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ABSTRACT

This research examines fleet profits throughout the year, considering variations in regional travel
demand in the Dallas-Fort Worth region. Using data from INRIX's RITIS platform and the 2017
National Household Travel Survey (NHTS), dynamic network-wide simulations were executed in
POLARIS, an agent-based model, to mimic a hypothetical shared autonomous vehicle (SAV)
demand year. The study assumed a 20% SAV mode split and a fleet size of 1 SAV per 40 persons
in the region, incorporating external vehicle trip tables to generate realistic network congestion.
Operating costs of SAVs were presumed to be $25 per day for ownership with an additional 50
cents per VMT, with user fares of §1 per pick-up, $0.50 per (user-occupied) mile, and $0.25 per
(user-occupied) minute. Profits varied from $74 to $124 per SAV per day, highest on busy
workdays and decreasing by 30-40% on holidays or summer weekends. Fleet-wide profits per
SAV varied between 24¢ on typical workdays while school was in session to 18¢ on typical
holidays, suggesting notable variation in travel across different seasons. A 6% decrease in %
eVMT on holidays compared to workdays/school days correlated with fewer person-trips per SAV
and longer average trip lengths of 9.6 miles. Seasonal variations also emerged, with lower idle
times of 46-54% and increased idle times on holidays or summer weekends (up to 64%). Demand
per SAV was particularly high on workdays during fall and winter, suggesting that fleet size
optimization to cater to suburban trips could be advantageous. On average, each SAV served up
to 48.2 person-trips on busy workdays, which decreased by 40% on holidays or weekends.
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MOTIVATION

Seasonal variation in demand significantly affects the revenue and profitability of shared
autonomous vehicle (SAV) operations and fleet performance metrics such as wait time, empty
vehicle miles traveled (eVMT), idle time, and response time. To address these issues, fleet
operators may need to implement price adjustments or dynamic pricing based on seasonality. SAV
operators must be aware of changes in demand during different seasons and must address these
changes to ensure efficient and profitable operations. Seasonal variations often overshadow the
effect of calendar seasons on commuting trends and patterns. Many studies have analyzed ridership
changes across weather seasons. However, dividing the year into four standard calendar seasons
may not reveal all the ridership fluctuations caused by human activities. This study examines this
issue by dividing the year into smaller, more consistent blocks and examining factors that impact
the fluctuation of SAV ridership.

Many studies have demonstrated, using models to explain and predict short-term and long-term
demand, how demand for modes of transportation, such as bike-sharing systems, public transit,
and taxis, varies with time and factors such as congestion, holidays, weather conditions, and
special events (Changnon, 1996; Schaller, 2005). Faghih et al. (2020) used combined linear
regression and time series models to analyze taxi demand using yellow taxicab data from New
York. Findings indicated that temperature and precipitation were significant factors, as people
opted to walk with increasing temperatures and ride taxis on rainy days. Lepage and Morency
(2021) used generalized additive models developed using transactional data on workdays in
Montreal, Canada to study how short-term fluctuations of travel demand resulting from seasonal
events affected bike sharing and taxi, subway, and transit use. Results showed that rain decreases
bike sharing, subway, and bus demand while increasing taxi demand. While wind significantly
affected bike sharing, temperature significantly affected bike sharing and taxi service. Subway
service disruptions increased demand for the three alternative modes studied, particularly for taxi
ridership. Activities influenced demand for all four modes, although subway ridership was most
affected. Shokoohyar et al. (2020) conducted a study in Philadelphia during the summer of 2018
to investigate how weather conditions and intracity routes impact wait times, trip durations, and
ride fares for Uber and Lyft. Using ride estimate data from Uber and Lyft developers’ Application
Program Interfaces (API) and weather data from Yahoo weather API, they found that extreme
weather conditions significantly affect ride-sourcing platforms, particularly through average
pickup times and trip durations. TNC operators consider weather conditions and special events
when adjusting the dynamics of their ride-sourcing services to offer more cost-effective services,
such as pool rides, during high-demand periods. This increase in supply can improve riders’
experiences of pickup wait times while increasing TNC profits by generating more revenue.

