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ABSTRACT 24 

This research examines fleet profits throughout the year, considering variations in regional travel 25 
demand in the Dallas-Fort Worth region. Using data from INRIX's RITIS platform and the 2017 26 
National Household Travel Survey (NHTS), dynamic network-wide simulations were executed in 27 
POLARIS, an agent-based model, to mimic a hypothetical shared autonomous vehicle (SAV) 28 
demand year. The study assumed a 20% SAV mode split and a fleet size of 1 SAV per 40 persons 29 
in the region, incorporating external vehicle trip tables to generate realistic network congestion. 30 
Operating costs of SAVs were presumed to be $25 per day for ownership with an additional 50 31 
cents per VMT, with user fares of $1 per pick-up, $0.50 per (user-occupied) mile, and $0.25 per 32 
(user-occupied) minute. Profits varied from $74 to $124 per SAV per day, highest on busy 33 
workdays and decreasing by 30-40% on holidays or summer weekends. Fleet-wide profits per 34 
SAV varied between 24¢ on typical workdays while school was in session to 18¢ on typical 35 
holidays, suggesting notable variation in travel across different seasons. A 6% decrease in % 36 
eVMT on holidays compared to workdays/school days correlated with fewer person-trips per SAV 37 
and longer average trip lengths of 9.6 miles. Seasonal variations also emerged, with lower idle 38 
times of 46-54% and increased idle times on holidays or summer weekends (up to 64%). Demand 39 
per SAV was particularly high on workdays during fall and winter, suggesting that fleet size 40 
optimization to cater to suburban trips could be advantageous. On average, each SAV served up 41 
to 48.2 person-trips on busy workdays, which decreased by 40% on holidays or weekends. 42 
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 1 

MOTIVATION 2 

Seasonal variation in demand significantly affects the revenue and profitability of shared 3 
autonomous vehicle (SAV) operations and fleet performance metrics such as wait time, empty 4 
vehicle miles traveled (eVMT), idle time, and response time. To address these issues, fleet 5 
operators may need to implement price adjustments or dynamic pricing based on seasonality. SAV 6 
operators must be aware of changes in demand during different seasons and must address these 7 
changes to ensure efficient and profitable operations. Seasonal variations often overshadow the 8 
effect of calendar seasons on commuting trends and patterns. Many studies have analyzed ridership 9 
changes across weather seasons. However, dividing the year into four standard calendar seasons 10 
may not reveal all the ridership fluctuations caused by human activities. This study examines this 11 
issue by dividing the year into smaller, more consistent blocks and examining factors that impact 12 
the fluctuation of SAV ridership.  13 

