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ABSTRACT 

This study examined shared autonomous vehicle (SAV) fleet performance with service-specific 

variable fares in a competitive ride-hailing market. It calibrates operator-specific fare models using 

New York’s ride-hailing dataset, enabling fare adjustments based on demand fluctuations, and the 

hour of the day. Agent-based POLARIS simulations of two SAV operators (Operator 1 and 

Operator 2) in Bloomington city, showed that a variable fare strategy allows operators to swiftly 

adjust to demand variations improving fleet usage and turned underperforming fixed-fare services 

into profit centers. Under fixed fares, results suggest that operators had to "pick a winner": 

Operator 1 stayed profitable (with 51% profit margin) by focusing on 4-seaters, while Operator 

2’s mixed-fleet strategy incurred steep losses in premium tiers ($66 daily loss per 4-seater premium 

SAV and $278 daily loss per 6-seater premium SAV) yielding just 2% overall profit margin. In 

contrast, variable pricing generated dramatic economic and efficiency gains with a 174% rise in 

total profit, more than tripling daily profit per SAV from $107 to $348 (after reducing total fleet 

size from 455 to 385 SAVs). Since demand fell 14.5%, SAV fleet VMT fell 17%, and the share of 
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empty VMT fell from 32% to 25%. This operational efficiency was most evident for Operator 2, 

whose average vehicle occupancy (AVO) jumped 19% (from 1.32 to 1.55 occupants per revenue-

mile, assuming 1-person travel-party size.  

Keywords: Variable pricing, Shared autonomous vehicles (SAVs), Ride-hailing competition, 

Surge pricing. 

BACKGROUND 

SAV markets remove the driver decision layer altogether, enabling operators to focus purely on 

fleet sizing, dynamic fare strategies, and demand management (Zhang, 2023; Fagnant and 

Kockelman, 2014 and 2015; Levin et al., 2017). Early commercial deployments of SAV fleets 

in San Francisco's Bay area highlight this technology's promise and regulatory fragility (SFCTA, 

2024; Waymo, 2023). As multiple operators, including Cruise, Waymo and Zoox, compete 

for market share, examining fleet sizing, service differentiation, and market entry sequencing is 

essential to predict which business models will thrive and how pricing competition will influence 

overall system efficiency and coverage (Marshall, 2018; Sambasivam et al., 2024; Fakhrmoosavi 

et al., 2023). These operators not just compete with each other but will also compete with 

traditional TNCs (Uber and Lyft). They will compete just like today's TNCs, with providers 

strategizing their fares and services to capture larger market share while competing in local 

markets. For instance, Didi and Uber China were engaged in a price war until 2016, but by 

November 2023, Uber had regained a portion of its lost market share, stabilizing the competitive 

dynamics between the two companies. Currently, Uber and Lyft compete in the U.S., while Grab 

and Gojek compete in Southeast Asia, Ola and Uber in India, Bolt and Uber in Europe, and Careem 

and Uber in the Middle East (Wang and Yang, 2019). Didi also faces competition from Chinese 

rivals, like Shouqi, Meituan, and Shenzhou (Zhou et al., 2022). 

Past studies have used agent-based simulation approaches to analyze the competitive ride-hailing 

market. Mo et al. (2021) used an agent-based simulation model (ABM) to explore the competition 

between SAVs and public transit (PT) in Singapore, finding that SAVs could capture up to 30% 

of the PT market share in low-density areas where PT services are less efficient. Karamanis et al. 

(2020) also used ABM and compared dynamic pricing's effects on monopolistic and competitive 

SAV fleet scenarios in Greater London, finding that dynamic pricing led to higher revenues than 

static pricing during non-peak hours in monopoly settings, while in competitive scenarios, 

dynamic pricing was more effective during peak hours due to high waiting times. Guo et al. (2022) 

developed a comprehensive optimization framework for SAVs competing with human-driven 

private vehicles by integrating a binary logit demand model with a time–space network-flow 

formulation. Their Singapore BlueSG network case study showed that when demand is low, higher 

sensitivity boosts profit. Still, when demand is high, it can actually reduce profit by over-investing 

in service quality. They found that optimal fleet sizing balances utilization and service, resulting 

in roughly 5-6 requests per vehicle during peak hours, which maintains over 80% fulfillment 

without excessive idle time. Sambasivam et al. (2024) revealed counterintuitive service insights 

under competitive configurations. Under identical dynamic pricing, the smaller fleet often posts 

shorter peak-hour wait times by concentrating vehicles in high-demand zones, though larger fleets 

