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ABSTRACT: Agent-based transportation models are increasingly used to simulate shared 

autonomous vehicle (SAV) fleet operations, enabling a growing understanding of SAVs’ 

operations, impacts, and opportunities. Such studies rely on a variety of assumptions and 

simplifications that can affect conclusions. This paper investigates the issue of network 

simplifications, since almost all studies have been conducted on coarsened networks, with many 

missing links and with aggregated addresses for passenger pickups and dropoffs (PUDOs). This 

issue is relevant for all travel demand modeling studies and especially pertinent for SAVs with 

dynamic ridesharing enabled, door to door. This work compares fleet operations in Austin, Texas 

using two networks and two sets of addresses for travel and trip ends across the region’s 6 
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counties. These are the Capital Area Metropolitan Planning Organization’s (CAMPO’s) planning 

network with addresses highly aggregated, vs OpenStreetMap’s (OSM’s) real network with 

actual addresses from OpenAddresses. The CAMPO network contains 40.6% of the OSM lane-

miles, and there is just one aggregated address point for every 23 actual addresses. Agent-based 

dynamic traffic assignment results (using the POLARIS model) suggest that while omitting links 

significantly affects network congestion, address aggregation does not have a substantial impact, 

provided the addresses are detailed enough at the level of census tract centroids supplemented 

with business establishment information. Relative to the variations in network congestion 

observed across the scenarios studied, SAV fleet performance remained surprisingly consistent, 

though VMT per SAV and empty VMT (%eVMT) were the fleet metrics most affected by 

omitted links in the network. 

  

Keywords: Transportation Network Simplification, Shared Autonomous Vehicle Simulations, 

Agent-based Modeling, Spatial Aggregation 
 

INTRODUCTION 

Future transport, of persons and freight, represents an open frontier, characterized by the 

emergence of innovative solutions enabled by information technologies and vehicle automation, 

as well as interest in environmental protection with access-centered planning (Dominković et al., 

2018; Hancock et al., 2019; Sumalee and Ho, 2018; von Schönfeld and Bertolini, 2017). In an 

effort to capture the complex interactions of emerging transportation systems, researchers have 

turned to agent-based modeling, which excels in simulating activity-based travel and operations 

of emerging mobility services. Agent-based modeling tools with dynamic traffic assignment 

(DTA) include MATSim (Axhausen et al., 2016), POLARIS (Auld et al., 2016), and 

SimMobility (Lu et al., 2015). Advances in these tools’ capabilities and computer performance 

enable researchers to conduct simulations with unprecedented levels of detail and scale. (For 

example, POLARIS can now handle 30+ million trips per 24-hr simulated day across realistic 

regional networks with endogenous activity scheduling and mode and route choices, mesoscopic 

traffic assignment, and congestion feedbacks (Gurumuthy et al., 2021).) 

 One especially exciting application of these tools is fleet operations of shared and fully 

automated or “autonomous” vehicles (SAVs). Along with surveys of potential SAV users, 

simulations provide major insights into how SAVs will impact human systems. Past papers 

emphasize travel choices, operational strategies, and environmental impacts (Li et al., 2021; 

Karolemeas et al., 2024). While several studies suggest that SAVs can improve transportation 

equity (Lee and Kockelman, 2022; Nahmias-Biran et al., 2021a & 2021b), research also suggests 

that uncontrolled implementation can increase vehicle-miles traveled (VMT) and worsen 

network congestion (Bischoff and Maciejewski, 2016; Oh et al., 2020 & 2021). Fortunately, 

dynamic ridesharing (DRS), geofencing, and roadway-demand management policies (like credit-

based congestion pricing) can mitigate many negative impacts (Fagnant and Kockelman, 2018; 

Gurumurthy et al., 2020; Simoni et al., 2019). Researchers have also studied the ways in which 

SAVs can support public transit use (Basu et al., 2018; Gurumurthy et al., 2020b; Huang et al., 

2021 & 2022; Oke et al., 2020; Shen et al., 2018; Wen et al., 2018). 