 14 
Many studies have demonstrated, using models to explain and predict short-term and long-term 15 
demand, how demand for modes of transportation, such as bike-sharing systems, public transit, 16 
and taxis, varies with time and factors such as congestion, holidays, weather conditions, and 17 
special events (Changnon, 1996; Schaller, 2005). Faghih et al. (2020) used combined linear 18 
regression and time series models to analyze taxi demand using yellow taxicab data from New 19 
York. Findings indicated that temperature and precipitation were significant factors, as people 20 
opted to walk with increasing temperatures and ride taxis on rainy days. Lepage and Morency 21 
(2021) used generalized additive models developed using transactional data on workdays in 22 
Montreal, Canada to study how short-term fluctuations of travel demand resulting from seasonal 23 
events affected bike sharing and taxi, subway, and transit use. Results showed that rain decreases 24 
bike sharing, subway, and bus demand while increasing taxi demand. While wind significantly 25 
affected bike sharing, temperature significantly affected bike sharing and taxi service. Subway 26 
service disruptions increased demand for the three alternative modes studied, particularly for taxi 27 
ridership. Activities influenced demand for all four modes, although subway ridership was most 28 
affected. Shokoohyar et al. (2020) conducted a study in Philadelphia during the summer of 2018 29 
to investigate how weather conditions and intracity routes impact wait times, trip durations, and 30 
ride fares for Uber and Lyft. Using ride estimate data from Uber and Lyft developers’ Application 31 
Program Interfaces (API) and weather data from Yahoo weather API, they found that extreme 32 
weather conditions significantly affect ride-sourcing platforms, particularly through average 33 
pickup times and trip durations. TNC operators consider weather conditions and special events 34 
when adjusting the dynamics of their ride-sourcing services to offer more cost-effective services, 35 
such as pool rides, during high-demand periods. This increase in supply can improve riders’ 36 
experiences of pickup wait times while increasing TNC profits by generating more revenue.  37 
 38 
TNCs can also increase the supply of drivers during high-demand periods by predicting weather 39 
conditions and providing incentives and promotions in advance. The mismatch of supply and 40 
demand can result in increased idle time for vehicles and waiting time for passengers. Increasing 41 
SAV supply can reduce wait time, but too many unoccupied vehicles contribute to urban 42 
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congestion. By understanding SAV demand and using this information to better manage SAV 1 
operations, fleet owners can improve fleet performance metrics, revenue, and profits.  Jiao (2018) 2 
analyzed Uber’s surge pricing patterns during a special event using Uber’s developer API data 3 
from the Fourth of July weekend in 2015. The study examined how surge pricing multipliers were 4 
affected during periods of high demand, and findings indicated that, on all three nights, surge 5 
prices were not associated with ride wait time but were linked to ride request time. Such 6 
uncertainty in surge pricing mechanisms could pertain to SAV operations under varying demand 7 
in the future.  8 
 9 
Different methods have been used to collect data on seasonal variation. Moudon et al. (2020) 10 
argued that a potential limitation of data on seasonal variability of activities is the assumption that 11 
people carry out the same activities throughout the year without considering changes throughout 12 
different seasons. Failing to account for changes in daily activities during these periods could lead 13 
to overestimating the importance of primary activities in shaping travel decisions, resulting in 14 
inaccurate conclusions. Panel or longitudinal data describing variability over months of travel and 15 
activity behaviors are required to capture heterogeneous land use and travel patterns, seasonality, 16 
and weekends (Manout and Ciari, 2021). Fagnant and Kockelman (2018b) used data from the 2009 17 
NHTS travel data from the state of Texas to estimate seven typical demand days by simulating 18 
day-to-day variations in travel demand. This let them anticipate profitability for operators in 19 
settings with no speed limitations on the vehicles and at adoption levels below 10 percent of all 20 
personal trip-making in the region. Simulation results suggested that a private fleet operator paying 21 
$70,000 per new SAV could earn a 19% annual (long-term) return on investment while offering 22 
SAV services at $1.00 per mile for a non-shared trip (which is less than a third of Austin's average 23 
taxicab fare.  24 
 25 
Huang et al. (2022) investigated demand variation impacts during different days and seasons on 26 
SAV services in Austin, Texas, emphasizing shared rides and realistic travel party sizes. Using the 27 
POLARIS agent-based model and National Household Travel Survey data, the study incorporated 28 
daily and seasonal variations, which significantly influenced SAV fleet performance. This resulted 29 
in 10% higher service rates (number of requests accepted within 15 minutes), 5-minute lower 30 
journey times, 28% higher vehicle occupancy, 4-percentage points lower empty fleet VMT, and 31 
6.4% fewer person-trips served per SAV on weekends than weekdays. This study underlines the 32 
importance of including realistic travel demand variations and travel party sizes in SAV modeling 33 
to improve vehicle occupancy and address potential operational challenges. This paper uses NHTS 34 
scaled origin–destination (OD) matrices (disaggregated to trip tables) of light-duty vehicle trips 35 
generated from the RITIS platform for various days. The trip tables are used in POLARIS, an 36 
agent-based simulation software to mimic vehicle operations serving 7% demand using 20% SAV 37 
mode splits. This section aims to understand travel behaviors and fleet operator profitability 38 
regarding supplying SAVs to meet fluctuating travel demand. Such an approach is comparable to 39 
the one used by ride-hailing services such as Lyft, Uber, and Cabify, which adjust fares in real 40 
time using dynamic algorithms to balance the needs of drivers and riders, leading to a better 41 
balance between revenue generated and costs incurred. 42 
 43 
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POLARIS SIMULATION 1 

The agent-based activity-based travel demand simulator POLARIS simulates SAV fleet operations 2 
in the Dallas-Fort Worth region. (Auld et al. (2016) and Gurumurthy et al. (2020) explain many 3 
POLARIS details.) The framework employs agents to model individual passengers and vehicles, 4 
allowing for complex interactions and an approximation of travel behavior in transportation 5 
systems (Zhao and Malikopoulos, 2022). The framework utilizes travel demand models to simulate 6 
the daily weekday activities of agents, generating synthetic populations generated during model 7 
initialization, then calibrating and validated them (Beckman et al., 1996). Auld et al. (2011) used 8 
a non-compete hazard formulation to run itineraries, while a competing hazard formulation 9 
produced traveler trip purposes. Auld and Mohammadian's (2012) ADAPTS model informs core 10 
models, including a nested logit mode choice model, a multinomial logit destination choice model, 11 
and a hybrid random-utility random-regret minimization model for departure time. A time-12 
dependent dynamic traffic assignment method routes individual vehicles, while a mesoscopic 13 
traffic flow model based on the link transmission model captures link-level congestion (Auld et 14 
al., 2019; Verbas et al., 2018). Finally, a conflict analyzer is used to avoid conflicts and competition 15 
in activities that could lead to inconsistent travel plans. Gurumurthy et al.’s (2020) SAV module 16 
underwent tweaks to incorporate and implement party-size constraints for shared trips. Given the 17 
concentration on party-size constraints and the influence of seasonal shifts, the default DRS 18 
algorithm was utilized and adapted to ensure that the aggregation of number of parties on a shared 19 
trip does not exceed the vehicle's seating capacity (Yantao et al., 2023). 20 