TNCs can also increase the supply of drivers during high-demand periods by predicting weather
conditions and providing incentives and promotions in advance. The mismatch of supply and
demand can result in increased idle time for vehicles and waiting time for passengers. Increasing
SAV supply can reduce wait time, but too many unoccupied vehicles contribute to urban
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congestion. By understanding SAV demand and using this information to better manage SAV
operations, fleet owners can improve fleet performance metrics, revenue, and profits. Jiao (2018)
analyzed Uber’s surge pricing patterns during a special event using Uber’s developer API data
from the Fourth of July weekend in 2015. The study examined how surge pricing multipliers were
affected during periods of high demand, and findings indicated that, on all three nights, surge
prices were not associated with ride wait time but were linked to ride request time. Such
uncertainty in surge pricing mechanisms could pertain to SAV operations under varying demand
in the future.

Different methods have been used to collect data on seasonal variation. Moudon et al. (2020)
argued that a potential limitation of data on seasonal variability of activities is the assumption that
people carry out the same activities throughout the year without considering changes throughout
different seasons. Failing to account for changes in daily activities during these periods could lead
to overestimating the importance of primary activities in shaping travel decisions, resulting in
inaccurate conclusions. Panel or longitudinal data describing variability over months of travel and
activity behaviors are required to capture heterogeneous land use and travel patterns, seasonality,
and weekends (Manout and Ciari, 2021). Fagnant and Kockelman (2018b) used data from the 2009
NHTS travel data from the state of Texas to estimate seven typical demand days by simulating
day-to-day variations in travel demand. This let them anticipate profitability for operators in
settings with no speed limitations on the vehicles and at adoption levels below 10 percent of all
personal trip-making in the region. Simulation results suggested that a private fleet operator paying
$70,000 per new SAV could earn a 19% annual (long-term) return on investment while offering
SAV services at $1.00 per mile for a non-shared trip (which is less than a third of Austin's average
taxicab fare.

Huang et al. (2022) investigated demand variation impacts during different days and seasons on
SAYV services in Austin, Texas, emphasizing shared rides and realistic travel party sizes. Using the
POLARIS agent-based model and National Household Travel Survey data, the study incorporated
daily and seasonal variations, which significantly influenced SAV fleet performance. This resulted
in 10% higher service rates (number of requests accepted within 15 minutes), 5S-minute lower
journey times, 28% higher vehicle occupancy, 4-percentage points lower empty fleet VMT, and
6.4% fewer person-trips served per SAV on weekends than weekdays. This study underlines the
importance of including realistic travel demand variations and travel party sizes in SAV modeling
to improve vehicle occupancy and address potential operational challenges. This paper uses NHTS
scaled origin—destination (OD) matrices (disaggregated to trip tables) of light-duty vehicle trips
generated from the RITIS platform for various days. The trip tables are used in POLARIS, an
agent-based simulation software to mimic vehicle operations serving 7% demand using 20% SAV
mode splits. This section aims to understand travel behaviors and fleet operator profitability
regarding supplying SAVs to meet fluctuating travel demand. Such an approach is comparable to
the one used by ride-hailing services such as Lyft, Uber, and Cabify, which adjust fares in real
time using dynamic algorithms to balance the needs of drivers and riders, leading to a better
balance between revenue generated and costs incurred.



POLARIS SIMULATION

The agent-based activity-based travel demand simulator POLARIS simulates SAV fleet operations
in the Dallas-Fort Worth region. (Auld et al. (2016) and Gurumurthy et al. (2020) explain many
POLARIS details.) The framework employs agents to model individual passengers and vehicles,
allowing for complex interactions and an approximation of travel behavior in transportation
systems (Zhao and Malikopoulos, 2022). The framework utilizes travel demand models to simulate
the daily weekday activities of agents, generating synthetic populations generated during model
initialization, then calibrating and validated them (Beckman et al., 1996). Auld et al. (2011) used
a non-compete hazard formulation to run itineraries, while a competing hazard formulation
produced traveler trip purposes. Auld and Mohammadian's (2012) ADAPTS model informs core
models, including a nested logit mode choice model, a multinomial logit destination choice model,
and a hybrid random-utility random-regret minimization model for departure time. A time-
dependent dynamic traffic assignment method routes individual vehicles, while a mesoscopic
traffic flow model based on the link transmission model captures link-level congestion (Auld et
al.,2019; Verbas et al., 2018). Finally, a conflict analyzer is used to avoid conflicts and competition
in activities that could lead to inconsistent travel plans. Gurumurthy et al.’s (2020) SAV module
underwent tweaks to incorporate and implement party-size constraints for shared trips. Given the
concentration on party-size constraints and the influence of seasonal shifts, the default DRS
algorithm was utilized and adapted to ensure that the aggregation of number of parties on a shared
trip does not exceed the vehicle's seating capacity (Yantao et al., 2023).

