmanaged EV charging immediately after 
peak hours can increase peak demand by 20%. If the demand is spread across off-peak hours, 
the peak demand can be reduced by 5% compared to simulations that did not employ TOU 
rates. 
 
All the EV charging-related studies discussed above are based on optimization and simulation 
methods. The definitions of the EV smart-charging programs proposed in this study are based 
on a survey carried out by Dean and Kockelman (2024), who conducted an online survey to 
characterize U.S. adults’ attitudes toward PEVs and their preferences for smart-charging 
programs. The survey was completed by 1050 people across the U.S. between November and 
December 2022. The respondents were spread across the U.S., and the chosen sample for the 
study closely resembles the U.S. census data (households and persons). The survey was 
designed to understand respondents’ perceptions of owning EVs, PEV-power grid integration, 
and the benefits of user-managed and supplier-managed charging. In the survey, questions were 
asked about respondents’ demographics, travel patterns, primary vehicle parking location at 
home, car buying/leasing decisions, perceived barriers to PEV buying/leasing and home 
charging, preferred PEV charging style, willingness to participate in utility-managed charging 
programs and expected compensation for participating in those programs, attitudes towards 
climate change and consequent clean energy transition, attitudes towards benefits of smart-
charging, and grid reliability. The results show that 37% of Americans are willing to cede EV 
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charging control to their electric utilities. Americans with less education prefer unmanaged 
charging compared to those with Master’s and Ph.D. degrees. 45% of the respondents cite 
privacy concerns as a reason to not cede EV charging control to the utilities. Meanwhile, 60% 
of people believe that smart-charging is good for society. Finally, gender has no role in 
characterizing the preferred PEV charging method compared to unmanaged charging.  
 
This study’s objective is to compare the economic and environmental benefits of the 
implemented EV smart-charging programs to the costs that electric utilities would have to incur 
to incentivize customers to participate in these programs, based on the survey results from 
(Dean and Kockelman, 2024). The novelty of this paper lies in its comprehensive costs vs. 
benefits comparison of smart-charging programs and their effects on the U.S. power sector. 
The costs considered in this analysis encompass future generation and storage capacity 
investments, dispatch costs, and incentives paid to customers to participate in EV smart-
charging programs. On the other hand, the accrued benefits are measured in terms of avoided 
installed capacity, reduced storage needs, emissions reduction, and alleviating grid stress 
through effective demand-supply management. This study combines survey results with energy 
system modeling outputs to provide a novel estimation of the costs versus benefits of EV smart-
charging programs in the U.S. 
 
 
3. METHODS 
 
3.1 Summary of the ReEDS Model  
As noted earlier, this study uses NREL’s ReEDS model (Ho et al., 2020), which is a capacity 
expansion model that determines the least-cost capacity investments and dispatch operations 
for the U.S. electric power system through 2050. Many others have used ReEDS for various 
applications. For example, researchers have employed ReEDS to study the cost implications 
of increased RE (Cole et al., 2021a), explore pathways to achieve a 100% RE system (Cole et 
al., 2021b), evaluate the impacts of solar PV (Cole et al., 2020) and wind energy (Mai et al., 
2021b) in the electricity system, assess the role of battery storage as a peaking capacity resource 
(Frazier et al., 2020), examine the impacts of clean energy standards and emission policies 
(Mai et al., 2021a), investigate planning reserve margins for future capacity additions (Reimers 
et al., 2019), and examine cost targets for zero-emission nuclear, concentrating solar power, 
and offshore wind in system planning (Mai et al., 2019). 
 
In ReEDS, the U.S. is divided into 134 balancing areas where the model helps in planning 
capacity expansion and grid service requirements (Ho et al., 2020). Figure 1 shows the regional 
representation of the 134 model balancing areas (represented by bold black lines) in the ReEDS 
model. Utilizing a least-cost optimization paradigm, the model accounts for technological, 
resource, land use, and policy constraints to assess the trade-offs among different generation 
technologies, transmission, and storage options. It captures the uncertainty, variability, and 
geographic constraints of wind (both onshore and offshore) and concentrating solar power 
across 356 regions. Within the model, two types of EV charging demand are integrated: a 
constant ‘static’ demand distributed evenly over 24 hours, and a ‘dynamic’ demand that varies 
hour by hour but remains constant within each hour. The ‘static’ demand represents a base load 
that cannot be time-shifted, while the ‘dynamic’ demand is flexible and can be shifted to 
different times of the day. 
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Figure 1 Regional representation (balancing areas and resource assessment regions) used in 

the ReEDS model (Ho et al., 2020) 
 
The objective of this study is to evaluate the transformation of the U.S. electricity system with 
EV integration using the ReEDS model. By default, in ReEDS, the model’s starting year is set 
to 2010, and the analysis will cover the timeframe from 2025 to 2050, with a five-year decision-
making time step for each model period. Simulations conducted before 2025 function as a 
warm-up phase, essential for accurately projecting demand growth and capacity additions, 
setting the stage for the main analysis period. The focus is to project EV growth and evaluate 
its impact on key elements of the U.S. electricity system, including the generation and capacity 
mixes, storage requirements, emissions, and investment and operating costs. This research 
considers 12 distinct scenarios to explore the varied outcomes and implications of EV 
integration on the electricity grid. Given that the analysis extends to 2050, a 5% discount rate 
is utilized for converting all future costs to present value, ensuring a consistent economic 
assessment over time. 
 
