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ABSTRACT  

Long-distance (LD) inter-city bus service is an important transportation system option for most 

nations and many international travel settings. This study applies genetic algorithm optimization with 

an agent-based travel simulation model to optimize LD bus services and schedules for various crossUS 

applications. Optimal inter-city bus service performance is evaluated under different subsidy scenarios 

to identify useful policies for keeping LD travelers on the ground (where emissions and doorto-door 

travel costs are generally much lower than flying) while enabling inter-city access for all. The zero-

subsidy/private-sector results align well with actual US LD bus operations, and routing optimization 

strategies suggest that just 761 50-seat buses driving 359,000 bus-miles per day (2,458 one-way bus-

trips across 253 bus-routes) can serve about 100,000 US long-distance passenger-trips per day (fulfilling 

75.7% of the nation’s daily bus-trip demand as estimated from RSG’s LD trip dataset and NHTS 2017) 

with 64.3% seat occupancy rate, and 36.3% profit margin, assuming $0.15-perpassenger-mile fares. 

Over 95% of those US long-distance passenger-trips are served directly, with just 3.4% of travelers 

needing to transfer (and transfers averaging 1 hour). The average bus-route (one-way) length is 146 

miles, and the average passenger-trip is 108 miles (with a 71-mile standard deviation). Results also 

suggest that system subsidies of just $6M to $45M annually could lead to 4.6% to 17% higher bus-route 

frequencies and 2% to 14% more passengers served, while reducing CO2 emissions by 17,000 to 

144,000 tons annually, assuming those induced travelers are shifted from private vehicles. The 

simulation framework and findings can contribute to future analysis and policy implications of LD inter-

city bus service.  

Keywords: Long-distance travel, Inter-city busing, Bus service design problem, Agent-based 

simulation, Genetic algorithm  

INTRODUCTION  

Long-distance (LD) inter-city travel is a crucial component of transportation systems. It connects 

diverse geographic regions, enabling greater economic and social interaction and supporting tourism, 

transportation, and other industries. Despite comprising a small share of all travel, LD trips contribute 

significantly to traffic congestion, noise, crashes, and emissions. In the United States, LD person-trips 

(i.e., all those over 50 miles in one-way travel distance) were just 2.4% of all person-trips in the 
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2016/2017 National Household Travel Survey (NHTS) but contributed 43.2% of total person-miles 

traveled (PMT). In the UK, (Wadud et al., 2024) found that 2.7% of LD trips account for 61.3% of PMT 

and 69.3% of passenger travel’s greenhouse gas (GHG) emissions. Despite the major role of LD and 

inter-city travel, there are relatively few LD-focused travel demand modeling efforts or LD bus-service 

investigations due to the infrequency of such trips, the extensive networks involved, the proprietary data 

details, and complex optimization heuristics needed to simulate and optimize such choice and service 

settings (Llorca et al., 2018).  

Among LD travel mode alternatives, intercity bus service is among the most affordable, safe and 

accessible—yet sustainable and comfortable—options available, as compared to airlines, railways, and 

private automobiles (Javid et al., 2022). High-frequency buses can be especially attractive for trips under 

300 miles, when flying has a minimal advantage in travel-time and relatively large costs and scheduling 

burdens. While railways may provide similar comfort benefits, bus services can provide broader route 

flexibility and better access, especially for underserved small towns and rural areas between major cities. 

In comparison to private automobiles, buses tend to offer Wi-Fi, reclining seats, mini-tables and 

restrooms, and they reduce the stress, dangers, and fatigue associated with long-distance driving. 

Additionally, buses generally have lower per capita emissions than private automobiles and airplanes, 

positioning bus travel as a crucial component of sustainable LD travel solutions (Bigazzi, 2019; 

Woldeamanuel, 2012).  

While LD bus service provides an affordable trip fare and accessible and sustainable trip service, 

it undertakes substantial operational costs that cannot be completely recouped through fare revenues 

alone, particularly in regions with lower passenger densities. Meanwhile, it is vulnerable to economic 

fluctuations and policy changes. For instance, during the COVID-19 pandemic, a significant reduction 

in passenger numbers due to health concerns and travel restrictions policy led to a drastic drop in revenue 

for many bus service operator (Hirst et al., 2021). As a consequence, several regional bus operators, 

such as Megabus and Greyhound, scaled down and ceased their service or sold their assets to cover 

operational costs (Allard, 2023; News, 2024), which might further induce higher reliance on private 

automobiles for road travel (Abdullah et al., 2020).  

Public transit subsidies are significant at the local or intra-regional level (averaging well 60¢ per 

passenger-mile in the US) (Litman, 2011), and transport supply decisions are common in urban planning 

and policymaking. Such subsidies lower travel costs for transit users, enable access for low-income 

households and many others, reduce reliance on private modes, free up parking space, and may lower 

roadway congestion. Zero-fare-transit policies within cities or urban regions are gaining interest  

(Kębłowski, 2020; Webster, 2024), and subsidies helped many systems survive COVID19 demanddrops 

(Dai et al., 2021; Ziedan et al., 2023). While benefits, costs, and operational strategies differ significantly 

between intra-city and inter-city bus systems, underlying principle that subsidies can help achieve 

broader socio-economic and environmental goals holds true. Exploring how these subsidies have been 

implemented and their outcomes in the LD inter-city bus context provides valuable insights for 

improving connectivity, affordability, and sustainability on a broader scale.  