RITIS Trips

The RITIS platform generates OD matrices using the INRIX trip path dataset, which includes
passenger trip data collected from connected light-duty vehicle fleets. It is worth noting that trips
provided by the RITIS platform represent an estimated 7% of light-duty vehicle trips made daily
within the DFW region during 2019 and 2020, as seen in Figure 1. The sampled dates used here
are Sunday, April 28, 2019; Saturday, October 12, 2019; Friday, November 22, 2019; Tuesday,
November 26, 2019; Thursday, November 28, 2019; Wednesday, November 6, 2019; Saturday,
February 8, 2020; Monday, February 17, 2020; and Sunday, March 1, 2020. These dates were
selected to create a variety of days of weeks and months in the 6 months of TxDOT-purchased
INRIX data (which were solely fall and spring months, with no summer or winter months): March
to May and September to November in 2019, February to April and September to November in
2020, and February to April and September to November in 2021.

The RITIS data rely on connected vehicles from manufacturers like GM and VW, between engine
on/off periods. Spatial filters in the form of traffic analysis zone (TAZ) polygons were used to
identify all available trips with pathways that included the 12-county DFW TAZs. Trips that met
the designated pass-through and filter settings were retained for inclusion in the output OD
matrices. Filter settings also enabled the extraction of trips with similar characteristics, such as
trips arriving downtown on spring weekdays between 7 and 9 am.
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Figure 1: Study Area Spatial Filter of the NCTCOG Jurisdiction from the RITIS Platform.

The time stamps of each trip will be used to determine whether the trip occurred within the
footprint of the spatial filter(s) during the specified period in the query. Regardless of the chosen
spatial filters, the origins and destinations were reported based on the definitions in the setup. Table
2 shows the share of light-duty vehicle trips sampled from RITIS by distance. November 6 showed
the highest VMT for shorter trips (less than 1 mile to 5 miles), which could be attributed to several
factors, such as weather conditions that encourage short-distance vehicle usage, a particular event
happening in the area prompting short commutes, or a typical workday with usual commuting
patterns. November 26 (two days before Thanksgiving Day) had the highest share of long-distance
trips (greater than 25 miles) and the lowest share of short-distance trips, showing that people often
travel long distances for holidays. A higher share of mid-range distance trips is seen in late winter
and early spring (February and March), which could coincide with relatively mild weather
conditions, possibly encouraging longer commutes, such as out-of-town visits or recreational trips.

Table 1: Share of Light-Duty Vehicle Trips Sampled by Distance

Date
Sampled

11/26/2019

11/22/2019

10/3/2019

11/28/2019

11/6/2019

4/28/2019

3/1/2020

2/8/2020

2/17/2020

Less
than 1
mile

2.6%

2.8%

3.0%

2.9

3.2

2.9

2.7

2.7

2.8

1-3
miles

25.7

27.4

28.2

26.9

29

26.9

26.1

26.1

26.4

3-5
miles

17.7

18.5

18.6

18.6

18.7

18.6

18.7

18.1

17.8

5-10
miles

22.5

22

22

22.9

21.6

22.9

23.2

23

22.4
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10._25 224 20.8 20.5 20.4 20.1 20.4 21 21.3 22

miles

25._50 7.9 7.4 6.9 7 6.6 7 7.1 7.4 7.5

miles

Greater

than 50 1.1 1.2 0.9 1.4 0.7 1.4 1.2 1.3 1.0

miles
1
2 The distribution of light-duty vehicle trips generated from the RITIS platform across different time
3 periods on sampled days of the year in 2019 and 2020 is shown in Figure 2. The periods include:
4  Evening Off-Peak from 12 am to 6 am; AM Peak from 6 am to 9:30 am; Midday Off-Peak from
5 9:31 am to 2:59 pm; PM Peak from 3 pm to 6:30 pm; and Late Night Off-Peak from 6:31 pm to
6 11:59 pm. AM and PM Peak periods comprised 3.5 hours, while Oft-Peak Periods comprised 6
7  hours. Midday off-peaks and PM-peaks are busy on half the days sampled, and off-peaks comprise
8 5.5 hours while the AM and PM peaks comprise 3.5 hours.
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Figure 2: Vehicle Trips Generated Across Ten Different Days of the Year.