3.2 EV Demand Projections  
In this study, scenarios are based on two distinct pathways of future EV adoption: TEMPO and 
Fast Adoption (FA). The projected EV demand up to 2050 is derived from the TEMPO model 
developed by NREL (Yip et al. 2023). The TEMPO model considers different EV adoption 
rates in future years and estimates the EV demand from 2020 to 2050 with two-year time steps. 
For the current study, the EV demand based on the “All EV sales by 2035” scenario in the 
TEMPO model is utilized as the input. In alignment with various announced targets, this 
scenario assumes reaching 50% and 100% of light-duty EV sales in the U.S. by 2030 and 2035, 
respectively. The FA scenario explores the potential for all vehicles in the U.S. to be electric 
by 2030. To calculate the EV demand for 2030, the average per capita vehicle miles traveled 
(VMT) in the U.S. and the amount of electricity required per mile traveled are used. This 
demand profile is based on the American average per capita VMT, approximately 10,000 miles 
per year (Bureau of Transportation Statistics, 2021; Huxley Reicher, 2022), assuming an EV 
efficiency of 5 miles per kilowatt-hour (kWh). For consistent comparisons, the FA EV demand 
is normalized to the TEMPO model’s 2050 projections, with demand gradually increasing to 
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match this level. Figure 2 illustrates the projected EV demand progression up to the year 2050 
as assumed by the TEMPO and FA cases. 
 

 
Figure 2 Projected EV demand over the years up to 2050 for the TEMPO and Fast Adoption 

cases 
 
The determination of the number of EVs in both scenarios assumes that an average EV requires 
10 kWh of energy per day. Utilizing this average, the total number of EVs is calculated. Figure 
3 illustrates the annual number of EVs for each decision-making year in both the TEMPO and 
FA cases. 
 

 
Figure 3 Annual counts of EVs in TEMPO and FA cases 
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3.3 Scenarios Tested 
In this study, 12 distinct scenarios use one of three EV charging strategies: unmanaged, smart-
charging, and fully managed (or super-smart-charging). These strategies are applied across two 
EV adoption cases: TEMPO and FA. In an unmanaged charging strategy, EVs are charged 
immediately upon being plugged in, without any consideration for the grid’s current status. In 
contrast to the unmanaged approach, the fully managed strategy places complete control over 
EV charging times in the hands of electric utilities. The smart-charging strategy represents a 
middle ground, where utilities have control over the timing of EV charging but are constrained 
to particular times of day and must adhere to a deadline by when EVs must be fully charged. 
In the two smart-charging setups, consumers are offered incentives to participate in the 
program and allow the utility to schedule their charging during either the daytime or nighttime. 
More details are provided below. 
 
The current study is limited to household EVs. The EVs considered for controllable charging 
include personal vehicles parked at homes (both single-family and multi-family residences), 
workplaces, and public charging stations. To facilitate the analysis, a day is segmented into 
five distinct time blocks: overnight (9 PM–6 AM), morning (6–10 AM), midday (10 AM–1 
PM), afternoon (1–5 PM), and evening (5–9 PM). Key assumptions for this study are as 
follows. Across all charging scenarios, it is assumed that the number of EVs available for 
charging remains constant. This assumption is crucial to ensure a fair comparison across 
different charging strategies. Whenever EV charging is shifted from one hour to another, it is 
presumed that the vehicle is plugged in and ready for charging. This reflects a realistic scenario 
where vehicles are often parked and plugged in but not necessarily charging continuously. In 
the daytime and nighttime charging scenarios, it is estimated that 25% to 50% of household 
EVs are plugged in and available for charging. Under all 12 scenarios considered in the study, 
it is assumed that adequate EV charging infrastructure is available at all key locations, 
including homes, workplaces, and public places. This assumption is vital for assessing the 
feasibility and impact of various charging strategies without the constraint of infrastructure 
availability. These assumptions are integral to the study’s methodology, providing a 
standardized framework for evaluating the impacts of different EV charging strategies on the 
electricity grid.  
 
3.3.1 Unmanaged Charging (UMC) 
In the two Unmanaged Charging scenarios, the model gives complete autonomy to EV 
owners/users in terms of charging their vehicles. There is no consideration or influence from 
the grid’s status in these scenarios. Utilities do not exert any control over when users charge 
their EVs. The key assumption here is that users will plug in their EVs for charging at their 
convenience, and the charging process will continue until the vehicle’s battery reaches its full 
capacity or maximum state of charge. In the ReEDS model, for the purposes of these UMC 
scenarios, it is assumed that 100% of all EV demand is static within the electricity system. This 
means that the model does not consider any variability or flexibility in the timing of EV 
charging. Essentially, the EV load is represented as an exogenously specified demand profile, 
regardless of other conditions or demands within the electricity system. This scenario offers a 
baseline for understanding the impacts of EV integration without any form of demand-side 
management or smart-charging initiatives. It reflects a situation where the increasing EV 
adoption does not correspond with changes or adaptations in grid management and user 
behavior, providing a useful benchmark for evaluating the benefits of more managed charging 
approaches. 
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3.3.2 Fully Managed Charging (FMC) or Super-Smart-Charging 
In the two fully managed charging scenarios of this study, the utilities are granted complete 
control over the charging times of all EVs. This implies that the entire EV charging demand is 
controllable and adjustable according to the needs and capacities of the electricity grid. This 
allows for the most efficient use of grid resources, as utilities can optimize charging times based 
on grid conditions, RE availability, and overall electricity demand. While this situation might 
be considered unrealistic in current practice, especially for household vehicles, it represents a 
theoretical extreme opposite to the unmanaged charging scenario. In this setting, 100% of the 
EV demand is assumed to be dynamic within the electricity system. In summary, the fully 
managed charging scenarios in this study enable a theoretical exploration of the potential upper 
limits of grid optimization through complete control of EV charging, serving as a valuable 
counterpoint to the unmanaged charging scenario for understanding the full spectrum of 
possibilities in EV-grid integration. The total dynamic EV charging energy consumption across 
all time slices in each representative day equals the aggregate EV energy demand for that day 
and is captured in the equation 
 

�𝐸𝐸𝐸𝐸𝐸𝐸𝑟𝑟,ℎ,𝑡𝑡 =  �𝐷𝐷𝑟𝑟,ℎ,𝑡𝑡

5

ℎ=1

   ∀(𝑡𝑡, 𝑟𝑟)
5

ℎ=1

 . 