 While significant effort has been devoted to modeling the complex features of SAVs, 

more fundamental aspects of transportation simulations, which can influence outcomes, have 
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been largely overlooked. For example, many studies simulate only a small percentage of the total 

population and use simplified networks that only cover a fraction of the actual roads in a city. 

Although these simplifications save simulation/computer run time, their influence on fleet 

metrics (like number of person-trips served, wait times, average vehicle occupancies (AVOs), 

and shares of empty VMT (%eVMT)) has not been investigated, weakening our collective 

understanding and research conclusions (on fleet sizes needed, added VMT, emissions, 

profitability, etc.).  

While network (and origin-destination (OD)/address) abstraction issues are relevant in 

any transportation simulation, this paper focus on SAV operations while also examining network 

traffic patterns. This work compares simultaneous DTA and SAV fleet operation simulations in 

Austin using two different networks: the 6-county's typically modeled network (from the local 

metropolitan planning organization: CAMPO) and the region’s actual (OpenStreetMap) network 

(OpenStreetMap, 2024). It also applies two different sets of addresses: aggregated addresses 

from past studies and real addresses from OpenAddresses (2024). The simulation experiments 

are conducted using the POLARIS Transportation Simulation Tool. Developed by Argonne 

National Laboratory, POLARIS enables simulations of SAV operations across realistic networks 

and complex regions (Auld et al., 2016). Similar to other agent-based models, POLARIS 

empowers users to carefully trace trajectories of individual vehicles and travelers across 

interconnected networks (involving roadways, walkways, and transitway links). To our 

knowledge, this study is the first to use two networks (and addresses) from distinct sources for 

the same region or city and compare the results. The effects of network completeness and OD 

address details on SAV fleet operations are revealed through metrics, such as wait times, VMT, 

%eVMT, and vehicle occupancy; and the run times are compared. 

The structure of the paper is as follows: We first describe the problem of network 

completeness and OD address details in transportation modeling and examine simplifications 

taken in recent (<5 years) studies on agent-based simulations of SAVs. We then delve further 

into the problem of network completeness and OD address details in the context of SAV 

simulations and illustrate what a complete network looks like for several popular cities in 

literature. Next, we describe the experiment using POLARIS traffic simulation tool and analyze 

the effects of network completeness and OD address details on SAV fleet operations. Finally, we 

discuss the conclusions and future directions. 

 

LITERATURE REVIEW 

The origin of transportation modeling can be traced back to the 1950s with Chicago Area 

Transportation Study’s four-step travel model and Beckman’s solution to Wardrop’s user 

equilibrium (Weiner, 1997; Beckman, 1956). The second breakthrough in transportation 

modeling occurred in the 1990s with the advent of activity-based models and DTA. Since then, 

various dynamic network modeling software, such as DYNASMART (Jayakrishnan, 1994) and 

DynaMIT (Ben-Akiva et al., 1998), have been introduced to be used in conjunction with demand 

models. Today, there are various commercial traffic assignment software, such as Emme, Visum, 

and TransCAD, offering static traffic assignment, DTA, or both. Recent developments in 

transportation modeling have been focused on integrating demand and supply models into one 

platform. One of the earliest efforts was TRANSIMS, developed by the Los Alamos National 
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Laboratory (Smith et al., 1995). Popular comprehensive agent-based activity-based modeling 

systems used in cutting-edge research include MATSim (Axhausen et al., 2016), POLARIS 

(Auld et al., 2016), and SimMobility (Lu et al., 2015). 