Keeping these factors in mind, this paper investigates how US inter-city bus service can perform 

more optimally (maximizing service while minimizing cost and route duplication), and how LD bus 

subsidies are likely to impact US system operations, access, and emissions. An LD inter-city bus 

network and service system was designed across 4486 National Use Microdata Areas (NUMAs) 

(approximately at county scale) in the contiguous 48 US states. Service frequency and system 

performance were determined using a joint simulation-optimization framework, with and without 

subsidies. The model design and paper results should be useful for national and international 

longdistance transit-system planning and decision making, for more demand-competitive, economically 

sustainable and environmentally friendly transportation systems.  

LITERATURE REVIEW  

This section synthesizes existing research on LD inter-city bus services, focusing on their evolution, 

societal and environmental impacts, and operational frameworks. It also examines transit planning 

models for optimizing service design.  
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LD inter-city bus service  

Buses have been used between many US cities for over 100 years. Deregulation policy in the 1980s 

allowed US bus operators to freely enter and exit routes of their choosing, attracting investment from 

large-scale corporate interests and emerging service providers, such as Greyhound and Megabus. 

Expanding route options and the addition of power outlets plus Wi-Fi access have made LD inter-city 

bus service appealing to many travelers (Schwieterman, 2016), while increasing service and fare 

competition between providers, especially for the most popular city pairs (like routes between New York 

City and Boston). While LD inter-city bus routes exist mostly between two city or station pairs, many 

will stop along highways, to quickly drop off or add riders curbside (Schwieterman et al., 2012). Average 

US inter-city bus fares range from about $0.08 to $0.22 USD per passenger-mile (Schwieterman et al., 

2019).  

Greater demand for bus service can induce new routes and/or higher frequencies, thereby attracting 

more passengers (Liu et al., 2024). Affordability is an essential determinant of passengers’ preference 

for it (Arbués et al., 2016; Dargay et al., 2012). It is found that the elasticity of US LD bus ridership in 

terms of fare is about -0.69 (Escañuela Romana et al., 2023). In central Europe, Tomeš et al. (2022) 

found that fare discounts and free fares program for long-distance public transport significantly 

increased ridership of railway and bus. Besides economic considerations, onboard comfort such as 

ample leg space and catering also makes buses an attractive LD travel option (Liu et al., 2024; Van 

Acker et al., 2020). Additionally, people of elderly age, with lower income, with disability, and those 

living in rural areas are found to rely more on inter-city buses for their essential mobility, which 

emphasizes the importance of LD inter-city buses in creating more equal and inclusive communities 

(Javid et al., 2022). The increase in LD bus ridership also contributes to carbon neutrality. It is estimated 

that carbon dioxide emissions from intercity buses are 50 grams per passenger mile, about one-fifth of 

automobiles and air (Bigazzi, 2019; Woldeamanuel, 2012).   

Despite the promising social and environmental outcomes of the LD bus service, the current policy 

mostly leaves the business to survive itself, especially in a fully deregulated market, such as the US 

(Augustin et al., 2014), and limited attention has been paid to modeling the performance of the LD bus 

service and discussing the effect of subsidy on its performance. Therefore, a discussion of this problem 

may contribute to promoting the development of the LD inter-city bus for an inclusive and sustainable 

LD travel system.  

Bus transit service planning problem  

LD inter-city bus service can be regarded as a regional-scaled “urban bus transit service,” where the 

whole country or a region is regarded as a “city” and cities of the country/region are treated as “bus 

stations”. This conceptual framework allows for applying urban transit planning models to the planning 

and operation of inter-city bus services. Therefore, to simulate the performance improvement of 

emerging technologies in LD inter-city bus service, it is natural to design the service using the bus transit 

service planning model, which is extensively discussed in transit planning literature (IbarraRojas et al., 

2015).  

Planning a bus transit service is an optimization problem that involves several sub-problems, 

including network design, frequency setting, timetable development, bus scheduling, and driver 

scheduling (Guihaire et al., 2008). Typically, each sub-problem will be iterated multiple times to reach 

the final solution.  

The network design problem (NDP) in bus transit planning is the most fundamental problem. It 

takes the physical road network and demand and distance matrices between origin and destination (OD) 

pairs as inputs to determine the most efficient configuration of routes and stops to maximize accessibility 

and coverage while minimizing costs and operational complexities. Given the excessive OD pairs and 

numerous combinations of intermediate stops between them, the NDP is a nondeterministic polynomial 

(NP) hard problem (Schöbel, 2012). Therefore, heuristic methods are proposed to provide near-optimal 

solutions. For example, line pool is a commonly adopted method where a set of potential routes is given. 
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Dargay et al. (2012) proposed a line pool generation approach, which allows the creation of pools with 

different properties to meet the objective function. Genetic algorithms are also frequently adopted. Szeto 

et al. (2011) proposed a genetic algorithm-based model to search all possible route structures instead of 

selecting routes from the predefined pool. For NDP, some constraints are often considered when 

determining solutions, such as fleet size, route length, route directness, and coverage (Yan et al., 2013).  