 

(1) 

In addition to fully managed charging, this study explores two smart-charging strategies: 
nighttime and daytime charging, each with varying customer participation rates. In these smart-
charging strategies, 50% of the EV demand is categorized as static, forming the base load that 
remains constant and unmanaged. The remaining 50% is dynamic, offering flexibility in terms 
of when this portion of the demand can be met. Two different customer participation rates are 
considered for these smart-charging strategies: 25% and 50%. The 25% rate implies that 25% 
of the total EV demand is subject to management and can be shifted to optimize grid 
performance. With the 50% participation rate, 50% of the total EV demand is manageable, 
allowing for greater flexibility in shifting charging times. The concept of a base EV demand, 
present throughout the day and remaining unchanged, is essential for realistic modeling. It 
recognizes that not all customers with EVs will participate in a smart-charging program, even 
if the utility offers one and incentivizes participation. 
 
3.3.3 Nighttime Smart-Charging (NSC) 
In this program, the EVs are charged only during the nighttime hours (9 PM – 6 AM), i.e., the 
utilities shift EV charging from daytime to nighttime. In the two NSC scenarios, 25% and 50% 
of the EV demand during nighttime participates in the smart-charging program. Here, the 
participating customers in the EV charging program consist of both the shifted customers from 
daytime charging and some customers who already charge their EVs during nighttime. 
Therefore, the objective is to have 25% and 50% of customers participate in the EV charging 
program. The 25% and 50% adoption rates in the NSC scenario are denoted as NSC-25 and 
NSC-50, respectively. To induce customers to participate in this program, incentives are 
provided to those who allow the utilities to control their EV charging. The calculation of these 
program participation incentive payments is done outside the model. The utilities assure the 
participating customers in this program that their EVs will be fully charged by 6 AM, i.e., all 
the EV demand that is shifted will be met during this time. Between 9 PM and 6 AM, utilities 
schedule EV charging optimally based on generation capacity availability and cost. The shift 
in dynamic EV demand in each region r, year t, from daytime to nighttime within the same 
region r for the same year t, is represented by the following equations, where δ denotes the 
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participation rates. The equations capture the extent of demand shift based on the selected 
participation rate. 
 

𝐸𝐸𝐸𝐸𝐸𝐸𝑟𝑟,ℎ1,𝑡𝑡 = 𝐷𝐷𝑟𝑟,ℎ1,𝑡𝑡 +  𝛿𝛿 ∗�𝐷𝐷𝑟𝑟,ℎ,𝑡𝑡

5

ℎ=2

        ∀(𝑟𝑟, 𝑡𝑡) 

 

 
(2) 

𝐸𝐸𝐸𝐸𝐸𝐸𝑟𝑟,ℎ,𝑡𝑡 = 𝐷𝐷𝑟𝑟,ℎ,𝑡𝑡 −  𝛿𝛿 ∗ 𝐷𝐷𝑟𝑟,ℎ,𝑡𝑡          ∀(𝑟𝑟, 𝑡𝑡,ℎ ∈ {2,3,4,5}) 
 

(3) 

3.3.4 Daytime Smart-Charging (DSC) 
This program contrasts with the nighttime smart-charging program. Here, some EV charging 
from the nighttime is shifted to the daytime between 6 AM and 9 PM. Similar to the NSC 
scenarios, in the two DSC scenarios, 25% and 50% of the EV demand during daytime 
participates in the smart-charging program. Here, both the shifted demand and the existing 
customers who charge their EVs during the daytime also participate in the smart-charging 
program. Like the NSC scenarios, in the DSC scenario, the adoption rates of 25% and 50% are 
denoted as DSC-25 and DSC-50, respectively. Users are incentivized to participate in this 
program. In the DSC program, the model has the flexibility to optimally schedule EV charging 
between 6:00 AM and 9:00 PM, which spans four ReEDS time slices: morning (6–10 AM), 
midday (10 AM–1 PM), afternoon (1–5 PM), and evening (5–9 PM). The following equations 
delineate the reallocation of dynamic EV demand, transferring a specified proportion of the 
demand from nighttime to daytime within the same region r for a given year t. As discussed 
before, δ denotes the participation rates. 
 

         �𝐸𝐸𝐸𝐸𝐸𝐸𝑟𝑟,ℎ,𝑡𝑡

5

ℎ=2

= �𝐷𝐷𝑟𝑟,ℎ,𝑡𝑡

5

ℎ=2

+  𝛿𝛿 ∗  𝐷𝐷𝑟𝑟,ℎ1,𝑡𝑡      ∀(𝑟𝑟, 𝑡𝑡) 

 

 
          (4) 

        𝐸𝐸𝐸𝐸𝐸𝐸𝑟𝑟,ℎ,𝑡𝑡 = 𝐷𝐷𝑟𝑟,ℎ,𝑡𝑡 −  𝛿𝛿 ∗ 𝐷𝐷𝑟𝑟,ℎ,𝑡𝑡          ∀(𝑟𝑟, 𝑡𝑡,ℎ ∈ {1})          (5) 
 
These charging strategies, spanning unmanaged to fully managed, are evaluated to understand 
their respective impacts on the electricity grid under different EV adoption pathways. By 
exploring these scenarios, the study aims to provide insights into how various levels of charging 
management can influence grid performance in the context of increasing EV penetration. 
 