 Early studies on transportation modeling relied on simple networks for validation before 

moving on to real networks. Some of these toy networks have become deeply engrained in the 

transportation research community as benchmarking networks. Perhaps the most notable 

example is the Sioux Falls network introduced by LeBlanc et al. (1975). Although several 

versions exist, the Sioux Falls network is generally comprised of just 24 nodes and 76 directed 

links. Although it is well-acknowledged that the Sioux Falls network is not a realistic 

representation, many recent studies on SAVs, particularly those on SAV operation algorithms, 

have still relied solely on this network (Hasanpour Jesri and Akbarpour Shirazi, 2022; 

Noruzoliaee and Zou et al., 2022; Rong et al., 2022; Tian et al., 2022; Xu et al., 2023; Zhou and 

Roncoli, 2022). The selection of the Sioux Falls network is often justified due to its well-

established status in the transportation field and low computational load, which makes it a 

reasonable choice for conducting initial analyses. However, adding realistic networks to the same 

studies could enhance the comprehensiveness and practicality of their applications. 

 As agent-based activity-based modeling systems have been introduced, refined, and 

adopted over the past several years, numerous studies on SAVs have been conducted using 

networks from various cities around the world. Table 1 shows a sample of recent studies on 

agent-based simulations of SAVs that contain at least some basic information about the network 

used. Unfortunately, many studies fail to mention basic information about the simulation, such as 

the number of links and nodes in the network or the ratio of the simulated population. It should 

be noted that depending on the platform, links can be either unidirectional or bidirectional, but 

the relative complexity of the network for the modeled area can still be understood from link and 

node counts. However, links can be of any length, so we recommend that authors provide the 

percentage of lane-miles to provide the best idea of network completeness. It can be observed 

from Table 1 that more researchers are obtaining complex networks from OpenStreetMap (OSM) 

in recent years. To the best of our knowledge, only Kamijo et al. (2022) has used both a 

complete network and population. However, their study was conducted in a small rural city with 

a population of only 47,000. Information on the number of address points or possible ODs is 

even more scarce. Among the works in Table 1, this information is provided only by Hunter et 

al. (2023) and Fakhrmoosavi et al. (2024), both using a network of Austin with 39,638 OD points 

for a population of approximately 2 million. Although some other studies mention the number of 

traffic analysis zones (TAZs), it is unclear whether the simulations use TAZ centroids or more 

disaggregate points as ODs. From the examination of recent literature, it is evident that 1) basic 

simulation properties in different studies are important in generalizing conclusions and should be 

stated, 2) there is a gap in conducting simulations with complete networks, addresses, and 

populations, and 3) the effects of using incomplete demand or supply need to be understood. 

 Few studies have investigated the effects of population downscaling in agent-based 

transportation simulations. Ben-Dor et al. (2021) studied this effect using a more detailed version 

of the Sioux Falls network with 334 links and 282 nodes in MATSim. By comparing average 

travel distances and durations, trip counts, and traffic volumes, they found that a minimum 

simulated population percentage of 25% is required to maintain the full population outcome. 
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Ratios between 10% and 25% led to biases in some statistics, and results from ratios below 10% 

proved to be unusable. Also using MATSim, Kagho et al. (2022) studied the effects of 

population downscaling for a ride-hailing service with DRS in Zurich, Switzerland, focusing on 

AVO and wait, travel, and detour times. They found that AVO does not asymptotically converge 

with respect to simulated population ratio and recommends using a 100% population or 

estimating the bias of results if using a partial population. Kamijo et al. (2022) conducted a 

similar study in Numata, Japan, and reported the simulated population ratio needed to keep 

biases of SAV operation metrics (including wait time, number of trips served, VMT, eVMT%, 

and profit margin) to less than 10%. They found that while SAVs without DRS can be reliably 

simulated with a population ratio of just 10%, the 60% is required for simulations with DRS. The 

results of Kagho et al. (2022) and Kamijo et al. (2022) are consistent with the findings of 

Fagnant and Kockelman (2018) and Zwick et al. (2021) in that the performance of a vehicle fleet 

with DRS improves with higher demand density. Kuehnel et al. (2023) proposed a solution to 

this problem called “flow-inflated selective sampling,” which calls for fully simulating modes 

sensitive to demand density, while downscaling demand for other modes and inflating their 

capacity consumption in the network. These studies suggest that results of SAV simulations with 

population downscaling, typically around 10%, are likely unreliable.
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TABLE 1 Recent studies on agent-based simulations of SAVs 

 

Paper City 
Simulation 

Platform 

Network 

Source 
#Links #Nodes 

Population 

% 

Area 

(sq. miles) 
Time Period 

Fakhrmoosavi et al. 