Ordinary Least Squares Analysis to Study Travel Demand Variation Across the Year

NHTS 2017 data were analyzed using ordinary least squares (OLS) regression to determine the
impact of several factors on the passenger miles traveled (PMT), vehicle miles traveled (VMT),
and person-trips per capita, clarifying dates from which to sample light-duty vehicle trips on the
RITIS platform. Table 2 presents the results of an OLS regression analysis of 2017 NHTS data
filtered for DFW light-duty vehicle trips and examines the relationship between VMT, PMT, and
person-trips per capita per day, as well as several other factors, including weekdays, months,
holidays, whether a day is within two days of a holiday, and the number of sampled households
and persons. The analysis shows that VMT and PMT per capita are highest on Saturdays while
person-trips per capita per day are highest on Fridays. Regarding monthly variations, VMT and
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PMT per capita per day are highest in June, whereas person-trips per capita per day reach their
maximum in May.

Travel patterns vary across weekdays and months depending on work schedules, school calendars,
and seasonal weather and daylight hour fluctuations. Notably, findings reveal a significant
reduction in VMT, PMT, and person-trips per capita per day on holidays and the two days
preceding a holiday. This finding underscores the impact of holiday schedules on travel behavior,
potentially indicating a decrease in jwork- and school-related travel and overall person-trips during
these periods. It suggests that people may be inclined to stay home, engage in leisure activities, or
travel shorter distances during holidays and surrounding days. Additionally, the analysis uncovers
statistically significant associations between the number of households and persons sampled and
per capita VMT, PMT, and person-trips per capita per day. Although these relationships are
significant, their practical significance may be limited due to their small effect sizes.

Table 2: OLS Model Results (N=365)

PMT/Capita/Day VMT/Capita/Day Trips/C apil::fl;(;l;
Coef. t-stat Coef. t-stat Coef. t-stat
Constant ~ 55.33 15.35 11.73 8.52 3.76 10.75
# Households sampled  0.01 4.62 0.00 4.40 0.00 2.57
# Persons sampled (log) -6.97 -10.47 -1.25 -4.90 -0.23 -3.56
Federal holiday  -2.87 -2.47 -1.23 -2.77 -0.55 -4.95
Within 2 days of fed. 555 43 2021 13,65
holiday

Monday 0.29 4.15

Tuesday 0.37 5.22

Wednesday 0.44 6.36
Thursday  2.18 3.51 0.40 5.65

Friday  2.03 3.29 0.47 6.63

Saturday  3.14 5.12 0.70 3.19 0.27 4.20

April  2.27 2.99 0.89 3.03 0.15 2.16

May  3.75 4.82 2.20 7.30 0.39 5.31

June  3.97 4.96 2.28 7.42 0.31 4.10

July 0.46 1.67 0.00 0.00

August  1.39 2.00 0.57 2.06 0.00 0.00

September 0.65 2.34 0.00 0.00

October  1.14 1.62 0.95 3.41 0.00 0.00

Adj R-sq 0.4321 0.2614 0.3785

Sundays in February, March, and July through January are the least busy days for person-trips per
day. Mondays and Sundays have the lowest VMT and PMT per day. Saturdays in June are the
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busiest days for PMT and VMT, while Fridays in May have the highest number of trips per person.
The study does not find a statistically significant association between the number of households
sampled and VMT per person, indicating that the number of households included in the dataset
cannot account for the variation in VMT per person.

Origin-Destination (OD) Matrix Disintegration and Simulated Travel Days Across
the Year

Output trip OD matrices were disintegrated via a parallelized procedure for selecting random
locations within a specified zone while considering the land use type of each location. The method
checks for nonresidential locations within the given zone, and if any such locations are available,
the method randomly selects one. If no nonresidential locations are available, the method checks
for available locations within the zone, regardless of land use type, and randomly selects one. If
no locations are available in the specified zone, the method returns a unique value indicating no
valid location exists. This disintegration method ensures realistic trips are generated by accounting
for land use restrictions while ensuring that trips have uniformly allocated start-time distributions
among the multitude of land uses.

RITIS data also comprises a much larger sample size of trips, with about 1.3 million vehicle-trips
per day starting and ending in the DFW region across the randomly sampled 10 dates. However,
the trip data sample had clustered values around the mean VMT, as shown in Table 5, which
necessitated using the NHTS dataset to scale the clustered RITIS values to get relatively evenly
spaced values. An assumed population of 434,000 in 2019 was determined based on the 6-8%
vehicle penetration rates and used to calculate values depicting average VMT and LDV trips per
resident. A distance skim for the DFW region was generated in TransCAD and used to determine
VMT between OD pairs in the sampled RITIS trip tables.