While the NDP determines the general spatial profile of bus operation, the subsequent steps further 

implement the service into practical and actionable details, which highly requires a detailed temporal 

pattern of demands, buses, and drivers (Guihaire et al., 2008). Frequency setting determines the fleet 

size running on specific routes. A more frequent bus service can increase the passengers’ perception of 

service level and trip demands but also lead to a higher operational cost. An ideal frequency setting can 

satisfy the trip demands with the least fleet size. Considering spatial and temporal varied demand 

elasticity in terms of frequency, Verbas et al. (2013) solved the frequency setting problem by maximizing 

the ridership and waiting time saving under the constraints of budget, fleet size, and vehicle capacity. 

Given the dynamic of traffic assignment, a Bi-level model is adopted, where the upper-level often 

optimizes the frequency, while the lower-level adjusts traffic assignment according to the frequency 

setting of the upper-level (Yu et al., 2010). Apart from deciding the bus departure time based on the 

frequency setting, the departure time can be directly determined by solving the timetable problem. In 

advance, solving the bus timetable problem allows the synchronization between different lines to 

increase passenger satisfaction (Ibarra-Rojas et al., 2012).  

METHODOLOGY  

Data source and preprocessing  

The simulation of LD inter-city bus service relies on an understanding of LD bus demand between cities. 

In this study, the rJourney data, US national personal trip data, and NHTS 2017 data are synthesized to 

obtain the relatively latest nationwide LD travel demand at the fine county level. The rJourney data was 

created by the US Department of Transportation's Federal Highway Administration using a synthesized 

31.5 million household population and cross-nested logit model (Perrine et al., 2020), which estimated 

the volume of round trips whose one-way distance is larger than 50 miles between any pair of 4486 

NUMAs in 2010. The extent of NUMA is basically aligned with the county, but in the county with major 

cities, the county is further divided into multiple NUMAs (Fig. 1 shows the extent of study units). Data 

provides about 2.5 billion annual round passenger trips with four modes, i.e., private automobile, bus, 

rail, and air (Outwater et al., 2015). This study only considers the bus trips to represent the trip demand 

between a pair of NUMAs.  

  
Fig. 1 Extent of study units of this study  

To obtain a relatively latest demand, US national personal trip data is utilized to calibrate the 2010 

bus demand matrix from rJourney. US national personal trip data provides the bus demand matrix 

between the Metropolitan Statistical Areas (MSAs), which spatially contains the extent of NUMA. 

Therefore, Eq. (1) is adopted, where 𝑑𝑖2010,𝑗 means the bus trip demand between NUMAs 𝑖 and 𝑗 in 2010, 

whereas 𝑑𝑖2017,𝑗 denotes the calibrated demand in 2017. 𝐷𝐼2017,𝐽 represents the bus trip demand between 

MSAs 𝐼 and 𝐽. Here, 𝑖 ∈ 𝐼 means MSA 𝐼 spatially contains NUMA 𝑖.  

𝐷2017 
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𝑑𝑖,𝑗 = 𝑑𝑖2010,𝑗 ∗ ∑𝑖∈𝐼 ∑𝐼𝑗,∈𝐽𝐽 𝑑𝑖2010,𝑗

   (1) 2017 

The aforementioned bus demand contains bus trips from multiple submarkets, such as school buses, 

commuter bus, charter bus, tour bus, and city-to-city bus. Since the LD inter-city bus service simulated 

in this study is similar to city-to-city bus services such as Greyhound and Megabus, this study further 

calibrates the bus demand by Eq. (2), where 𝑁 is the total volume of city-to-city bus demands obtained 

from NHTS 2017 data.   

 2017 ∗ 𝑁  

 (2)  

 𝑑𝑖,𝑗 = 𝑑𝑖,𝑗 ∑𝑖 ∑𝑗 𝑑𝑖2017,𝑗 

Meanwhile, for a more realistic simulation result, an approximate LD trip departure time 

distribution is also acquired from the NHTS 2017 data, and the LD inter-city bus demand at a specific 

hour 𝑡 is given by Eq. (3), where 𝑝𝑡 is the probability of passenger planned departure time as shown in 

Fig. 2.  

  
Fig. 2 Distribution of passenger departure time  

 𝑑𝑖,𝑗,𝑡 = 𝑑𝑖,𝑗 ∗ 𝑝𝑡  (3)  

Following trip demand extraction, this work prepares the bus stations by assuming that the LD 

inter-city bus service operates along the major highway, stopping at designated stations to connect cities. 

The specific location of the station is generated on the road network in each NUMA and each NUMA 

will only have one station.  

For computational efficiency, three types of NUMA are ignored from the simulation. First, all US 

interstate highways and essential US highways and state highways are obtained to represent the road 

network. NUMAs that are not crossed by any road are ignored. Second, those detailed NUMAs that 

belong to one city are merged to reduce the redundancy of the station. Finally, the NUMAs with 

insufficient outbound and inbound demands are not considered. Based on the road network and 

generated stations, the distance matrix 𝐷𝑖𝑠𝑡𝑖,𝑗 between stations is pre-calculated following the shortest 

path algorithm for later simulation.  