4. RESULTS AND DISCUSSION 
This section presents and discusses the results obtained from ReEDS for scenarios with 
different EV adoption pathways and charging strategies. Sections 0-0 discuss the TEMPO and 
FA case results, focusing on the impacts of EV charging strategies on electricity emissions, 
generation and capacity mixes, and system costs. Sections 0 and 0 present regional results for 
emissions and costs, with the continental U.S. broken down into 13 different regions based on 
state boundaries (see Figure 4) as defined in (Jayadev et al., 2020). These regional definitions 
align with the reporting protocols for electricity system operating data by the Energy 
Information Administration (EIA), based on the jurisdictions of load balancing authorities and 
independent system operators (ISOs). Jayadev et al. (2020) implemented several adjustments 
to these regions to ensure that states grouped together exhibit roughly similar energy resources 
and demand profiles. 
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Figure 4 United States’13 Power Regions (Jayadev et al., 2020) 

4.1 Emissions Impacts 
The long-term adoption of EVs is likely to help reduce the tailpipe emissions from the 
transportation sector, but may increase emissions from electricity generation in the power 
sector. Figure 5 and Figure 6 present the total cumulative cost savings per EV due to avoided 
emissions for the TEMPO and FA cases in comparison to the UMC benchmark scenario from 
year 2025 to 2050. In the analysis, the social costs of CH4, NOx, SO2, and CO2 emissions are 
assumed to be $1500, $532, $200, and $51 per ton, respectively (Environmental Protection 
Agency, 2023). For both the TEMPO and FA cases, the avoided costs associated with each EV 
are calculated by multiplying the social cost of a pollutant by the number of tons of that 
pollutant. The costs are converted to present values using a 5% discount rate. The present value 
for each scenario is divided by the discounted number of EVs to find the emissions savings per 
EV-year. Figure 5 shows that the per-EV avoided discounted costs in the TEMPO case range 
from $6 to $29. The highest savings are observed in the FMC and NSC-50 strategies, while the 
lowest are in DSC-50, all compared to the UMC baseline scenario. In contrast, it can be 
observed from Figure 6 that in the FA case, the per-EV avoided costs are highest with the NSC-
50 strategy at $150, followed by NSC-25 at $128. 
 
In the TEMPO case with FMC, compared to UMC, the cumulative CO2 emissions from 2025 
to 2050 are lower by 6% (268 million metric tons (MT)). Since power suppliers have complete 
control over EV charging in the FMC scenario, they schedule it to coincide with high RE 
availability, thereby avoiding emissions from fossil fuel power plants. The cumulative CH4 
emissions are 1% lower in the FMC scenario compared to UMC between 2025 and 2050. Over 
the same timeframe, NOx and SO2 emissions are reduced by 4% and 6%, respectively, with the 
FMC strategy. Although the per-EV emissions cost savings are modest, the smart-charging and 
FMC strategies play a significant role in grid management and facilitate the strategic expansion 
of installed capacity. 
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Figure 5 Total (discounted) avoided emissions costs per EV-year in 2025 dollars for each 
scenario with TEMPO EV adoption rates, relative to the UMC benchmark scenario, over year 

2025 to 2050  

 

 
 

Figure 6 Total (discounted) avoided emissions costs per EV-year in 2025 dollars for each 
scenario with FA EV adoption rates, relative to the UMC benchmark scenario, over year 

2025 to 2050 

 
4.2 Generation and Capacity Mix Impacts 
Figures Figure 7 and Figure 8 illustrate the generation mixes in 2050 for all TEMPO and FA 
scenarios. For the TEMPO case, coal power generation is at least 14% greater in the UMC 
scenario than in all other charging scenarios. For nuclear energy, the FMC strategy leads to a 
9% increase in nuclear generation relative to the UMC strategy by the year 2050. Compared to 
current levels, the lowest decreases observed in coal and natural gas are 91% and 44%, 
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respectively, across all scenarios. Notably, solar power generation in the UMC scenario is 
projected to be 9% higher in 2050 than in the FMC scenario. When comparing the smart-
charging strategies, DSC-25 and DSC-50 result in roughly 4% and 2% more solar power 
generation, respectively, than NSC-25 and NSC-50. Wind power generation is highest in the 
FMC scenario, with NSC-50 and NSC-25 trailing closely behind. This suggests that it is 
generally less costly for the power sector to schedule EV charging during the nighttime 
compared to the daytime in order to leverage more wind generation for EV charging. This wind 
power is low-cost and emission-free. 
 
Figure 8 indicates that in the FA case, coal power generation remains a significant component 
of the energy mix in 2050, with only a 62% reduction from current levels. Further, in all of the 
FA scenarios, natural gas generation remains significant. While the FA case represents a less 
realistic EV adoption pathway, a more gradual integration of EVs into the electricity grid (as 
featured in the TEMPO case) appears advantageous for the long-term reduction of coal and 
natural gas power generation. Additionally, solar generation in the FA scenario with UMC is 
similar to that in the corresponding TEMPO scenario. 
 