RITIS Trips 21 

The RITIS platform generates OD matrices using the INRIX trip path dataset, which includes 22 
passenger trip data collected from connected light-duty vehicle fleets. It is worth noting that trips 23 
provided by the RITIS platform represent an estimated 7% of light-duty vehicle trips made daily 24 
within the DFW region during 2019 and 2020, as seen in Figure 1. The sampled dates used here 25 
are Sunday, April 28, 2019; Saturday, October 12, 2019; Friday, November 22, 2019; Tuesday, 26 
November 26, 2019; Thursday, November 28, 2019; Wednesday, November 6, 2019; Saturday, 27 
February 8, 2020; Monday, February 17, 2020; and Sunday, March 1, 2020. These dates were 28 
selected to create a variety of days of weeks and months in the 6 months of TxDOT-purchased 29 
INRIX data (which were solely fall and spring months, with no summer or winter months): March 30 
to May and September to November in 2019, February to April and September to November in 31 
2020, and February to April and September to November in 2021. 32 
 33 
The RITIS data rely on connected vehicles from manufacturers like GM and VW, between engine 34 
on/off periods. Spatial filters in the form of traffic analysis zone (TAZ) polygons were used to 35 
identify all available trips with pathways that included the 12-county DFW TAZs. Trips that met 36 
the designated pass-through and filter settings were retained for inclusion in the output OD 37 
matrices. Filter settings also enabled the extraction of trips with similar characteristics, such as 38 
trips arriving downtown on spring weekdays between 7 and 9 am.  39 
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 1 
Figure 1: Study Area Spatial Filter of the NCTCOG Jurisdiction from the RITIS Platform. 2 

The time stamps of each trip will be used to determine whether the trip occurred within the 3 
footprint of the spatial filter(s) during the specified period in the query. Regardless of the chosen 4 
spatial filters, the origins and destinations were reported based on the definitions in the setup. Table 5 
2 shows the share of light-duty vehicle trips sampled from RITIS by distance. November 6 showed 6 
the highest VMT for shorter trips (less than 1 mile to 5 miles), which could be attributed to several 7 
factors, such as weather conditions that encourage short-distance vehicle usage, a particular event 8 
happening in the area prompting short commutes, or a typical workday with usual commuting 9 
patterns. November 26 (two days before Thanksgiving Day) had the highest share of long-distance 10 
trips (greater than 25 miles) and the lowest share of short-distance trips, showing that people often 11 
travel long distances for holidays. A higher share of mid-range distance trips is seen in late winter 12 
and early spring (February and March), which could coincide with relatively mild weather 13 
conditions, possibly encouraging longer commutes, such as out-of-town visits or recreational trips.  14 

Table 1: Share of Light-Duty Vehicle Trips Sampled by Distance 15 

Date 
Sampled 11/26/2019 11/22/2019 10/3/2019 11/28/2019 11/6/2019 4/28/2019 3/1/2020 2/8/2020 2/17/2020 

Less 
than 1 
mile 

2.6% 2.8% 3.0% 2.9 3.2 2.9 2.7 2.7 2.8 

1–3 
miles 25.7 27.4 28.2 26.9 29 26.9 26.1 26.1 26.4 

3–5 
miles 17.7 18.5 18.6 18.6 18.7 18.6 18.7 18.1 17.8 

5–10 
miles 22.5 22 22 22.9 21.6 22.9 23.2 23 22.4 

Gurumurthy, Krishna Murthy
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10–25 
miles 22.4 20.8 20.5 20.4 20.1 20.4 21 21.3 22 

25–50 
miles 7.9 7.4 6.9 7 6.6 7 7.1 7.4 7.5 

Greater 
than 50 
miles 

1.1 1.2 0.9 1.4 0.7 1.4 1.2 1.3 1.0 

 1 

The distribution of light-duty vehicle trips generated from the RITIS platform across different time 2 
periods on sampled days of the year in 2019 and 2020 is shown in Figure 2. The periods include: 3 
Evening Off-Peak from 12 am to 6 am; AM Peak from 6 am to 9:30 am; Midday Off-Peak from 4 
9:31 am to 2:59 pm; PM Peak from 3 pm to 6:30 pm; and Late Night Off-Peak from 6:31 pm to 5 
11:59 pm. AM and PM Peak periods comprised 3.5 hours, while Off-Peak Periods comprised 6 6 
hours. Midday off-peaks and PM-peaks are busy on half the days sampled, and off-peaks comprise 7 
5.5 hours while the AM and PM peaks comprise 3.5 hours. 8 

  9 

Figure 2: Vehicle Trips Generated Across Ten Different Days of the Year. 10 

Ordinary Least Squares Analysis to Study Travel Demand Variation Across the Year 11 