Following the trip demand and station preparation, about 240 thousand daily one-way LD intercity 

bus demands are extracted. Fig. 3 presents the road network and projected LD inter-city bus demand on 

each road segment. In general, the LD inter-city bus demand is higher in the Eastern US, followed by 

Central and Pacific areas, and the demand is sparse in the Mountain area. The four bustlingly connected 

urban agglomerations include 1) Eastern agglomeration (Boston-New York CityPhiladelphia-

Washington D.C.), 2) Central North agglomeration (Minneapolis-Milwaukee-Chicago), 3)  

Central South agglomeration (San Antonio-Austin-Dallas-Houston), and 4) Pacific agglomeration (San 

Francisco-Los Angeles-Las Vegas-San Diego). This spatial pattern is consistent with the result that 
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Schwieterman et al. (2019) obtained from real-world schedule data, demonstrating the reliability of 

demand extraction.  

  
Fig. 3 Road network and projected LD inter-city bus demand  

LD inter-city bus network design  

This study utilizes the constraint-based line pool approach to design the LD inter-city bus network 

(Dargay et al., 2012). A valid bus route should meet four criteria including: 1) the length of a bus route 

should be less than 500 miles (range constraint) given the 8-hour maximum comfortable sedentary 

duration of passengers and safe driving duration of a single driver assuming the average speed at 60 

mph; 2) the detour ratio of a route should be less than 1.1, as shown in Eq. (4), where 𝐷𝑖𝑠𝑡𝑖𝑟,𝑗 is the route 

distance between the station of route 𝑖 and 𝑗 via route 𝑟; 3) the average distance between two stops 

should be no less than 50 miles to avoid frequent stopping (station interval constraint); and 4) demand 

between a route’s start and end points (route origin and destination) should be no less than 15 persontrips 

per day, and total number of trips served by each route should be at least 25 trips per day (to eliminate 

low-demand routes, as a type of minimum-demand constraint).  

𝐷𝑖𝑠𝑡𝑖𝑟,𝑗 

  ≤ 1.1  𝑓𝑜𝑟 𝑖, 𝑗 ∈ 𝑟, 𝑖 ≠ 𝑗  (4)  

𝐷𝑖𝑠𝑡𝑖,𝑗 

Fig. 4 shows the flowchart for route pool generation. For a pair of stations 𝑖 and 𝑗, an intermediate 

station 𝑘 is not considered if the detour ratio via 𝑘 is greater than 1.1 because this is the prerequisite that 

the detour ratio of the route containing 𝑘 is less than 1.1. For all potential intermediate stations, a graph 

𝐺<𝐸, 𝑉> is generated, where 𝑉 is the set of origin, destination, and all intermediate stations, and 𝐸 is the 

subset of the distance matrix. The depth-first search algorithm is applied to the graph to generate routes 

that depart at 𝑖 and arrive at 𝑗 via {𝑘1,… , 𝑘𝑛} that meet all criteria.  
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Fig. 4 Flowchart for route pool generation  

Simulation framework  

This study investigates the performance of the LD inter-city bus by simulating optimal route and 

timetable designs. Based on the extracted trip demand and generated route pool, an iterated framework 

consisting of an agent-based simulation model and genetic algorithm-based optimization is employed. 

The iteration will be terminated while the performance of the genetic algorithm converges or reaches 

the maximum iteration. Fig. 5 provides a general illustration of the simulation framework.  

  
Fig. 5 Framework to simulate the LD inter-city bus service  

Agent-based simulation  

This study adopts agent-based simulation to model the selection process of passengers, whose definition 

and strategy are defined as follows.  

Definition 1 (Trip) A trip 𝑇 represents a passenger’s LD inter-city bus demand containing the 

planned departure time 𝑇𝑡, the origin station 𝑇𝑜, the destination station 𝑇𝑑, and served status 𝑇𝑠. The 

passenger will prioritize the available bus(es) that departs closer to his planned departure time. However, 

it is assumed that any buses departing within the one-hour window to the planned departure time are 

indifferent. For example, given a trip departs at 6:00, buses depart at 5:00 and 6:59 are indifferent, while 

buses depart at 4:00 and 7:59 are indifferent. If a trip is finally served, 𝑇𝑠 will be 1. While if no bus can 

serve the trip within a 3-hour departure window, the trip will be unserved and 𝑇𝑠 will be 0.  

For the buses that are indifferent in terms of departure time, the passenger is assumed to choose 

the one with the least trip cost regarding trip fare and time cost. In this study, the trip cost of a bus via 
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the route 𝑟 is computed as Eq. (5). 𝑓 is the unit fare of the bus service, which is estimated as 15¢/mile 

according to the Greyhound online platform1,2 and is consistent with prior findings (Schwieterman et 

al., 2019). 𝑉𝑂𝑇 is the value of travel time and is determined as $13.5/hour (Perrine et al., 2020). 𝑆𝑡𝑜𝑝𝑜𝑟,𝑑 

denotes the number of stops between the origin and destination stations via the route 𝑟. In this study, the 

average speed on the highway is estimated to be 60 mph and the stop time at each station is 5 minutes.  

 𝑐𝑜𝑟,𝑑 = 𝑓 ∗ 𝐷𝑖𝑠𝑡𝑜𝑟,𝑑 + 𝑉𝑂𝑇  𝐷𝑖𝑠𝑡𝑜𝑟,𝑑

 5 ∗ 𝑆𝑡𝑜𝑝𝑜𝑟,𝑑 (5)  

For the trip cannot be served by a single bus, the passenger will further consider the transfer time 

into his trip cost as Eq. (6) where the function 𝑡𝑟𝑎𝑛𝑠(𝐵𝑟𝑖, 𝐵𝑟𝑖+1) calculates the transfer wait between the 

prior bus 𝐵𝑟𝑖 and subsequent bus 𝐵𝑟𝑖+1 operated on different routes. The maximum accepted transfer 

wait time is 2 hours.  