 
Figure 7 Generation mixes in 2050 for the TEMPO case, across EV charging scenarios 
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Figure 8 Generation mixes in 2050 for the FA case, across EV charging scenarios  

Figures Figure 9 and Figure 10 present a comparative analysis of the installed capacity mix in 
the year 2050 for the various EV charging scenarios in the TEMPO and FA cases. In the 
TEMPO case, the installed coal capacity is consistently reduced by approximately 63% from 
its current level across all charging scenarios. Figure 9 highlights a modest increase in natural 
gas capacity across all scenarios, with the most significant increase of 9% observed in the DSC-
50 scenario. This trend suggests that as the grid incorporates more solar and wind power, 
natural gas plants are increasingly relied upon to provide backup power and satisfy peak net 
loads. In all smart-charging scenarios, 2050 nuclear power capacity is lower than its current 
capacity. Solar power installations witness a 12% decline in the FMC scenario compared to 
UMC. Interestingly, solar capacity is expanded in the DSC-25 and DSC-50 scenarios by 4% 
and 5%, respectively, compared to their NSC counterparts. Wind power capacity sees its 
greatest increase in the FMC scenario, exceeding its value in UMC by 7%. The NSC-25 and 
NSC-50 scenarios introduce 9% and 8% more wind capacity, respectively, than the DSC-25 
and DSC-50 scenarios. Moreover, there is a notable demand for battery storage in the UMC 
scenario, reaching a high requirement of approximately 38% (199 GW) more than what is 
required under the FMC charging strategy. The results also suggests that the NSC-25 and NSC-
50 scenarios necessitate 2% and 7% more battery capacity, respectively, than the DSC-25 and 
DSC-50 scenarios. 
 
Figure 10 illustrates that in the FA case, the demand for battery storage capacity under the 
FMC scenario is significantly higher (49% greater) than that in the UMC scenario. 
Additionally, the installed capacity for natural gas sees a substantial hike, with the UMC 
scenario showing an increase as steep as 19% above current levels. Other scenarios also reflect 
considerable increases in natural gas capacity. This trend is rationalized by the rapid adoption 
of EVs, where utilities require the natural gas power plants in meeting the baseline demand. 
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Figure 9 Installed capacity mix in 2050 in the U.S. for the TEMPO case, across scenarios  

 

 
Figure 10 Installed capacity mix in 2050 in the U.S. for the FA case, across scenarios 

4.3 Power System Cost Impacts 
Figures Figure 11 and Figure 12 provide a detailed breakdown of the total system costs for 
each EV charging scenario in the TEMPO and FA cases, respectively, with the costs discounted 
to their present values. These costs are categorized into capacity investments, fuel 
expenditures, operation and maintenance (O&M) costs, and transmission costs (transmission 
expenses & new transmission investments). Across both cases, capacity investment accounts 
for the largest share of total cost in all scenarios, which is anticipated due to substantial land, 
construction, and labor expenses. O&M costs follow, reflecting ongoing requirements for 
system upkeep. Fuel and transmission costs contribute smaller fractions of total costs when 
compared to capacity investment and O&M. Comparing total costs in different scenarios with 
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the TEMPO case, the FMC scenario demonstrates a cost saving of approximately $61 billion 
relative to the UMC scenario, which equates to a 2.3% reduction in overall system costs. This 
translates to an average per capita cost saving of around $187 when adopting the FMC strategy. 
The total costs of the smart-charging program scenarios are closer to that of the FMC than that 
of the UMC scenario, with projected systemwide cost reductions ranging from 1.5% to 2% 
when compared to the UMC baseline. These results indicate that EV smart-charging programs 
can yield significant economic benefits in the power sector and achieve most of the benefit that 
fully managed charging — the optimistic extreme in terms of utility control of EV charging — 
could obtain. 
 

 
Figure 11 Total (discounted) system cost breakdowns for the TEMPO case, across scenarios, 

from 2025 to 2050 
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Figure 12 Total (discounted) system cost breakdowns for the FA case, across scenarios, from 

2025 to 2050 

4.4 Regional Analysis of Emissions Impacts 
Section 4.1 detailed the avoided discounted emission costs due to smart-charging on a per-EV 
basis for the whole continental U.S. In this subsection, we decompose results by region, with 
the U.S. divided into the 13 regions depicted in Figure 4, in order to analyze how much the 
environmental benefits of EV smart-charging vary across the country and identify places where 
its climate change mitigation impact would be strongest. Figures Figure 13 and Figure 14 
depict the regional analysis of discounted per-EV avoided emission costs for each scenario 
relative to the UMC baseline in both the TEMPO and FA cases of EV adoption. Positive values 
indicate that the smart-charging and FMC scenarios reduce emission costs compared to the 
UMC scenario, whereas negative values indicate the opposite. In the TEMPO case as observed 
in Figure 13, taking California as an example, both the FMC and smart-charging strategies 
result in a reduction in emissions when compared against the UMC scenario. When evaluating 
the NSC-25 and DSC-25 scenarios, their performance in per-EV emissions avoidance is 
essentially identical, showing no discernible difference between the two. In the TEMPO case, 
the most significant reduction in emissions is observed in the FMC and smart-charging 
strategies when compared to the UMC base scenario, particularly in the Central and Midwest 
regions. Within the Central region, the FMC scenario demonstrates the highest avoidance of 
emission costs per EV ($33), followed closely by the DSC-25 scenario ($28). Conversely, in 
the Midwest region, NSC-25 and NSC-50 exhibit notable performance in emission reduction 
compared to all other scenarios (Figure 13). This outcome can be attributed to the preference 
for nighttime EV charging, which increases wind power consumption, thereby lowering 
emissions. Specifically, smart-charging strategies such as NSC-25, DSC-25, and DSC-50 show 
the lowest emission reduction in the Arkansas and Louisiana region, where the avoided 
emission costs are all below -$25 in these three scenarios when compared to the UMC baseline, 
as observed in Figure 13. This observation can be attributed to increased coal power 
consumption in the smart-charging strategies, consequently leading to higher emissions. In 
Texas, the avoided emissions costs per electric vehicle are positive in all scenarios except for 
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DSC-50, when compared to the UMC baseline. This phenomenon can be attributed to the high 
availability of wind power during nighttime, making it suitable for EV charging. 
 