NHTS 2017 data were analyzed using ordinary least squares (OLS) regression to determine the 12 
impact of several factors on the passenger miles traveled (PMT), vehicle miles traveled (VMT), 13 
and person-trips per capita, clarifying dates from which to sample light-duty vehicle trips on the 14 
RITIS platform. Table 2 presents the results of an OLS regression analysis of 2017 NHTS data 15 
filtered for DFW light-duty vehicle trips and examines the relationship between VMT, PMT, and 16 
person-trips per capita per day, as well as several other factors, including weekdays, months, 17 
holidays, whether a day is within two days of a holiday, and the number of sampled households 18 
and persons. The analysis shows that VMT and PMT per capita are highest on Saturdays while 19 
person-trips per capita per day are highest on Fridays. Regarding monthly variations, VMT and 20 
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PMT per capita per day are highest in June, whereas person-trips per capita per day reach their 1 
maximum in May.  2 

Travel patterns vary across weekdays and months depending on work schedules, school calendars, 3 
and seasonal weather and daylight hour fluctuations. Notably, findings reveal a significant 4 
reduction in VMT, PMT, and person-trips per capita per day on holidays and the two days 5 
preceding a holiday. This finding underscores the impact of holiday schedules on travel behavior, 6 
potentially indicating a decrease in work- and school-related travel and overall person-trips during 7 
these periods. It suggests that people may be inclined to stay home, engage in leisure activities, or 8 
travel shorter distances during holidays and surrounding days. Additionally, the analysis uncovers 9 
statistically significant associations between the number of households and persons sampled and 10 
per capita VMT, PMT, and person-trips per capita per day. Although these relationships are 11 
significant, their practical significance may be limited due to their small effect sizes. 12 

 13 

Table 2: OLS Model Results (N=365) 14 

  PMT/Capita/Day VMT/Capita/Day Person 
Trips/Capita/Day 

  Coef. t-stat Coef. t-stat Coef. t-stat 
Constant 55.33 15.35 11.73 8.52 3.76 10.75 

# Households sampled 0.01 4.62 0.00 4.40 0.00 2.57 
# Persons sampled (log) -6.97 -10.47 -1.25 -4.90 -0.23 -3.56 

Federal holiday -2.87 -2.47 -1.23 -2.77 -0.55 -4.95 
Within 2 days of fed. 

holiday -1.50 -2.43   -0.21 -3.65 

Monday     0.29 4.15 
Tuesday     0.37 5.22 

Wednesday     0.44 6.36 
Thursday 2.18 3.51   0.40 5.65 

Friday 2.03 3.29   0.47 6.63 
Saturday 3.14 5.12 0.70 3.19 0.27 4.20 

April 2.27 2.99 0.89 3.03 0.15 2.16 
May 3.75 4.82 2.20 7.30 0.39 5.31 
June 3.97 4.96 2.28 7.42 0.31 4.10 
July   0.46 1.67 0.00 0.00 

August 1.39 2.00 0.57 2.06 0.00 0.00 
September   0.65 2.34 0.00 0.00 

October 1.14 1.62 0.95 3.41 0.00 0.00 
Adj R-sq 0.4321 0.2614 0.3785 

 15 

Sundays in February, March, and July through January are the least busy days for person-trips per 16 
day. Mondays and Sundays have the lowest VMT and PMT per day. Saturdays in June are the 17 
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busiest days for PMT and VMT, while Fridays in May have the highest number of trips per person. 1 
The study does not find a statistically significant association between the number of households 2 
sampled and VMT per person, indicating that the number of households included in the dataset 3 
cannot account for the variation in VMT per person. 4 

Origin-Destination (OD) Matrix Disintegration and Simulated Travel Days Across 5 
the Year 6 

Output trip OD matrices were disintegrated via a parallelized procedure for selecting random 7 
locations within a specified zone while considering the land use type of each location. The method 8 
checks for nonresidential locations within the given zone, and if any such locations are available, 9 
the method randomly selects one. If no nonresidential locations are available, the method checks 10 
for available locations within the zone, regardless of land use type, and randomly selects one. If 11 
no locations are available in the specified zone, the method returns a unique value indicating no 12 
valid location exists. This disintegration method ensures realistic trips are generated by accounting 13 
for land use restrictions while ensuring that trips have uniformly allocated start-time distributions 14 
among the multitude of land uses.  15 

RITIS data also comprises a much larger sample size of trips, with about 1.3 million vehicle-trips 16 
per day starting and ending in the DFW region across the randomly sampled 10 dates. However, 17 
the trip data sample had clustered values around the mean VMT, as shown in Table 5, which 18 
necessitated using the NHTS dataset to scale the clustered RITIS values to get relatively evenly 19 
spaced values. An assumed population of 434,000 in 2019 was determined based on the 6-8% 20 
vehicle penetration rates and used to calculate values depicting average VMT and LDV trips per 21 
resident. A distance skim for the DFW region was generated in TransCAD and used to determine 22 
VMT between OD pairs in the sampled RITIS trip tables.   23 
  24 
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Table 3: RITIS Sample VMT Values 1 