𝑛−1 

 𝑐𝑜{𝑟,𝑑1,…,𝑟𝑛} = ∑ 𝑐𝑜𝑟,𝑑 + ∑ 𝑉𝑂𝑇 ∗ 𝑡𝑟𝑎𝑛𝑠(𝐵𝑟𝑖, 𝐵𝑟𝑖+1)  (6)  

 𝑟∈{𝑟1,…,𝑟𝑛} 𝑖=1 

Definition 2 (Bus) A bus 𝐵 is represented by its route 𝐵𝑟 and schedule 𝐵𝑠 . The bus schedule 

represents the departure time of the bus at each traversed station, which is used to determine the 

passenger’s choice together with the passenger’s planned departure time. In this study, a bus has a 

capacity of 50 seats. The revenue and cost of a bus are represented by Eq. (7) and (8). For service 

revenue, 1/0.8 is an expansion factor given that the passenger fare revenue only accounts for about 80% 

of the total revenue, while the other includes delivery, food, and other service fees according to the 

disclosed financial report of Greyhound (FirstGroup, 2017) and governmental report (SEC, 2005). 𝑔 is 

the comprehensive unit cost of the bus operation, including energy, tire, licensing, maintenance, labor, 

management, insurance, etc. In this study, the comprehensive unit cost of the bus is $4.5/mile, 

synthesized and cross-validated by multiple sources (Lajunen et al., 2016; Lindly et al., 2015; Nookala 

et al., 1987).  

𝑓 ∗ 𝐷𝑖𝑠𝑡𝑇𝑟
𝑜,𝑇𝑑  

𝑟𝑒𝑣𝑒𝑛𝑢𝑒𝐵 = ∑  

0.8 
𝑇∈𝐵 

(7)  

𝑐𝑜𝑠𝑡𝐵 = 𝑔 ∗ 𝐷𝑖𝑠𝑡𝑟  (8)  

Genetic algorithm-based optimization  

Based on the aforementioned simulation, the served status and net profit of the bus fleet are determined, 

and a genetic algorithm is utilized to optimize the number of bus fleet sizes and schedules. The objective 

function is presented by Eq. (9) to maximize the net profit of the bus trips as well as to serve more 

passenger trips. 𝐶 is a negative constant acting as a punishment factor.  

 𝑚𝑎𝑥 ∑(𝑟𝑒𝑣𝑒𝑛𝑢𝑒𝐵 − 𝑐𝑜𝑠𝑡𝐵) + 𝐶 ∗ ∑(1 − 𝑇𝑠)  (9)  

Definition 3 (Solution) A solution 𝑆 represents a designed bus service, including the route network, 

the fleet size of each route, and the schedule of each bus. It is the chromosome in the genetic algorithm 

where a gene demonstrates the service design of a route. Fig. 6 shows a schematic diagram of the 

chromosome and gene representation. 𝑛 ∈ 𝑁, where 𝑁 is the volume of the route pool. 𝑅𝑛 is a gene on 

the chromosome, representing the timetable of all buses operated on this route. Specifically, it denotes 

a sequence of departure times for each bus at the origin station. With the departure time at the origin 

 
1 https://www.greyhound.com/  
2 All fare-related parameters in this study are presented in 2017 USD.  



9  

station, the schedule of a bus is determined. 𝑏 is the size of the bus fleet on the route. If the length of a 

gene is 0, it means the route is not adopted in the designed LD inter-city bus service. For simplicity, this 

study assumes buses can depart in each half-hour.  

  

  
Fig. 6 Illustration of a solution  

At the beginning of the framework, a population will be generated in which solutions of its 

members are randomly initialized. Each solution will execute the aforementioned simulation process to 

evaluate its performance. For the whole population, the select operator will choose the top 10% of 

solutions following the elite strategy and another 10% of solutions following the roulette strategy based 

on their objective function values to obtain the parents.  

Subsequently, two parents are randomly picked to crossover to generate the remaining 80% of 

offspring as depicted in Fig. 7. The uniform crossover is applied so that each gene is decided whether 

or not to be swapped separately to introduce more offspring diversity.  

  
Fig. 7 Illustration of crossover  

Finally, the mutate operator decides whether each of the departure times of a gene will mutate. 

Three types of mutation are considered including 1) replication: replicate the departure time, which 

means there will be one more bus that departs at the time; 2) deletion: remove the departure time, which 

means there will be one less bus that departs at the time; and 3) transformation: the current departure 

time will be transformed into another departure time. One of the mutate operators will be executed 

randomly in each run.  

After all of the gene operators, parents, and all offspring will be fed into the simulation model for 

the next iteration until service performance converges or reaches the maximum iteration. The best 

solution for the last iteration is selected as the designed LD inter-city bus service and its performance 

will be analyzed.  

Simulation scenarios  

The objective of this study is to simulate the service performance of the LD inter-city bus service and 

understand the impact of operation subsidy. Therefore, scenarios are designed to reveal the impact. Table 

1 summarizes the simulation scenarios of this study. In the baseline scenario, no subsidy is offered, 
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which means the baseline and the current situation (Augustin et al., 2014). The daily trip demand is 

128,568, which scales to 47 million annual long-distance person-trips by bus, and is aligned with  

Greyhound’s 42 million person-trips-served number for its US bus operations (FirstGroup, 2017). It 

should be noticed that the daily trip demand listed here is the total demand for simulation that may not 

be entirely served.  