(O8]

00 3N n K

11
12
13
14
15
16
17
18

Table 3: RITIS Sample VMT Values

Total trips Averag
e VMT | Estimated
RITIS Dates | S2mPIed from | oMt | by VMTper | UTISLDV
RITIS after : Trips/Day
Sampled . by LDVs /day | LDVs/ | day/Reside )
(6-8% of trips . /Resident
day/Tri | nt
sampled)
p
4/28/2019 1,645,800 10,206,851 9.34 23.52 3.79
11/28/2019 1,092,988 11,013,024 12.12 25.38 2.52
11/06/2019 1,512,502 13,381,590 8.69 30.83 3.49
03/01/2020 1,539,812 13,439,015 9.31 30.97 3.55
2/17/2020 1,679,208 14,277,163 9.44 32.9 3.87
11/26/2019 1,443,444 14,451,363 9.72 333 3.33
10/03/2019 908,775 14,708,369 8.94 33.89 2.09
10/12/2019 1,486,986 14,779,127 9.96 34.05 3.43
02/08/2020 1,607,490 15,315,363 9.39 35.29 3.7
11/22/2019 1,484,170 15,728,693 9.37 36.24 3.42
Average and St Dev of VMT/Day/Person 31.64 4.16

The NHTS dataset had more detailed variation in VMT across the year at the expense of a
relatively small sample size of over 200 vehicle trips occurring on any given day.

Scaling of RITIS Trips Using NHTS Data

The 2017 DFW NHTS dataset for person-trips for specific origins and destinations over the whole
year (under uncapped travel distance) was filtered to retain days on which at least 30 respondents
were surveyed, yielding 190 days. In the filtered dataset sorted by the VMT per capita column in
ascending order, 10 clustered deciles, each containing 19 days, guided the selection of 10 middle
days and VMT values. The 10 decile dates and VMT values shown in Table 3 were selected as the
median value in each decile set, although some flexibility was maintained in this selection process
to get a good mix of days of the year and week. These dates were mapped to similar days and
months of the year among the 10 RITIS days chosen. In mapping the two sets of VMT values by
date, caution was taken to separate weekdays, weekends/holidays, school days, and summer days
to accurately compare days with similar travel patterns from both datasets. For instance, due to the
absence of summer trips sampled from RITIS, high VMT NHTS days (like 8/12/2016) were used
to scale RITIS VMT values sampled on workdays during the school season (11/22/2019).
Conversely, alow VMT NHTS day, like the Thanksgiving holiday from NHTS, was used to scale
the VMT from RITIS' Thanksgiving day.
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The Z-score was used to determine the scaling factor, which scales the corresponding RITIS
day's average VMT value up or down. The standard deviation above the average VMT of the ten
decile days' VMT was calculated as the Z-score with the following equation:

VMTgecite — UNHTS
ONHTS

Z — score =

Table 4: NHTS Average VMT per Person/Day and Corresponding Z-score

Number
Number | VMT of SD
NHTS date of per Deciles from
Persons | person mean
Sampled | /day (Zz-
score)
Thursday, November 24, 2016 36 15.17 1 -1.00
Monday, August 1, 2016 63 17.68 2nd -0.68
Tuesday, January 3, 2017 48 19.07 3rd -0.50
Friday, April 7, 2017 49 20.93 4th -0.27
Wednesday, November 16, 2016 49 22.54 5th -0.06
Saturday, September 3, 2016 33 23.84 6th 0.10
Friday, August 12, 2016 67 25.31 7th 0.29
Monday, February 13, 2017 40 26.93 8th 0.49
Thursday, October 20, 2016 43 29.67 9th 0.84
Thursday, May 26, 2016 32 32.98 10th 1.26

In cases where RITIS trip tables contained cells with low (1 to 20) trip counts between OD pairs,
simply rounding up or down the scaled trip-count integers resulted in significant errors. A random
number generator for a standard uniform distribution was used to scale the low trip counts
appropriately. For shorter trips, each trip represents a more significant proportion of the total.
Therefore, the decision to round up or down can significantly impact the final count, such that
rounding a trip count of 2 up to 3 represents a 50% increase, whereas rounding 200 up to 201 only
represents a 0.5% increase. Rounding by the fractional part of the scaled RITIS VMT value as a
probability impacts trip counts that are less than 20, especially single-digit figures. For instance, if
the scaling factor required multiplying all trip counts by 1.2, one would round down to the closest
integer 80% of the time and up 20% of the time. The 10 decile days from this process were used
to create 10 POLARIS scenarios representing variations in demand and profit for a "typical year"
of SAV fleet operations. The total scaled RITIS trips simulated in POLARIS with SAVs are shown
in Table 4. The average scaled VMT per Resident across the 10 days of the year was 31.8 miles,
while the standard deviation was 2.91.