RITIS Dates 
Sampled 

Total trips 
sampled from 
RITIS after 
(6-8% of trips 
sampled) 

Total VMT 
by LDVs /day 

Averag
e VMT 
by 
LDVs/
day/Tri
p 

Estimated 
VMT per 
day/Reside
nt 

RITIS LDV 
Trips/Day 
/Resident 

4/28/2019 1,645,800 10,206,851 9.34 23.52 3.79 

11/28/2019 1,092,988 11,013,024 12.12 25.38 2.52 

11/06/2019 1,512,502 13,381,590 8.69 30.83 3.49 

03/01/2020 1,539,812 13,439,015 9.31 30.97 3.55 

2/17/2020 1,679,208 14,277,163 9.44 32.9 3.87 

11/26/2019 1,443,444 14,451,363 9.72 33.3 3.33 

10/03/2019 908,775 14,708,369 8.94 33.89 2.09 

10/12/2019 1,486,986 14,779,127 9.96 34.05 3.43 

02/08/2020 1,607,490 15,315,363 9.39 35.29 3.7 

11/22/2019 1,484,170 15,728,693 9.37 36.24 3.42 

Average and St Dev of VMT/Day/Person 31.64 4.16 

The NHTS dataset had more detailed variation in VMT across the year at the expense of a 2 
relatively small sample size of over 200 vehicle trips occurring on any given day.  3 

Scaling of RITIS Trips Using NHTS Data 4 

The 2017 DFW NHTS dataset for person-trips for specific origins and destinations over the whole 5 
year (under uncapped travel distance) was filtered to retain days on which at least 30 respondents 6 
were surveyed, yielding 190 days. In the filtered dataset sorted by the VMT per capita column in 7 
ascending order, 10 clustered deciles, each containing 19 days, guided the selection of 10 middle 8 
days and VMT values. The 10 decile dates and VMT values shown in Table 3 were selected as the 9 
median value in each decile set, although some flexibility was maintained in this selection process 10 
to get a good mix of days of the year and week. These dates were mapped to similar days and 11 
months of the year among the 10 RITIS days chosen. In mapping the two sets of VMT values by 12 
date, caution was taken to separate weekdays, weekends/holidays, school days, and summer days 13 
to accurately compare days with similar travel patterns from both datasets. For instance, due to the 14 
absence of summer trips sampled from RITIS, high VMT NHTS days (like 8/12/2016) were used 15 
to scale RITIS VMT values sampled on workdays during the school season (11/22/2019). 16 
Conversely, a low VMT NHTS day, like the Thanksgiving holiday from NHTS, was used to scale 17 
the VMT from RITIS' Thanksgiving day.   18 



 10 

The Z-score was used to determine the scaling factor, which scales the corresponding RITIS 1 
day's average VMT value up or down. The standard deviation above the average VMT of the ten 2 
decile days' VMT was calculated as the Z-score with the following equation: 3 

 4 

𝑍𝑍 − 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =  
𝑉𝑉𝑉𝑉𝑉𝑉𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  − 𝜇𝜇𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁

𝜎𝜎𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁
 5 
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Table 4: NHTS Average VMT per Person/Day and Corresponding Z-score 7 

NHTS date 

Number 
of 
Persons 
Sampled 

VMT 
per  
person 
/day 

Deciles 

Number 
of SD 
from 
mean 
(Z-
score) 

Thursday, November 24, 2016 36 15.17 1st -1.00 
Monday, August 1, 2016 63 17.68 2nd -0.68 

Tuesday, January 3, 2017 48 19.07 3rd -0.50 
Friday, April 7, 2017 49 20.93 4th -0.27 

Wednesday, November 16, 2016 49 22.54 5th -0.06 
Saturday, September 3, 2016 33 23.84 6th 0.10 

Friday, August 12, 2016 67 25.31 7th 0.29 
Monday, February 13, 2017 40 26.93 8th 0.49 
Thursday, October 20, 2016 43 29.67 9th 0.84 