(2024) 
Austin, USA POLARIS MPO* 16,059 10,435 100% 5,300 24-h 

Huang et al. (2024) Austin, USA POLARIS – 22,863 17,231 100% 5,480 24-h 

Hunter et al. (2023) Austin, USA POLARIS MPO 16,059 10,435 100% 5,300 24-h 

Dean et al. (2022) Austin, USA POLARIS MPO 16,100 10,400 100% 5,300 24-h 

Gurumurthy and 

Kockelman (2022) 
Bloomington, IL, USA POLARIS – 4,000 2,500 

100% to 

2500% 
74 24-h 

Li et al. (2024) Brussels, Belgium MATSIM OSM – – 10% – 24-h 

Dean et al. (2024) Chicago, USA POLARIS MPO 48,400 35,800 – – 24-h 

Gurumurthy et al. (2021) Chicago, USA POLARIS MPO 31,000 19,000 100% 11,246 24-h 

Wang et al. (2020) Hague, Netherlands Anylogic – 836 510 – – 5:30-10:00 AM 

Ben-Dor et al. (2022) Jerusalem, Israel MATSim – 8500 – 30% 695 24-h 

Alisoltani et al. (2020) Lyon, France – OSM 27,000 11,310 – 31 6:00-10:00 AM 

Shafiei et al. (2023) Melbourne, Australia DynaMel – 55,719 24,502 – – 6:00-10:00 AM 

Yan et al. (2020) 

Minneapolis–Saint Paul, 

USA (7-counties) 
MATSim OSM 42,485 20,746 

2% & 5% 6,364 

24-h 
Minneapolis–Saint Paul, 

USA (Twin Cities) 
20% 245 

Kamijo et al. (2022) Numata, Japan MATSim OSM – – 2% to 100% 360 24-h 

Nguyen-Phuoc et al. 

(2023) 
Singapore SimMobility – 15,128 6,375 100% 283** 24-h 

Oh et al. (2021) Singapore SimMobility – 15,128 6,375 100% 283** 24-h 

Oh et al. (2020) Singapore SimMobility – 15,128 6,375 100% 283** 24-h 

Ishibashi and Akiyama 

(2022) 
Tokyo, Japan MATSim OSM 338,652 134,112 10% 208** 

AM commute 

trips 

Müller et al. (2021) Vienna, Austria MATSim OSM 156,000 71,000 12.5% 1,610 24-h 

Peer et al. (2024) Vienna, Austria MATSim OSM 156,000 – 12.5% 1,583 24-h 

Hörl et al. (2021) Zurich, Switzerland MATSim – 150,000 – 10% – 24-h 

* Metropolitan planning organization 

** Estimated based on information given in the cited paper
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NETWORK COMPLETENESS AND OD ADDRESS DETAILS IN SAV SIMULATIONS 

The use of incomplete networks is a key concern in generalizing the output of SAV simulations 

because most studies assume that SAVs will provide door-to-door (address point to address 

point) service, which means first-mile and last-mile travel on missing (or uncoded) minor 

roads/links. Additionally, simplified networks have the effect of aggregating pickup and drop-off 

(PUDO) positions of travelers, as it restricts PUDOs to the coded links, resulting in easier 

ridesharing. Both these features are likely to optimistically bias SAV simulation results. 

However, it is also plausible that the omitting of links artificially restricts routes, thereby 

increasing congestion. In this case, the resulting network condition can negatively impact SAV 

fleet operations. Figures 1 through 4 show the difference between simulated/coded and actual 

networks, for a range of examples repeatedly used in the published literature. 