In the TEMPO case, California does not exhibit significant differences between daytime and 
nighttime charging in terms of their impact. Daytime charging is favored in the Central region, 
owing to its high solar availability and lower EV demand. Nighttime charging is preferred in 
the Midwest and Texas regions due to the high availability of wind power. Smart-charging 
programs have a detrimental effect on electricity system emissions in the Arkansas-Louisiana 
region, largely due to their heavy reliance on coal. 
 
Further observations can be made from Figure 14, where it is evident that the avoided emission 
cost per EV for NSC-25 and NSC-50 night charging scenarios exceeds $60, while for day 
charging scenarios it hovers around $30. This can once again be attributed to the abundance of 
wind resources and the preference for night charging in the Texas region. In contrast, in the 
Central region, the avoided emission cost per EV in all scenarios surpasses $80 compared to 
the UMC baseline, with night charging being the preferred option, followed by FMC and 
daytime charging strategies. In New York, the avoided emission costs are negative in all 
scenarios except for NSC-25 (Figure 14). This can be attributed to the high demand for EVs in 
the region, necessitating the use of baseload power plants to meet this demand. Interestingly, 
with the FA case, the highest avoided emissions cost is observed in the Arkansas-Louisiana 
region, amounting to $156 and $179 in NSC-25 and NSC-50 scenarios, respectively (Figure 
14). Here, the dependence on coal power is offset by the availability of wind power during 
nighttime charging scenarios. Figure 14 indicates that the avoided emissions cost per electric 
vehicle (EV) exceeds $40 and $20 in all scenarios in the Southeast and Southwest regions, 
respectively. In both of these regions, nighttime charging demonstrates the highest avoided 
emission benefits, which can be attributed to the high availability of wind power, particularly 
since these regions are situated near the coastline. 
 
In conclusion, within the FA case, night charging emerges as the preferred option across most 
regions, showcasing positive avoided emission benefits. However, exceptions are noted in the 
New York region, as well as in the DSC-50 scenario in Arkansas and Louisiana, and the 
Mountain North region. 
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Figure 13 Regional analysis (discounted) of avoided emissions costs per EV for each 

scenario with the TEMPO case, vs. the UMC baseline scenario, from year 2025 to 2050 

 
 

Figure 14 Regional analysis (discounted) of avoided emissions costs per EV for each 
scenario with the FA case, vs. the UMC baseline scenario, from year 2025 to 2050 

 
4.5 Cost Savings by Region 
Section 0 provided a comprehensive overview of the discounted electricity system costs across 
all scenarios for the continental U.S. In this subsection, a regional analysis of avoided 
electricity system costs is presented for the FMC and smart-charging scenarios, with the UMC 
serving as the baseline, from 2025 to 2050. The values are discounted at a 5% discount rate for 
2023dollar values. Figure 15 and Figure 16 depict the regional breakdown of discounted 
avoided electricity costs per EV for each scenario within the TEMPO and FA cases, compared 
to the UMC benchmark. Examining Figure 15, it is apparent that in the TEMPO case, the FMC 
scenario yields the maximum avoided system costs per EV, reaching $1950 in the Central 
region when compared to the UMC baseline. Except for DSC-25, all other scenarios exhibit 
avoided system costs greater than $900, indicating that the strategic implementation of smart-
charging programs is likely to significantly reduce system costs in the long term. Additionally, 
the low number of EVs in the Central region, attributed to its low population, is another 
significant factor contributing to the high per-EV benefits observed. The lowest avoided system 
costs per EV compared to the UMC benchmark are observed in the New York region, ranging 
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from $130 to $300. Across all regions, the FMC scenario consistently demonstrates the highest 
benefits, which is understandable as the power supplier has complete control over EV charging 
demand. Furthermore, NSC-25 and NSC-50 outperform their DSC counterparts in all regions. 
This can be attributed to the preference for nighttime charging for EVs due to the addition of 
high wind power. During daytime, electricity demand peaks must be met by more costly 
generation units, making nighttime scheduling of EV charging the preferred option for power 
suppliers. Moreover, it is intriguing to note from Figure 15 that even in California, EV charging 
is preferred during nighttime. This preference can be attributed to high grid stress during the 
daytime from other loads, making nighttime charging a more viable option. Furthermore, 
California exhibits the highest total benefits. However, due to its high population and 
corresponding high number of EVs, the cost avoidance in California is not as pronounced 
compared to other regions. 
 