Thursday, May 26, 2016 32 32.98 10th 1.26 
 8 
In cases where RITIS trip tables contained cells with low (1 to 20) trip counts between OD pairs, 9 
simply rounding up or down the scaled trip-count integers resulted in significant errors. A random 10 
number generator for a standard uniform distribution was used to scale the low trip counts 11 
appropriately. For shorter trips, each trip represents a more significant proportion of the total. 12 
Therefore, the decision to round up or down can significantly impact the final count, such that 13 
rounding a trip count of 2 up to 3 represents a 50% increase, whereas rounding 200 up to 201 only 14 
represents a 0.5% increase. Rounding by the fractional part of the scaled RITIS VMT value as a 15 
probability impacts trip counts that are less than 20, especially single-digit figures. For instance, if 16 
the scaling factor required multiplying all trip counts by 1.2, one would round down to the closest 17 
integer 80% of the time and up 20% of the time. The 10 decile days from this process were used 18 
to create 10 POLARIS scenarios representing variations in demand and profit for a "typical year" 19 
of SAV fleet operations. The total scaled RITIS trips simulated in POLARIS with SAVs are shown 20 
in Table 4. The average scaled VMT per Resident across the 10 days of the year was 31.8 miles, 21 
while the standard deviation was 2.91.  22 
 23 



 11 

Table 5: Scaled RITIS VMT Values 1 

NHTS 
Decile 
Date 

RITIS 
Date 

Total 
Trips 
Sampled 
from 
RITIS 

Total 
Trips 
After 
Scaling 

RITIS  
VMT/day 
/Person 

Scaled  
VMT 
/Day 
/Resident 

Scaling 
Factor 

11/24/2016 11/28/2019 908,775 983,942 25.4 27.5 1.083 
08/01/2016 11/26/2019 1,486,986 1,286,171 33.3 28.8 0.865 
01/03/2017 11/26/2019 1,486,986 1,319,097 33.3 29.5 0.887 
04/07/2017 11/22/2019 1,679,208 1,414,079 36.2 30.5 0.842 
11/16/2016 11/06/2023 1,092,988 1,111,724 30.8 31.4 1.017 
09/03/2016 02/08/2023 1,607,490 1,460,871 35.3 32.1 0.909 
08/12/2016 11/22/2019 1,679,208 1,521,765 36.2 32.8 0.906 
2/13/2017 2/17/2023 1,512,502 1,549,767 32.9 33.7 1.025 
10/20/2016 10/03/2023 1,645,800 1,706,713 33.9 35.1 1.037 
5/26/2016 11/22/2019 1,679,208 1,708,793 36.2 36.9 1.018 

 2 
Understanding these day-to-day variations is crucial to maintaining fleet efficiency with fewer 3 
service disruptions, especially on peak demand days. In Figure 3, the ten days (green lines) reflect 4 
the average daily VMT per person within the inner five quintiles for the year (between the 50th and 5 
95th percentiles). The selection of these representative days provides a snapshot of the variations 6 
in travel patterns throughout the year, ranging from the most demanding days to days with average 7 
demand.  8 

 9 
Figure 3: Ten RITIS Days Selected for Simulation in POLARIS 10 
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RESULTS AND DISCUSSION 1 

A fleet size of 1 SAV for every 40 persons and 20% SAV mode splits was used to serve a 7% 2 
fixed demand, while external trips (medium and heavy-duty trips) from NCTCOG added 3 
congestion to the network. Various fleet performance metrics in Table 5 were analyzed, including 4 
total VMT, empty VMT (SAVs without occupants), revenue, and profit margins of the SAV fleet. 5 
This study implements a fixed fare of $1, $0.25 per minute, and $0.5 per mile, while operational 6 
costs consist of $0.50 per mile and $25 per day ownership costs. Daily profits range from a low of 7 
$1,027,905 to a high of $1,664,153, while profits per SAV per day span from $165 to $267. 8 
Revenue person-miles and daily revenue generated reveal a peak on May 26, a standard work and 9 
school day. Fleet utilization rates remain relatively consistent across all days, irrespective of 10 
demand. During the holiday season or the days leading up to it (like November 24, 2016), demand 11 
dips by 42% compared to regular business working days due to reduced movement as people take 12 
time off. Autonomous vehicles are also susceptible to encountering difficulties in winter, like 13 
snow-covered lane markers and subpar perception performance during active snow or rain. These 14 
challenges could compromise the efficiency of SAV operations and inflate operational costs during 15 
these months, mirrored in a 30 to 40% drop in profit per SAV compared to a typical workday in 16 
spring (with the school semester in progress). 17 
 18 