10
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Table 5: Scaled RITIS VMT Values

NHTS RITIS Total Total RITIS Scaled Scaling
Decile Date Trips Trips VMT/day | VMT Factor
Date Sampled | After /Person /Day

from Scaling /Resident

RITIS
11/24/2016 | 11/28/2019 | 908,775 | 983,942 | 25.4 27.5 1.083
08/01/2016 | 11/26/2019 | 1,486,986 | 1,286,171 | 33.3 28.8 0.865
01/03/2017 | 11/26/2019 | 1,486,986 | 1,319,097 | 33.3 29.5 0.887
04/07/2017 | 11/22/2019 | 1,679,208 | 1,414,079 | 36.2 30.5 0.842
11/16/2016 | 11/06/2023 | 1,092,988 | 1,111,724 | 30.8 31.4 1.017
09/03/2016 | 02/08/2023 | 1,607,490 | 1,460,871 | 35.3 32.1 0.909
08/12/2016 | 11/22/2019 | 1,679,208 | 1,521,765 | 36.2 32.8 0.906
2/13/2017 | 2/17/2023 | 1,512,502 | 1,549,767 | 32.9 33.7 1.025
10/20/2016 | 10/03/2023 | 1,645,800 | 1,706,713 | 33.9 35.1 1.037
5/26/2016 | 11/22/2019 | 1,679,208 | 1,708,793 | 36.2 36.9 1.018

Understanding these day-to-day variations is crucial to maintaining fleet efficiency with fewer
service disruptions, especially on peak demand days. In Figure 3, the ten days (green lines) reflect
the average daily VMT per person within the inner five quintiles for the year (between the 50" and
95" percentiles). The selection of these representative days provides a snapshot of the variations
in travel patterns throughout the year, ranging from the most demanding days to days with average
demand.
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Figure 3: Ten RITIS Days Selected for Simulation in POLARIS
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RESULTS AND DISCUSSION

A fleet size of 1 SAV for every 40 persons and 20% SAV mode splits was used to serve a 7%
fixed demand, while external trips (medium and heavy-duty trips) from NCTCOG added
congestion to the network. Various fleet performance metrics in Table 5 were analyzed, including
total VMT, empty VMT (SAVs without occupants), revenue, and profit margins of the SAV fleet.
This study implements a fixed fare of $1, $0.25 per minute, and $0.5 per mile, while operational
costs consist of $0.50 per mile and $25 per day ownership costs. Daily profits range from a low of
$1,027,905 to a high of $1,664,153, while profits per SAV per day span from $165 to $267.
Revenue person-miles and daily revenue generated reveal a peak on May 26, a standard work and
school day. Fleet utilization rates remain relatively consistent across all days, irrespective of
demand. During the holiday season or the days leading up to it (like November 24, 2016), demand
dips by 42% compared to regular business working days due to reduced movement as people take
time off. Autonomous vehicles are also susceptible to encountering difficulties in winter, like
snow-covered lane markers and subpar perception performance during active snow or rain. These
challenges could compromise the efficiency of SAV operations and inflate operational costs during
these months, mirrored in a 30 to 40% drop in profit per SAV compared to a typical workday in
spring (with the school semester in progress).
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Figure 4: Profit per SAV per day

Daily revenue generated and costs incurred demonstrate considerable variations, directly
impacting daily profit and profit per SAV. Profit per mile, the financial efficiency of each mile
driven, ranges from $0.18 on a typical holiday to $0.24 on a workday in the winter and fall.
Average peak hour wait time demonstrates considerable stability, between 4.1 to 4.5 minutes
across all scenarios. This consistency points towards an effective operation that maintains a high
service quality concerning wait times, irrespective of changes in fleet utilized and corresponding
variations in demand. Figure 5 presents a bar chart showcasing the relationship between eVMT