 

 
Figure 1 (a) CAMPO’s Austin’s 6-County Network and (b) the Corresponding OSM 

Network 

 

 
Figure 2 (a) Alho et al.’s (2021) Singapore Network and (b) the Corresponding OSM 

Network 

(a)                                                                 (b) 

(a)                                                                          (b) 
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Figure 3 (a) Gurumurthy et al.’s (2020a) 20-County Chicago Network and (b) the 

Corresponding OSM Network 

 

 
Figure 4 (a) The Classic Sioux Falls Network (Figure from Xu et al., 2023) and (b) the 

Corresponding OSM Network 

 

(a)                                                                          (b) 

(a)                                                         (b) 
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The degree of OD aggregation is another important consideration. While traditional travel 

demand models have long relied on TAZs as the smallest spatial unit of analysis and used zone 

centroids as ODs (Miller, 2021), agent-based simulation tools like POLARIS offer a more 

granular approach by tracking trips to individual “locations” or “addresses” serving as ODs 

(Hunter et al., 2023). While this is a significant improvement over TAZ centroids, the simulated 

addresses can still act as aggregated PUDO points depending on the level of detail, impacting 

SAV simulation results. Figure 5 shows the 39,638 location points that have used in Austin’s 6-

county network, which are comprised of non-residential locations from CoStar (CoStar, 2024) 

and census block centroids for residential locations, versus the 905,925 actual addresses 

available on OpenAddresses (OA). Figures 6 and 7 zoom into the network as two contrasting 

examples on the extent of aggregation. Locations are well-covered in some parts of the 

downtown area (Figure 6), whereas in many areas, particularly on the periphery of the network, 

the number of generated addresses is markedly lower than the actual number (Figure 7). 

 

 
Figure 5. (a) Addresses used in Austin’s 6-county network and (b) actual addresses 

obtained from OpenAddresses (OA) 

 

(a)                                                                (b) 
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Figure 6. Simulated (red) vs Actual (blue) Addresses in Downtown Austin 

 

 

Figure 7. Simulated (red) vs Actual (blue) Addresses a Residential Area on the Periphery of 

the Network 

 

As mentioned, using a simulating a smaller population is a common simplification on the 

demand side. To this end, Kagho et al. (2022) and Kamijo et al. (2022) has illuminated on the 
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effects of simulated population rates on SAV fleet simulation outcomes, which is sensitive to 

demand density. However, a similar comparative study on the effects of the level of network 

completeness or address aggregation has not yet been conducted. Furthermore, while simulated 

population ratios can easily be changed with one parameter, networks require additional data and 

effort to alter and are often reused in multiple studies, so understanding the effect of network 

completeness and OD address details is paramount. 

Therefore, in this study, we compare the results of simulations involving SAVs in 

POLARIS using Austin 6-county region’s network from CAMPO and a network obtained from 

OSM (Figure 1). The CAMPO network is a well-established network that has been used in 

numerous previous studies (Fagnant and Kockelman, 2018; Hunter et al., 2023; Dean et al., 

2022; Duthie and Unnikrishnan, 2014; Hu et al., 2017; Perrine et al., 2015; Zhao and 

Kockelman; 2018). The OSM network of Austin has previously been used by Gurumurthy et al. 

(2019), Huang et al. (2021), and Liu et al. (2017). To our knowledge, this study is the first to use 

two networks from distinct sources for the same city. We also compared the results of 

simulations using aggregated addresses created from CoStar and census block data and real 

addresses obtained from OA (Figure 5). The aggregated addresses have been used by all existing 

studies of Austin using POLARIS. On the other hand, no study has used addresses from OA as 

possible OD points.  