  19 
Figure 4: Profit per SAV per day 20 
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driven, ranges from $0.18 on a typical holiday to $0.24 on a workday in the winter and fall. 23 
Average peak hour wait time demonstrates considerable stability, between 4.1 to 4.5 minutes 24 
across all scenarios. This consistency points towards an effective operation that maintains a high 25 
service quality concerning wait times, irrespective of changes in fleet utilized and corresponding 26 
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and person-trips per SAV daily, where eVMT denotes the extent of deadheading trips within a 1 
TNC. It warrants mentioning that this analysis did not incorporate a time-dependent fleet, which 2 
is essential to simulate a realistic ride-sourcing scenario. The presumption of a consistent 20% 3 
SAV mode split derived from the regional population merely represents the actual ratio of person-4 
trips to SAVs. The observed decrease by 6% in % eVMT from 26.2 to 20.9% on typical holidays 5 
relative to the busier workdays/weekdays (or school semester days) correlates with the reduced 6 
person-trips per SAV, as well as with the longest average trip length of 9.6 miles/trip, typically 7 
within the holiday or two-day interval. Further, lower % idle times on typical workdays in the 8 
spring and fall seasons indicate the potential exhaustive utilization of the fleet, while a 2 to 5% 9 
increment in idle times on typical holidays or summer weekends suggests otherwise. The study 10 
also noted a higher-than-usual average SAV VMT per day, potentially owing to a significant 11 
increase in demand per SAV during regular workdays in fall and winter. Therefore, appropriately 12 
sizing the fleet to accommodate trips within the suburban region seems promising, given the 13 
volume of trips served within a relatively confined area. The SAV fleet served up to 48.2 person-14 
trips per SAV per day on average for the busier weekdays/workdays, while person-trips dwindled 15 
by 40% on holidays or summer weekends to 27.9 person-trips per SAV. Shares in demand served 16 
remained comparable at 97-99% from the assumption of a fixed fleet across all days. Higher 17 
demand densities should allow smaller fleets to serve trips, albeit with some loss in percent demand 18 
served. Increased fleet utilization does not automatically translate to augmented profits. A delicate 19 
equilibrium emerges where a larger fleet may escalate operation costs yet simultaneously present 20 
the opportunity to serve a higher demand, thus potentially generating more revenue. Conversely, 21 
a smaller fleet may curtail capital costs but limit revenues if it falls short of meeting all demand. 22 
These results indicate that a fleet of 1 SAV for 40 people – assuming market shares, fleet sizing, 23 
and cost decisions used – may be very realistic long-term but are too optimistic for near-term 24 
applications since AV technologies are currently expensive and only in pilot operation. 25 

 26 
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  1 
Figure 5: Person-trips per SAV and Empty VMT 2 
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Table 6: Operator Profit and Fleet Performance Metrics 1 

NHTS 
DATE 

05/26/201
6 10/20/2016 02/13/2017 08/12/201

6 
09/03/201

6 11/16/2016 04/07/2017 01/03/201
7 08/01/2016 11/24/2016 

RITIS 
DATE 

11/22/201
9 10/3/2019 02/17/2020 11/22/201

9 02/8/2020 11/6/2019 11/22/2019 11/26/201
9 11/26/2019 11/28/2019 

Average 
Peak Hour 
Wait Time 
(min) 

4.4 min 4.2 min 4.1 min 4.2 min 4.1 min 4.0 min 4.2 min 4.0 min 3.9 min 3.9 min 

Revenue 
Person 
Miles (in 
millions) 

7213 M mi 6881 M mi 6568 M mi 6428 M mi 6280 M 
mi 6115 M  mi 5997 M mi 5794 M 

mi 5625 M mi 5371 M mi 

Avg. Daily 
Trip Length 
(miles/trip/d
ay) 

6.9 
mi/trip/d 

6.5 
mi/trip/d 

6.9 
mi/trip/d 

6.8 
mi/trip/d 

7.0 
mi/trip/d 

6.2 
mi/trip/d 

6.9 
mi/trip/d 

7.2 
mi/trip/d 7.2 mi/trip/d 9.6 

mi/trip/d 

Avg. Daily 
VMT/SAV 
(miles/SAV/
day) 

528.8 
mi/SAV/d 

502.8 
mi/SAV/d 

479.4 
mi/SAV/d 

469.2 
mi/SAV/d 

458.4 
mi/SAV/d 

445.0 
mi/SAV/d 

440.6 
mi/SAV/d 

427.9 
mi/SAV/d 

410.2 
mi/SAV/d 

398.3 
mi/SAV/d 

Avg. Daily 
Person 
Trips per 
SAV 

48.2 
person 

trips/SAV/
day 

48.1 person 
trips/SAV/d

ay 

43.8 person 
trips/SAV/

day 

43.0 
person 

trips/SAV/
day 

41.4 
person 

trips/SAV
/day 

44.1 person 
trips/SAV/

day 

39.9 person 
trips/SAV/d

ay 

37.4 
person 

trips/SAV/
day 

36.4 person 
trips/SAV/d

ay 

27.9 person 
trips/SAV/d

ay 

Avg. % 
Daily Idle 
Time per 
SAV 

46.6% idle 48.4% idle 51.8% idle 53.0% idle 54.2% 
idle 54.4% idle 56.3% idle 58.4% idle 59.8% idle 64.0% idle 