 
Figure 15 Regional analysis (discounted) of avoided electricity costs per EV for each 

scenario with the TEMPO case, vs. the UMC baseline scenario, from year 2025 to 2050 (in 
year 2023 USD) 

 
Furthermore, from Figure 16, it is evident that in the FA case, the Central region exhibits 
significant benefits in both FMC and smart-charging scenarios compared to the UMC baseline, 
followed by the Arkansas-Louisiana, Mid-Atlantic, and Mountain North regions. Conversely, 
the lowest cost avoidance in the various scenarios compared to the UMC baseline is observed 
in the Florida and Texas regions. Florida, being a coastal region with high availability of wind 
power, is utilized to its maximum potential in all scenarios, leading to high wind capacity 
additions across the board. Additionally, the high population of Texas, coupled with a 
corresponding high adoption of EVs, is another factor contributing to the lowest avoided 
system costs per EV in the region. 
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Figure 16 Regional analysis (discounted) of avoided electricity costs per EV for each 

scenario with the FA case, vs. the UMC baseline scenario, from year 2025 to 2050 (in year 
2023 USD) 

4.6 Comparison of the Costs and Benefits of EV Smart-Charging Programs 
In this section, a comprehensive comparison of costs versus benefits of the smart-charging 
programs is presented for the TEMPO and FA cases, as shown in Table 2 and Table 3, 
respectively. The net present value (NPV) of grid cost savings and environmental benefits 
relative to the UMC baseline are calculated assuming a 5% discount rate for both the TEMPO 
and FA cases. The grid-cost-savings benefit is the reduction in ReEDS’ objective (total 
discounted grid cost in 2025) relative to the UMC baseline plus the environmental benefits 
(value of lowered CH4, NOx, SO2, and CO2 emissions’ social costs, discounted to year 2025). 
As previously discussed, the social costs of CH4, NOx, SO2, and CO2 emissions are assumed 
to be $1500, $532, $200, and $51 per ton, respectively–in year 2025 (Environmental Protection 
Agency, 2023). The highest benefit compared to UMC is observed in the NSC-25 scenario, 
followed by the DSC-20, NSC-50, and DSC-50 scenarios. Tables 2 and 3 also show the NPV 
of benefits per participating EV per year with UMC as the baseline for both the TEMPO and 
FA cases. The NPV of benefits and costs per EV-year are calculated by dividing the NPV of 
benefits and costs by a discounted number of EVs; all values are discounted by 5% to the year 
2025. Discounting the number of EVs accounts results in a net present value of number of EVs 
in the year 2025, which accounts for the growth in the EV fleet and allows for the benefits and 
costs to be normalized over the changing number of EVs over 25 years. Additionally, as the 
size of the EV fleet grows, such as from the NSC-25 to the NSC-50 case, where the number of 
participating EVs doubles from the first case to the second, the benefits and costs per EV-year 
fall. Assuming that changes in other factors are negligible, the benefits and costs are spread out 
across a larger number of vehicles, resulting in a lower value per EV-year. 
 
Table 2 Net present benefits and costs in year 2025 dollars, both total and per participating 
EV per year, of the smart-charging strategies in the TEMPO EV adoption case 

 
Smart-

Charging 
Strategy 

Total 
Discounted 

Benefits with 
UMC as base ($ 

B) 

Total 
Discounted 
Costs ($ B) 

NPV of Benefits 
per SMC EV per 
year with UMC 

as Base ($) 

NPV of Costs per 
SMC EV per 

year ($) 

NSC-25 $184.56 B $4.14 B $6063.09 $136.08 
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NSC-50 $99.66 B $8.28 B $1636.97 $136.08 
DSC-25 $125.36 B $4.01 B $4118.30 $132.03 
DSC-50 $69.13 B $8.04 B $1135.60 $132.03 

 
The cost of the smart-charging programs is derived from the survey conducted by Dean and 
Kockelman (2024). One question in the survey asked: 
 
“What is the smallest one-time bill credit ($) you would accept to allow your local power 
company to modify your EV charging when plugged in?” 
 
According to this program, customers need to stay enrolled for at least one year. Customers are 
offered the option to enroll in either the nighttime or daytime SC program. The mean 
willingness to accept values reported by survey respondents for the nighttime and daytime SC 
programs are $100.38 and $96.33, respectively. Additionally, customers are given the option 
to choose a yearly enrollment incentive ranging from $0 to $20.  
 
Table 3 Net present benefits and costs in year 2025 dollars, both total and per participating 
EV per year, of the smart-charging strategies in the FA EV adoption case 

 
Smart-

Charging 
Strategy 

Total 
Discounted 

Benefits with 
UMC as base ($ 

B) 

Total 
Discounted 
Costs ($ B) 

NPV of Benefits 
per SMC EV per 
year with UMC 

as Base ($) 

NPV of Costs per 
SMC EV per 

year ($) 

NSC-25 $293.33 B $6.02 B $5496.20 $112.78 
NSC-50 $203.56 B $12.04 B $1907.04 $112.78 
DSC-25 $236.74 B $5.83 B $4435.73 $109.50 
DSC-50 $175.33 B $11.69 B $1642.62 $109.50 

 
Using the survey responses, the 50th percentile value, which is $13 for yearly enrollment, is 
chosen as the preferred expectation for continued enrollment on an annual basis. The costs are 
calculated by multiplying the mean value of daytime and night-time smart-charging for the 
years 2025 to 2050 at 5-year intervals. A customer who enrolls in 2025 is assumed to remain 
enrolled until 2029. In 2030, a new one-time credit is provided ($100.38 for nighttime and  
$96.33 for daytime), and for new enrollments every four years thereafter, the utility needs to 
pay the yearly enrollment incentive. This process continues until 2050. The NPV of costs in 
2025 dollars, calculated using a 5% discount rate, is shown in Tables 2 and 3. 
 