Then, a subsidy is given to under-served OD pairs (where the served ratio is less than 50%) in the 

zero-subsidy scenario. Two subsidy recipient types (passenger versus operator) and 3 subsidy levels (5,  

10, and 15 cents per passenger-mile traveled) are considered here. In the passenger subsidy scenario, 

the subsidy directly offsets the fare, which will increase trip demand, ceteris paribus. So trip demands 

are expanded according to a 69.47% fare elasticity assumption (Escañuela Romana et al., 2023). The 

maximum subsidy of 15¢/mile represents a zero-fare LD inter-city bus scenario since bus fares are 

approximately equal to 15¢/mile in the US on average.  

In the operator subsidy scenario, the subsidy goes to the bus operator, allowing the operator to earn 

more money from any passenger it serves. For example, in the 15¢/mile scenario, the operator can earn 

30¢/mile from the passenger traveling between the underserved stations. Although subsidizing the 

operator will not attract greater trip demands, it will make the bus not give up the route with limited 

profit, thus leading to the loss of public mobility for these passengers. However, it is worth noticing that 

the increase in trip demand due to a more frequent bus service is not considered for simulation simplicity.  

Table 1 Simulation Scenario Details  

Scenario  Subsidy amount  Subsidy recipients  Simulated daily person-trips  

B  
(Baseline)  

0  Not applicable  128,568  

S5P  

(5¢/mile Pax Subsidy)  
5¢/mile  Passenger  136,611  

S10P  

(10¢/mile Pax Subsidy)  
10¢/mile  Passenger  145,265  

S15P  

(15¢/mile Pax Subsidy)  
15¢/mile  Passenger  155,212  

S5O  

(5¢/mile Opr Subsidy)  
5¢/mile  Operator  128,568  

S10O  

(10¢/mile Opr Subsidy)  
10¢/mile  Operator  128,568  

S15O  

(15¢/mile Opr Subsidy)  
15¢/mile  Operator  128,568  

RESULTS  

Considering the complicity of bus service optimization, to avoid the influence of randomized initial 

solutions and increase the reliability of the result, each scenario is repeatedly conducted 20 times in this 

study. Taking the baseline scenario as an example, Fig. 8 presents the convergence process of the 

simulation framework. In this study, a maximum of 2500 iterations are adopted. The red and blue lines 

represent the highest and average objective function values of the solutions respectively, whereas the 

band depicts the result variation among repetitions. The objective function value improves significantly 

at the first 200 iterations and then grows slowly. The bottom right subgraph zooms into the boxed region 

and demonstrates a more detailed and clearer converged result. The simulation and optimization 

framework converge after 2000 generations. The final results only slightly vary among repetitions, 

indicating the effectiveness and stability of the simulation and optimization framework.  
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Fig. 8 Convergence process of simulation and optimization framework  

Baseline LD inter-city bus performance  

Table 2 summarizes the system performance of LD inter-city bus service under the zero-subsidy baseline 

scenario. The standard deviation shows that the simulation results are insensitive to the randomized 

solution initialization.  

Table 2 Baseline LD inter-city bus service performance metrics  

Category  Metrics  Mean  Std Dev  

Passenger  

Passenger-trip served per day  

%Served trip demands  

%Trips with 1-transfer  

%Trips with 2-transfer  

96,153 passenger-trips/day  

75.7% 3.31%  

0.06%  

1,818  

1.4  

0.19  

0.02  

 One transfer wait time  53.2 min  1.9  

 Two transfer wait time  131.3 min  13.7  

Vehicle  

Passenger-trips per bus-trip  

Load factor  

VMT  

Bus profit  

40.5 passenger-trips/bus-trip  

64.3%  

146.3 mile/bus-trip  

$181/bus-trip  

0.5 

1.3  

2.3  

10.4  

 Net profit per mile  $1.46/bus-mile  0.12  

 Scheduled bus-trip per day  2,458 bus-trip/day  64  

 Fleet size  761.1 vehicles  29.0  

The number of passenger-trips served per day is over 75% of total US LD inter-city bus demand 

assembled here, and almost 100,000 person-trips per day. In a more bustling period, such as summer or 

holiday, the average passenger-trips served can be more. Among the served passenger-trips, over 95% 

are served via direct trips, with less than 3.4% of travelers needing to transfer between their origins and 

final destinations. Each transfer requires about 1 hour (53 minutes for 1-transfer travelers, and 131 

minutes for the very few two-transfer travelers).  

Making 2,458 scheduled bus-trip (from route endpoint to endpoint) departures a day, each bus-trip 

averages 41 served passengers, traveling roughly two-thirds full (since the 64% load factor equals 

system daily PMT divided by VMT). Each bus-trip nets an average of $181 in profit per bus-trip, or 

$1.46 per bus-mile. This totals to $162 million per year in profits (about $661 million in revenue and 



12  

$499 million in cost), which lines up well with U.S. Greyhound’s $46 million annual profit and its 25% 

market penetration (FirstGroup, 2017). Roughly 761 buses are required to fulfill the operation, assuming 

a bus can be re-utilized for the return route after 1 hour when it finishes the main route.  