 

SIMULATION FRAMEWORK 

This study uses the POLARIS transportation system simulation tool (Auld et al., 2016) to 

simulate SAV fleet operations in the Austin 6-county region. POLARIS is an agent-based 

activity-based modeling framework. It is able to create a synthetic population, simulate a full day 

of activities for that entire population, and track the movements of individual agents routed 

through a time-dependent dynamic traffic assignment model. POLARIS contains many features 

for simulating fleets of traffic network company (TNC) vehicles, including SAVs, and is able to 

output key metrics for understanding the performance of fleet operations, such as wait times, 

VMT, %eVMT, and AVO. In POLARIS, TNC vehicles are centrally controlled by a TNC 

operator, which gives assignment, operation, and repositioning instructions while considering 

network congestion. Based on the instructions from the fleet operator, each TNC vehicle 

maintains a task list, calculates optimal paths from the current location to the next operation 

location, and records trip details (Gurumurthy et al., 2020a). Additionally, POLARIS is the able 

to simulate DRS, a process by which a single vehicle can be arranged (in real time) to 

concurrently satisfy the travel demands of multiple travelers (Fagnant and Kockelman, 2018). In 

this model structure, incomplete networks might lead to missing some of the links taken by 

vehicles or altered trajectories, which needs to be investigated. 

 Typically, POLARIS simulations are run with a fully endogenous activity-based travel 

demand model that is calibrated to match known aggregate statistics in the base year. However, 

this study uses a fixed trip table across all scenarios to maintain the focus on SAV fleet 

operations and traffic simulations. To this end, a DTA iteration procedure is used for route 

choice convergence, where route choices of agents with satisfactory experienced travel times 

(using thresholds determined by the method of successive averages) are preserved between 

iterations - instead of rerouting them through the network using the time-dependent A* shortest 

path algorithm (Verbas et al., 2018). 
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CASE STUDY 

In this study, we evaluated the effects of network completeness and OD address details on the 

performance of an SAV fleet with 15,000 vehicles (approximately 1 SAV per 125 residents) 

using combinations of different networks and sets of addresses. The raw OSM network data for 

the Austin 6-county region was converted to the general modeling network specification 

(GMNS) format using an open-source Python package osm2gmns (Lu and Zhou, 2022), 

demonstrating the ease of obtaining a more complete network for any region. The GMNS 

network was then converted to the native POLARIS format and combined with other existing 

supply inputs for Austin (e.g., zones, locations, transit network) using a Python package 

developed in this study (Argonne National Laboratory, 2024). Signalized intersections were 

added to the network using information from OSM, and traffic signs were added using rule-

based procedure. 

Furthermore, in order to eliminate differences in local attributes of the CAMPO and OSM 

networks (lane counts, capacities, free-flow speeds, intersection/interchange geometries and 

controls, etc.), links in the OSM network that are in the original CAMPO network were extracted 

to create the OSM-based CAMPO network (Figure 8). Figure 8 shows the three networks 

compared in this study. Table 3 shows the numbers of links and nodes, lane-miles by facility 

type, and numbers of sign-controlled and signalized intersections for the three networks studied. 

Although the original and OSM-based CAMPO networks contain the same roads, as illustrated in 

Figure 8, there are significant discrepancies in lane-miles. The original CAMPO network has less 

freeway and expressway lane-miles (due to removing of auxiliary lanes) and less controlled 

intersections (since missing links are not considered in controls placement) than the OSM-based 

CAMPO network, but more lane-miles for other arterials because the MPO added lanes to adjust 

for missing links in their static model. Links from OSM are shorter, resulting in higher link and 

node counts in the OSM-based CAMPO network compared to the original CAMPO network. 

Future work using OSM networks could consider combining links to reduce network loading 

computations during DTA. The OSM-based CAMPO network contains 16,176 lane-miles, which 

is 40.6% of that of the OSM network. While the CAMPO network contains nearly all 

expressways and arterials, it excludes approximately 80% of local roads. 