12



0O 1 ON L W=

DN DN NN DN DN = = e s e e e e e
AN P WD~ OOV JIONWUN P WND—~O O

and person-trips per SAV daily, where eVMT denotes the extent of deadheading trips within a
TNC. It warrants mentioning that this analysis did not incorporate a time-dependent fleet, which
is essential to simulate a realistic ride-sourcing scenario. The presumption of a consistent 20%
SAV mode split derived from the regional population merely represents the actual ratio of person-
trips to SAVs. The observed decrease by 6% in % eVMT from 26.2 to 20.9% on typical holidays
relative to the busier workdays/weekdays (or school semester days) correlates with the reduced
person-trips per SAV, as well as with the longest average trip length of 9.6 miles/trip, typically
within the holiday or two-day interval. Further, lower % idle times on typical workdays in the
spring and fall seasons indicate the potential exhaustive utilization of the fleet, while a 2 to 5%
increment in idle times on typical holidays or summer weekends suggests otherwise. The study
also noted a higher-than-usual average SAV VMT per day, potentially owing to a significant
increase in demand per SAV during regular workdays in fall and winter. Therefore, appropriately
sizing the fleet to accommodate trips within the suburban region seems promising, given the
volume of trips served within a relatively confined area. The SAV fleet served up to 48.2 person-
trips per SAV per day on average for the busier weekdays/workdays, while person-trips dwindled
by 40% on holidays or summer weekends to 27.9 person-trips per SAV. Shares in demand served
remained comparable at 97-99% from the assumption of a fixed fleet across all days. Higher
demand densities should allow smaller fleets to serve trips, albeit with some loss in percent demand
served. Increased fleet utilization does not automatically translate to augmented profits. A delicate
equilibrium emerges where a larger fleet may escalate operation costs yet simultaneously present
the opportunity to serve a higher demand, thus potentially generating more revenue. Conversely,
a smaller fleet may curtail capital costs but limit revenues if it falls short of meeting all demand.
These results indicate that a fleet of 1 SAV for 40 people — assuming market shares, fleet sizing,
and cost decisions used — may be very realistic long-term but are too optimistic for near-term
applications since AV technologies are currently expensive and only in pilot operation.
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Table 6: Operator Profit and Fleet Performance Metrics

NHTS 05/26/201 10/20/2016 | 02/13/2017 08/12/201 | 09/03/201 11/16/2016 | 04/07/2017 01/03/201 08/01/2016 | 11/24/2016

DATE 6 6 6 7

RITIS 17227201 10/3/2019 | 02/17/2020 17227201 02/8/2020 | 11/6/2019 | 11/22/2019 11/26/201 11/26/2019 | 11/28/2019

DATE 9 9 9

Average

Peak Hour . . . . . . . . . .

I 4.4 min 4.2 min 4.1 min 4.2 min 4.1 min 4.0 min 4.2 min 4.0 min 3.9 min 3.9 min

Wait Time

(min)

Revenue

Person 7213Mmi | 6881 Mmi | 6568 Mmi | 6428 Mmi | O250M 1 g1isM mi | 5997 Mmi | 04 M | S625Mmi | 5371 M mi

Miles (in mi mi

millions)

Avg. Daily

Trip Length 6.9 6.5 6.9 6.8 7.0 6.2 6.9 7.2 7.2 mitrip/d 9.6

(miles/trip/d mi/trip/d mi/trip/d mi/trip/d mi/trip/d mi/trip/d mi/trip/d mi/trip/d mi/trip/d ' mi/trip/d

ay)

Avg. Daily

VMT/SAV 528.8 502.8 479.4 469.2 458.4 445.0 440.6 4279 410.2 398.3

(miles/SAV/ | mi/SAV/d | mi/SAV/d | mi/SAV/d | mi/SAV/d | mi/SAV/d | mi/SAV/d | mi/SAV/d | mi/SAV/d | mi/SAV/d mi/SAV/d

day)

?:iogally pifs'(z)n 48.1 person | 43.8 person pifs'gn pzrls.jn 44.1 person | 39.9 person pzr7s.jn 36.4 person | 27.9 person

Trips per trips/SAV/ trips/SAV/d | trips/SAV/ trips/SAV/ | trips/SAV trips/SAV/ | trips/SAV/d rips/SAV/ trips/SAV/d | trips/SAV/d

SAV day ay day day /day day ay day ay ay

Avg. %

Dailyldle =1 ¢ 606 idle | 48.4%idle | 51.8%idle | 53.0%idle | 727 | 54.4%idle | 56.3%idle | 58.4% idle | 59.8%idle | 64.0% idle