Fig.9 shows the distributions of the bus-trip’s route mile and departure time. It is found that most 

bus route lengths are less than 200 miles, basically covering the distance between major cities with 

bustling LD inter-city bus demands, such as New York City-Philadelphia, Los Angeles-San Diego, 

Dallas-Houston, and Milwaukee-Chicago observed in Fig. 3. The distribution of bus departure time is 

almost aligned to the departure time pattern of the passenger (Fig. 2) when most buses depart between 

8:00 and 20:00.  

  
      (a) Route mile         (b) Departure time  

Fig. 9 Distribution of LD inter-city bus service’s route mile and departure time  

The above simulated results of the baseline scenario almost align with the real-world performance, 

indicating the reliability of the simulation framework and providing confidence for the following 

analysis.  

Service performances under subsidy  

Table 3 lists the system performance of LD inter-city bus service under the different subsidy scenarios. 

Under both subsidy recipient and all subsidy amount scenarios, the service receives an improvement in 

the passenger-trips served, while the passenger-trips served increases as the subsidy grows. Fig. 10 

demonstrates a clearer comparison of the passenger-trips served between the two schemes. When the 

subsidy amount is at 5¢/mile, the passenger-trips served are only slightly different between subsidizing 

passenger and operator. However, as the subsidy amount grows, there is a significant gap between the 

two schemes. While the passenger-trips served increases linearly in the subsidizing operator scheme, 

the subsidizing passenger scheme presents a nonlinearly increasing pattern, outperforming the 

subsidizing operator scheme, which can be due to the economics of scale of this service. Taking S15O 

and S15P as an example, the unit subsidy for one more served passenger is $14.7 and $8.9 respectively, 

indicating a higher efficiency of the subsidizing passenger scheme.  

In terms of the served ratio, the subsidizing operator scheme can lead to consistent improvement. 

In contrast, although subsidizing passenger can serve more passengers, it cannot proportionally serve 

the induced demands. Therefore, its served ratio is found to decrease as the subsidy grows. For transfers, 

the transfer ratio sees a constant increase while the transfer time mostly drops slightly, which might be 

attributed to the increased scheduled bus-trips. For expenses on subsidy, the annual total subsidy is 

estimated to range from 6 to 45 million.  
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Fig. 10 Total served passenger under different subsidy scenarios  

Regarding vehicle performance, since the vehicle is guided to serve those underserved passengers 

by subsidy, the passenger-trips per bus-trip and load factor both witnessed decreases, especially the 

subsidizing operator scheme, which allows the bus operator to still make profits with a lower load factor. 

The subsidy amount is also positively associated with the bus VMT, indicating that the LD inter-city 

bus is able to provide mobility and accessibility to a more distant area with the subsidies. For 

profitability, since the subsidizing operator scheme directly offers subsidies to the operator, the average 

net profit per bus-trip and per mile see huge growth. However, in the subsidizing passenger scheme, 

these two metrics both drop, indicating the operator may adopt a low margin, high volume strategy to 

optimally assign its fleet. In terms of scheduled bus-trips, subsidies can significantly lead to growth. 

Compared to the baseline scenario, there is a 4.6% to 17.4% rise in the number of bus-trips. Although 

the induced demand due to more frequent services is not considered in this study, it is reasonable to 

believe that there can be more demand after introducing a subsidy.  

    

Table 3 Performance of LD inter-city bus service under different subsidy scenarios  

Category  Metrics  

B  

  Scenarios     

S5O  S10O  S15O  S5P  S10P  S15P  

Passenger  

Passenger-trip served per day  

%Served trip demands  

%Trips with 1-transfer  

%Trips with 2-transfer  

96,153  

75.7 3.31  

0.06  

98,139   

77.2  3.59   

0.08   

99,416   

78.23  

3.89   

0.10   

101,022   

79.5  4.27   

0.12   

99,280   

74.9  

3.99   

0.06   

104,020   

73.5  

4.31   

0.09   

109,950   

73.3  

4.68   

0.10   

 One transfer wait time  53.2  53.3   52.9  53.1  52.5   52.5  52.5  

 Two transfer wait time  131.3  128.7  129.9  130.2  136.2  124.5  127.8  
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 Total subsidy ($)  /  

 Passenger-trips per bus-trip  40.5  

Vehicle  

Load factor  

VMT  

Bus profit  

64.3  

146.3  

181  

62.9  

148.3  

196.2  

61.1  

152.5  

216.5  

59.1  

155.0  

242.6  

63.4  

149.8  

175.7   

61.6  

153.1  

163.6  

61.6  

157.6  

173.3  

 Net profit per mile  1.46  1.48   1.51   1.55   1.37   1.21   1.20  

 Scheduled bus-trip per day  2,458  2,570  2,658  2,792  2,574  2,746  2,885  

 Fleet size  761.1  806.6  862.2  925.2  819.1  898.5  987.3  

 

Sustainability and economic outcome of subsidy  

Following the service performance analysis, this study further analyzes the sustainability and economic 

outcome of subsidies. Mature and professional road emission software COPERT is used to calculate the 

difference in carbon emissions due to the increase in the passenger-trip served, assuming passengers 

modeled in this study only choose between road transportation, i.e., private vehicles and LD inter-city 

buses. The private vehicle trip is assumed to follow the shortest path, and the average private vehicle 

trip distance is calculated to be 163 miles. Considering the average party size of a private vehicle trip is 

2.15 persons and the carbon price is at $36/ton (Perrine et al., 2020), the estimated annually saved CO2, 

equivalent carbon price revenue, and the net subsidy after deducting the carbon price under each 

scenario is shown in Table 4.  