The OA database for the Austin 6-county region contains nearly 1 million addresses, 

which is roughly 23 times that of the aggregated addresses used in past works (Figure 5). A fixed 

trip table (from Dean et al. (2023) but with 25% population) was used in this study instead of 

endogenously modeling travel demand, so each OA address was mapped to the nearest 

aggregated address, as illustrated in Figure 9, to randomly reassign trips ODs. In POLARIS, each 

location can be connected to up to four nearby links to avoid network entries that would create 

artificially high levels of congestion when using a simplified network. However, to avoid 

unequal effects of distance thresholds in different networks (based on link density), locations 

were only connected to the nearest link, as no gridlocks were observed. A total of five scenarios 

were examined in this study: the OSM-based CAMPO and full OSM networks, each tested with 

both aggregated and OA addresses, as well as the original CAMPO network with aggregated 

addresses. 
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Figure 8. (a) Original CAMPO Network, (b) OSM-Based CAMPO Network, and (c) Full 

OSM Network 

 

TABLE 2 Summary of Networks 

Network # Links* # Nodes 

Total 

Lane-

Miles 

Freeway + 

Expressway 

lane-miles 

Other 

Arterial 

Lane-

Miles 

Collector + 

Local Road 

Lane-Miles 

# Sign-

Controlled 

Intersections 

# Signalized 

Intersections 

Original 

CAMPO 
15,833 13,177 28,609 1,383 19,367 6,059 1,823 1,150 

OSM-

Based 

CAMPO 

39,650 33,052 16,176 2,159 8,106 5,910 5,802 1,856 

Full OSM 146,176 111,704 39,800 2,269 8,260 29,271 64,820 2,361 

* Links in POLARIS are bidirectional. 

 

 
Figure 9. OA Addresses (blue) Mapped to the Nearest Aggregated Address (red) for 

Reassigning Trip ODs 

 

         
     

(a)                                            (b)                                             (c) 
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RESULTS 

The results of the simulations are summarized in Table 3, showcasing key insights into traffic in 

the network, performance of SAVs, and run time. Additionally, the in-network curves showing 

the number of vehicles in the network in each minute of the simulation are shown in Figure 10. 

We conducted these simulations on the Texas Advanced Computing Center's Lonestar6 high-

performance computing system, utilizing 24 threads on 1 node equipped with 2x AMD EPYC 

7763 64-Core Processors and 256 GB (3200 MT/s) DDR4 RAM. The OSM-based CAMPO 

network had approximately 25% longer run times compared to the original CAMPO network, 

because the shorter OSM links and higher link and node counts mean more computation is 

required for traffic simulations. Adding the missing links to the OSM-based CAMPO network 

more than doubled the run time. Meanwhile, the number of addresses did not affect the run 

times. Each scenario was run until satisfactory route convergence was reached using the process 

outlined in the Simulation Framework section. 

 Compared to the OSM-based CAMPO network, the original CAMPO network had 7% 

lower vehicle-hours traveled (VHT) but similar VMT, due to inflated lane counts and fewer 

controlled intersections. In particular, the PM peak in Figure 10a is 25% higher in the OSM-

based CAMPO network compared to the original CAMPO network. On the other hand, the full 

OSM network exhibits a 3% lower VMT but a 3% higher VHT compared to the OSM-based 

CAMPO network. However, VMT and VHT on links that are present in the OSM-based 

CAMPO network decreased by 11% and 16%, respectively, indicating decongestion due to 

alternative paths. From Figure 10a, a significant portion the travel on the missing links appears to 

occur during the mid-day period between 10:30 AM and 5:00 PM. Despite differences in 

network congestions, SAV fleet performances were similar across the board. The SAV fleet 

performed slightly better in the full OSM network than in the OSM-based CAMPO network due 

to decongestion, with VMT per SAV, %eVMT, and median wait time falling 5%, 2.3 

percentage-points, and 0.5 minutes, respectively. Interestingly, %eVMT was the highest in the 

original CAMPO network, while trips were nearly 1 mile shorter compared to the OSM-derived 

networks. 

The effects of aggregating addresses proved to be minor. As shown in Figure 10b, using 

OA addresses resulted in virtually no change in the network loading characteristics. 