Again, the costs per EV per year are calculated using the discounted number of EVs in the year 
2025. For both cases, Tables 2 and 3 suggest that benefits will exceed costs, suggesting that 
SC programs require substantial utility expenditure, but the value of grid and emissions benefits 
outweigh the expenditure. Additionally, in both the TEMPO and FAS cases, the value of grid 
benefits is significantly larger than emissions benefits. Smart-charging programs provide the 
grid with flexibility to manage demand fluctuations arising from high demand and the 
variability associated with RE sources, and they offer long-term benefits by helping the grid 
effectively manage supply and demand in the electricity system. 
 
5 CONCLUSIONS AND POLICY IMPLICATIONS 
This study used ReEDS to anticipate light-duty EV charging’s impacts on U.S. power grid 
costs, emissions, and generation and capacity mixes over the period from 2025 through 2050. 
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ReEDS uses a least-cost approach to determine optimal capacity investments and grid 
operations based on technology costs and policy constraints. Different scenarios were designed 
to evaluate the impact of EV charging strategies on the U.S. electricity grid and its emissions. 
In the TEMPO and FA cases, utilizing the FMC strategy, relative to the UMC baseline, the 
U.S. grid is projected to achieve emission cost savings of $29 and $80 per EV, respectively. 
However, in the FA case, the highest emission cost savings of $246 per EV-year are realized 
in the NSC-25 scenario. A particularly notable (and intuitive) difference between a future 
electricity system with managed EV charging and one with unmanaged charging is that the 
latter would require significantly more stationary storage (e.g. batteries) in the grid. This is 
highlighted by the fact that in the TEMPO and FA cases, 38% and 49% more battery capacity 
is required in unmanaged charging compared to FMC, respectively. 
 
The analysis reveals several key findings. First, both the FMC and NSC scenarios result in 
notable increases in wind power generation, with significant reductions in coal installed 
capacity as compared to current levels in the year 2024. Additionally, the long-term adoption 
of EVs in the TEMPO scenario is expected to deliver an average emissions cost savings of 
approximately $187 per EV-year when implementing the FMC strategy. This is accompanied 
by projected system-wide power-cost reductions (ranging from 1.5% to 2%) when compared 
to the UMC baseline. Moreover, for California, there are minimal differences in avoided 
emissions costs per EV between the various scenarios. Regarding emissions benefits in the 
TEMPO case, daytime charging is favored in the Central region, while nighttime charging is 
preferred in the Midwest and Texas regions. However, smart-charging programs have a 
negative impact on electricity system emissions in the Arkansas-Louisiana region, largely due 
to the region’s heavy reliance on coal. In the FA case, night charging emerges as the preferred 
option across most regions, showcasing positive avoided emission benefits. Exceptions are 
noted in the New York region, as well as in the Arkansas-Louisiana and Mountain North 
regions under the DSC-50 scenario. Furthermore, the FMC scenario yields the maximum 
avoided system costs per EV, reaching $1950 in the Central region compared to the UMC base. 
Conversely, the lowest avoided system costs per EV compared to the UMC base are observed 
in the New York region, ranging from $130 to $300. Lastly, in the FA case, the Central region 
exhibits significant benefits in both FMC and smart-charging scenarios compared to the UMC 
base, followed by the Arkansas-Louisiana, Mid-Atlantic, and Mountain North regions. 
Conversely, the lowest cost avoidance in the various scenarios compared to the UMC base is 
observed in the Florida and Texas regions. 
 
This work suggests several policy implications for various stakeholders. Although smart-
charging strategies entail additional costs for grid planners, they are likely to prove invaluable 
in grid management. Planners should prioritize scheduling the majority of EV charging during 
nighttime to alleviate grid stress and subsequently minimize investment costs. Moreover, the 
adoption of smart-charging strategies can lead to substantial reductions in required battery 
capacity, thus playing a pivotal role in mitigating investment expenditures. As the proportion 
of intermittent solar and wind power in installed capacity is anticipated to rise, it becomes 
imperative to implement smart-charging strategies to effectively manage grid stress amidst the 
widespread adoption of EVs. These strategies serve to balance the variability inherent in 
renewable energy generation, ensuring grid stability and reliability. Regional variations in 
charging preferences underscore the importance of tailored planning. For instance, in terms of 
avoidance of emissions, while daytime charging is favored in the Central region, nighttime 
charging is preferred in Texas and the Midwest. By aligning charging schedules with regional 
preferences, system planners can optimize infrastructure deployment and scheduling. 
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Nighttime charging emerges as the preferred option for cost savings across the majority of 
regions in the long term, including California, despite its substantial solar capacity. This 
preference can be attributed to heightened grid stress during daytime periods from other loads, 
rendering nighttime charging a more economically viable option. Policymakers should 
prioritize policies and incentives that promote nighttime charging to capitalize on cost-saving 
opportunities and alleviate daytime grid stress. 
 
This study adds impetus to faster EV adoption with different smart-charging strategies. 
Allowing for variations in smart-charging practices over space (e.g., state by state) and time of 
year (and day of year, to match grid stress) will enable even greater benefits, anywhere such 
policies are pursued. The findings of the study should be considered within the context of 
certain limitations. The outcomes of this study must be interpreted with the understanding that 
current trends in EV investments and ongoing research and development could lead to 
significant improvements in EV efficiency in the future. Beyond not allowing different 
strategies by day of year and location or vehicle type, this study also does not anticipate new 
technologies (like fuel cells) or changes in miles per kWh (which can fall thanks to greater 
efficiency but also rise due to Americans’ long-term adoption of heavier or bigger vehicles). 
Nevertheless, this study offers significant insight to planners, policymakers, grid managers, 
and equipment manufacturers by providing important insights into the future of the U.S. 
electricity infrastructure and the role of electric vehicles within it. 
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