% Evmt 26.3% 
eVMT 

26.4% 
eVMT 

25.3% 
eVMT 

25.4% 
eVMT 

24.9% 
eVMT 

26.0% 
eVMT 

25.0% 
eVMT 

24.2% 
eVMT 

23.7% 
eVMT 

20.9% 
eVMT 

Demand* 489K trips 
served/day 

486K trips 
served/day 

443K trips 
served/day 

435K trips 
served/day 

419K trips 
served/da

y 

445K trips 
served/day 

403K trips 
served/day 

378K trips 
served/day 

368K trips 
served/day 

283K trips 
served/day 

Daily 
Revenue 

$2,58M/da
y $2.49M/day $2.36M/da

y 
$2.30M/da

y 
$2.25M/d

ay 
$2,22M/da

y $2.14M/day $2.06M/da
y $1.95M/day $1.85/day 
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Generated 
($) 
Profit/Day 
($) $775K/day $761K/day $703K/day $676K/day $658K/da

y $669K/day $611K/day $567K/da
y $508K/day $445K/day 

Profit per 
SAV/Day ($) 

$124.0 per 
SAV/d 

$121.7 per 
SAV/d 

$112.5 per 
SAV/d 

$108.2 per 
SAV/d 

$105.2 per 
SAV/d 

$107.0 per 
SAV/d 

$97.8 per 
SAV/d 

$90.7 per 
SAV/d 

$81.2 per 
SAV/d 

$71.3 per 
SAV/d 

Profit per 
SAV/mile 
($) 

$0.23/mile $0.24/mile $0.23/mile $0.23/mile $0.23/mile $0.24/mile $0.22/mile $0.21/mile $0.20/mile $0.18/mile 

 1 
7% demand* 2 
Note: 98.2% to 99.5% of SAVs were used each day (6136 to 6219 SAVs). 3 
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CONCLUSIONS 1 
By effectively pooling multiple-person trips within the same vehicle to increase party sizing, % 2 
eVMT can potentially be maintained within 20.9% to 26.4% across different fleet sizes and 3 
operational scenarios. Based on the results, assuming the average revenue per SAV at $1 per trip-4 
mile (considerably lower than traditional taxi fares) and no competition, profitability ranges from 5 
$74 to $124 per SAV per day. These estimates suggest the potential for operators to achieve 6 
significant returns on their investments, assuming low fixed and variable costs. There could be 7 
potential for losses by the operator if the fleet operated within small geofences or had specific 8 
origins and destinations. This study reveals that the assumed 20% SAV mode split corresponds to 9 
the ratio of person-trips to SAVs. A 6% decrease in % eVMT on holidays compared to 10 
workdays/school days correlates with fewer person-trips per SAV and longer average trip lengths. 11 
Seasonal variations also emerge, with lower idle times indicating fleet saturation on typical 12 
workdays and increased idle times on holidays or summer weekends. Demand per SAV is 13 
particularly high on workdays during fall and winter, suggesting that fleet size optimization to 14 
cater to suburban trips could be advantageous. On average, each SAV served up to 48.2 person-15 
trips on busy workdays, which decreased by 40% on holidays or weekends. Demand served 16 
remained relatively stable, regardless of fleet size. However, increased utilization does not 17 
necessarily boost profits. An optimal balance must be found between larger fleets, which may raise 18 
operational costs but can also meet higher demands, and smaller fleets, which might reduce capital 19 
costs but limit potential revenues. 20 

Nonetheless, it is essential to remember that outcomes like VMT impacts and profits heavily 21 
depend on specific implementation details. Factors such as market penetration, fleet relocation 22 
strategies, trip pricing decisions, geofenced service areas, and maximum SAV occupancies will 23 
substantially impact these outcomes. Larger fleets, while capable of reducing unoccupied vehicle 24 
relocations and trimming operation costs, require higher capital investment. Smaller fleets might 25 
mitigate capital expenditure but could result in higher wait times and costs (Fagnant and 26 
Kockelman, 2018). Consequently, balancing fleet size, operational costs, and wait times becomes 27 
crucial to ensure efficient operations and service delivery. The assumptions in this study might 28 
accurately reflect long-term scenarios but could be too optimistic for near-term applications, given 29 
the high cost and current pilot status of autonomous vehicle technologies. 30 

In the SAV scale system envisioned here, one could anticipate reduced household vehicle 31 
ownership rates, decreased parking requirements, traveler cost savings, and substantial 32 
opportunities for operator profits. However, to avoid excess VMT scenarios inherent to SAV 33 
operations, it is vital to incentivize demand-responsive service opportunities appropriately. This 34 
study contributes case study applications, simulation techniques, and evaluation methods that can 35 
be used to understand and anticipate the potential impacts of SAV operations under varying 36 
demand on profitability. SAV operations provide an intricate interplay between various elements, 37 
each significantly influencing the overall profitability and efficiency of the fleet. Balancing these 38 
factors to maintain service quality while maximizing profit is complex and relies on strategic 39 
planning and adaptive management. Further research in this field will continue to unravel these 40 
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complexities, helping operators refine their strategies and better meet the challenges of this 1 
burgeoning field.  2 
 3 
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