Consequently, SAV fleet performances were nearly identical as well. This suggests that the 

aggregated addresses derived from CoStar and census block data are sufficiently detailed for 

simulating passenger travel and SAV fleet operations. 

Overall, SAV fleet performance remained surprisingly consistent relative to the 

variations in the network congestion (due to network differences but not address differences) 

observed across the five scenarios studied. Each SAV was able to complete, on average, 28 trips 

with median wait times of 5 to 6 minutes. VMT per SAV and %eVMT exhibited the most 

variation across the scenarios, ranging roughly from 325 to 350 miles and 22% to 27%, 

respectively.

TABLE 3 Summary of SAV simulation results 

 
Scenario Network Metrics SAV Fleet Metrics Average 

Iteration 

Run 

Time 

(hh:mm) 

Network Addresses VMT VHT 
Trips/SAV 

per day 

VMT/SAV 

per day 

% 

eVMT 

Avg 

Trip 

Distance 

(miles) 

Revenue 

Distance 

AVO 

Median 

Wait 

Time 

(min) 

Aggregated 43.9 M 1.55 M 28.3 trips 348 mi 24.5% 7.8 mi 1.41 pax 5.6 min 4:18 
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OSM-Based 

CAMPO 
OA 43.9 M 1.58 M 28.1 347 24.9 7.7 1.43 5.7 4:20 

Full OSM 
Aggregated 42.4 M 1.60 M 28.5 331 22.2 7.9 1.37 5.1 9:15 

OA 42.7 M 1.59 M 28.2 326 22.3 7.7 1.39 5.2 9:23 

Original 

CAMPO 
Aggregated 43.5 M 1.44 M 28.2 330 26.7 7.0 1.38 5.4 3:31 

 

 
Figure 10. Number of Vehicles Active/Moving in the Network by Time of Day: (a) Across 

the 3 Distinct Networks (with aggregated addresses) and (b) Using Different Address Sets 

(for the OSM-based CAMPO and full OSM networks) 

 

CONCLUSIONS 

In this study, we evaluated the influence of network completeness and OD address details 

on SAV fleet operations using the POLARIS agent-based modeling platform. We simulated 

SAV fleet operations in Austin using two networks: Austin 6-county region’s network from 

CAMPO and a network extracted from OSM, and two sets of addresses: aggregated address 

points from past studies and real addresses from OA. The CAMPO network, once standardized 

to OSM link attributes, comprises 40.6% of the lane-miles in the OSM network, while each 

aggregated address point represents, on average, 23 actual addresses, though there is significant 

(a) 

(b) 
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spatial variation. The results show that omission/addition of links affects the network-wide 

traffic condition, while the set of addresses used had negligible impact. In contrast to the 

variations in the network congestion observed across scenarios, SAV fleet performance remained 

relatively consistent. Therefore, researchers can rest assured that their findings from SAV 

simulations hold as long as a network of reasonable realism is used (e.g., networks used by 

MPOs). Although adding missing links is an easy way to increase realism in agent-based 

simulations, adding all links to the network was not worthwhile in this case, as simulation run 

time doubled. While additional address points did not add to the computational load, the 

assumptions for trip distribution (like the one made in this paper) or additional land use data 

needed for trip generation may not be preferable.  

Although this study provides insights into the impact of network simplifications on SAV 

operations, there are certain limitations that warrant consideration. In this study, we did not 

calibrate the networks against observed traffic flow counts. However, differences in route 

choices revealed in this study when comparing an incomplete versus a complete network call 

into question the validity of calibrating to observed traffic flow counts when links are missing. 

Additionally, as mentioned above, the random redistribution of trip ODs from aggregated 

addresses to real ones may not accurately reflect the trip demand that would be generated 

considering the land use. However, this was done instead of generating trips so that the same 

fixed trip table could be used across all scenarios for the best comparison. Finally, only one fleet 

size was examined in this study. The differences across the scenarios may be more pronounced 

with a smaller fleet size, as fleet performance deteriorates rapidly if fleet size is not adequate. 
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