Table 4 Carbon (CO2) savings and subsidy results across scenarios  

  

  Scenarios    

S5O  S10O  S15O  S5P  S10P  S15P  

Saved CO2 (ton/ year)  17,596  24,752  34,967  31,005  79,610  144,263  

Carbon price (million $/year)  0.63  0.89  1.26  1.12  2.87  5.19  

Net subsidy (million $/ year)  5.55  13.98  24.89  6.93  19.09  39.81  

The result reveals a positive correlation between the amount of subsidy and the amount of CO2 

saved, indicating that a higher subsidy can substantially enhance environmental outcomes. Since the 

subsidizing passenger scheme is assumed to attract a modal shift from private vehicles, there is a 

significant improvement in saved CO2 over the subsidizing operator scheme, and the largest amount is 

about 144 thousand tons per year. The total amount saved is not quite significant due to two main reasons. 

Firstly, in this study, the subsidy is only provided to underserved areas. If the subsidy areas are expanded 

to a greater area, a more shocking result can be obtained. However, this is not realistic in terms of 

financial expenses. Second, the share of LD inter-city bus service in the US LD travel market is limited. 

Therefore, if the market is greater, we may receive a more promising outcome.  

Based on the result, if the carbon trade policy is introduced, it may save $5 million a year under 

the S15P scenario, suggesting that environmental benefits can offset the subsidies. However, the share 

is limited and ranges from 5% to 14%.  

    

CONCLUSION  

LD inter-city bus service is an important component of the national LD transportation system. A 

developed and convenient inter-city bus service can help alleviate the reliance on private vehicle travel 

and provide necessary mobility and accessibility to less developed areas. However, its performance is 

seldom modeled. Currently, there is no well-provided route and timetable or passenger trip dataset of 

the service for analyzing its service performance. Therefore, this study proposed a joint simulation and 

optimization framework to simulate the performance of the LD inter-city bus service by solving the 

network and timetable design problem of the service.  

16 , 927     40 , 735   71 , 643   22 , 057   60 , 151   123 , 307   

39.6   38.9   37.8   40.2   39.6   39.9   
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Specifically, the genetic algorithm-based optimization algorithm and agent-based simulation are 

integrated to reveal the bus service performance. A specially designed representation has been proposed 

for representing bus travel frequency, timing, and routes in genetic algorithms. Based on the integration 

of multi-source real-world LD inter-city bus trip data, this study simulates the service performances 

under different subsidy scenarios to investigate the effect of financial subsidy on this service. With this 

data and simulation parameters obtained from the realistic official reports and articles, the simulation 

depicts its reliable ability to receive a stable optimization outcome and a realistic result that aligns with 

the real-world operation of the service, such as the Greyhound bus.  

With the financial subsidy provided to underserved areas, we find that the LD inter-city bus service 

is able to provide more frequent services and serve more passengers. Basically, there is a scaling effect 

of the performance regarding the amount of subsidy. However, the recipient of the subsidy leads to 

different outcomes of service performance changes. In summary, subsidizing the bus operator enables 

them to provide service to areas that used to be with limited profitability. This can linearly improve the 

total served passengers and significantly increase the operator’ profitability. In comparison, subsidizing 

the passengers can attract more passengers to adopt this service. Although the total amount of subsidy 

in the subsidizing passenger scheme is higher than the subsidizing operator scheme, it shows a nonlinear 

increasing pattern in the total served passengers and exhibits a higher efficiency in the marginal cost. 

However, the subsidizing passenger scheme will lead to slightly lower profitability even compared to 

the zero subsidy, which makes the operator serve more passengers with a lower margin. The 

environmental and economic outcomes of subsidies are further analyzed. It is found that subsidizing the 

LD inter-city bus service can receive a sustainable outcome in saving CO2, and subsidizing the passenger 

helps to achieve a greater amount of saved CO2. If the carbon price is introduced, it may help to slightly 

offset the subsidy expenses by about 10%. In real situations, service performance improvement, subsidy 

expense, and environmental outcome should be integrated to adopt a suitable subsidy scheme.  

This study has certain limitations. For example, total LD bus-trip demand is taken as given for the 

US in 2017, irrespective of route travel times, and service frequencies (by the integrated system 

managers and by competitors, like airlines and passenger railways). Such a thoughtfully interlined 

system is likely to attract much higher demands than the 128,567 person-trips-per-day assumed here. 

Meanwhile, real demands vary by day of year, with certain months (like Spring and Summer months) 

and days of the week (like Friday) having much higher-than-average demands (Mori and Kockelman, 

2024). Thoughtful fare and scheduling decisions can help keep buses and their operators/drivers busy, 

even during traditionally quiet times of the week and year. Taking a more holistic view of demand 

variations over time and space, and across competing carriers, with endogenous pricing and routing, 

will make for an interesting study. It would be useful to have more focused surveys of Americans to 

identify unmet demand and willingness to shift to such systems, thanks to more comfortable rides and 

more direct and faster service.  
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