Time per idle

SAV

% Evmt 26.3% 26.4% 25.3% 25.4% 24.9% 26.0% 25.0% 24.2% 23.7% 20.9%

eVMT eVMT eVMT eVMT eVMT eVMT eVMT eVMT eVMT eVMT

Demand* 489K trips | 486K trips | 443K trips | 435K trips “sil?vlictljg): 445K trips | 403K trips | 378K trips | 368K trips 283K trips
served/day | served/day | served/day | served/day y served/day | served/day | served/day | served/day served/day

Daily $2,58M/da §2.49M/day $2.36M/da | $2.30M/da | $2.25M/d | $2,22M/da $2.14M/day $2.06M/da $1.95M/day | $1.85/day

Revenue y y y ay y y
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1
2
3

Generated

®

gr)"ﬁtmay $775K/day | $761K/day | $703K/day | $676K/day $658yK/da $669K/day | $611K/day $567YK/da $508K/day | $445K/day
Profit per $124.0 per | $121.7per | $112.5per | $108.2 per | $105.2 per | $107.0 per $97.8 per $90.7 per $81.2 per $71.3 per
SAV/Day (8) SAV/d SAV/d SAV/d SAV/d SAV/d SAV/d SAV/d SAV/d SAV/d SAV/d
Profit per

SAV/mile $0.23/mile | $0.24/mile | $0.23/mile | $0.23/mile | $0.23/mile | $0.24/mile | $0.22/mile | $0.21/mile | $0.20/mile | $0.18/mile
®

7% demand*
Note: 98.2% to 99.5% of SAVs were used each day (6136 to 6219 SAVs).
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CONCLUSIONS

By effectively pooling multiple-person trips within the same vehicle to increase party sizing, %
eVMT can potentially be maintained within 20.9% to 26.4% across different fleet sizes and
operational scenarios. Based on the results, assuming the average revenue per SAV at $1 per trip-
mile (considerably lower than traditional taxi fares) and no competition, profitability ranges from
$74 to $124 per SAV per day. These estimates suggest the potential for operators to achieve
significant returns on their investments, assuming low fixed and variable costs. There could be
potential for losses by the operator if the fleet operated within small geofences or had specific
origins and destinations. This study reveals that the assumed 20% SAV mode split corresponds to
the ratio of person-trips to SAVs. A 6% decrease in % eVMT on holidays compared to
workdays/school days correlates with fewer person-trips per SAV and longer average trip lengths.
Seasonal variations also emerge, with lower idle times indicating fleet saturation on typical
workdays and increased idle times on holidays or summer weekends. Demand per SAV is
particularly high on workdays during fall and winter, suggesting that fleet size optimization to
cater to suburban trips could be advantageous. On average, each SAV served up to 48.2 person-
trips on busy workdays, which decreased by 40% on holidays or weekends. Demand served
remained relatively stable, regardless of fleet size. However, increased utilization does not
necessarily boost profits. An optimal balance must be found between larger fleets, which may raise
operational costs but can also meet higher demands, and smaller fleets, which might reduce capital
costs but limit potential revenues.

Nonetheless, it is essential to remember that outcomes like VMT impacts and profits heavily
depend on specific implementation details. Factors such as market penetration, fleet relocation
strategies, trip pricing decisions, geofenced service areas, and maximum SAV occupancies will
substantially impact these outcomes. Larger fleets, while capable of reducing unoccupied vehicle
relocations and trimming operation costs, require higher capital investment. Smaller fleets might
mitigate capital expenditure but could result in higher wait times and costs (Fagnant and
Kockelman, 2018). Consequently, balancing fleet size, operational costs, and wait times becomes
crucial to ensure efficient operations and service delivery. The assumptions in this study might
accurately reflect long-term scenarios but could be too optimistic for near-term applications, given
the high cost and current pilot status of autonomous vehicle technologies.

In the SAV scale system envisioned here, one could anticipate reduced household vehicle
ownership rates, decreased parking requirements, traveler cost savings, and substantial
opportunities for operator profits. However, to avoid excess VMT scenarios inherent to SAV
operations, it is vital to incentivize demand-responsive service opportunities appropriately. This
study contributes case study applications, simulation techniques, and evaluation methods that can
be used to understand and anticipate the potential impacts of SAV operations under varying
demand on profitability. SAV operations provide an intricate interplay between various elements,
each significantly influencing the overall profitability and efficiency of the fleet. Balancing these
factors to maintain service quality while maximizing profit is complex and relies on strategic
planning and adaptive management. Further research in this field will continue to unravel these
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complexities, helping operators refine their strategies and better meet the challenges of this
burgeoning field.
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