typically promise faster pickups under flat fares. They found that SAVs' extended operational 

hours, 11-12 hours daily versus the 8-9-hour limits of human-driven TNCs, amplify revenue 

potential, especially under dynamic fare strategies exploiting both temporal and spatial demand 

peaks.  
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However, as SAV operations scale in the future, negative externalities are likely to emerge, 

including intensified congestion, increased deadheading (empty miles), and overlapping fleets that 

crowd busy routes or divert riders from efficient transit. These issues have increased regulatory 

scrutiny (Henao and Marshall, 2019; Schaller, 2021), prompting policymakers to devise rules for 

both ride-hailing (Li et al., 2022; Zhang and Nie, 2019) and AV fleets. Simoni et al. (2019) 

evaluated congestion-pricing schemes in the presence of SAVs, Dandl et al. (2021) embedded ride-

pooling constraints within a tri-level optimization of tolls, parking fees, transit frequency, and fleet 

caps, while Mo et al. (2021) explored how fleet-size limits and transit subsidies shift equilibria 

over day-to-month operator responses. Amidst these competitive global trends in the ride-hailing 

market, several studies have assessed local operational effectiveness and competitive interactions 

among these operators/service providers (Paronda et al. 2016; Huang et al. 2023; Meskar et al. 

2023) but overlooked the feedback relationship between provider fares and (instantaneous) service 

demands1. Ideally, dynamic fares should respond not only to instantaneous supply–demand 

imbalances, but also to lagged demand spillovers. Sambasivam et al., 2024 effectively captured 

broad effects of pricing structures but failed to predict how truly profit‐maximizing operators 

would adjust fares in response to continuously evolving demand, competitor behavior, and rider 

acceptance thresholds. Moreover, by pre‐specifying each operator’s TOD and ZSP multipliers, 

existing simulations sidestep the critical topic of endogenous price effects.  

In practice, dynamic-pricing systems continuously calibrate surge levels using optimization 

routines that account for real‐time ridership patterns, competitor fares, and marginal profit 

contributions. Without modeling this feedback loop, static-multiplier analyses risk overstating or 

understating the revenue and operational impacts of fare strategies under true market conditions. 

Similarly, limiting ride-type offerings to a single “standard” SAV option with a binary pooling 

discount fails to reflect the multi-tiered service portfolios (economy, premium, pooled, and 

subscription plans) that competing platforms offer to capture diverse customer segments. To 

address these gaps, this study extends the SAV duopoly market literature by implementing time-

varying, ride-option–specific pricing algorithms calibrated on NYC-TLC data. Rather than 

applying fixed multipliers, the study estimated continuous fare-elasticity functions for each ride 

option and allowed fares to adjust hour-by-hour based on current demand, and competitor fare 

changes. This empirically grounded approach captures the true dynamics of variable pricing by 

modeling how operators would optimally respond to both immediate supply–demand imbalances 

and lagged demand spillovers. The remainder of this paper is organized as follows. The next 

section details the POLARIS simulation network framework for multi-operator, multi-service 

scenarios. The subsequent section presents operator-specific fare strategies and their 

implementation. The fourth section presents and discusses simulation results examining the 

operational and economic performance of these scenarios. Finally, the paper concludes with a 

summary of key findings and their policy implications for the emerging SAV market. 

AGENT-BASED SAV SIMULATION FRAMEWORK 

This study is based on Argonne National Laboratory’s POLARIS code, which enables 

microsimulation of SAV operations with and without DRS (Auld et al., 2016; Gurumurthy et al., 

2020). POLARIS is an advanced, open-source, agent-based modeling framework designed to 

simulate multi-modal transportation systems at a mesoscopic level, with a separate agent for every 

member of the regional population (100% agents). It integrates travel demand, network flow, and 

traffic assignment models, allowing travel decisions, such as activity planning and route choice, 
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to be modeled simultaneously. The activity models, adapted from Auld and Mohammadian (2009 

aand 2012), model each traveler's decision-making process across short-term and long-term 

timeframes, considering activity types, destinations, and preferred modes. The travel demand 

simulator can perform comprehensive simulations due to its integration of a population synthesizer 

that can iteratively adjust the agent population averages across various categories to align them 

with the regional cross-tables. The synthesizer enables the efficient scaling of simulated individual 

agents, while POLARIS is high-speed C++ code capable of simulating nearly all regions’ 

populations with great efficiency. Using dynamic traffic assignment (Verbas et al., 2018), network 

traffic is balanced to achieve a dynamic user equilibrium.  

POLARIS employs a traditional modeling approach to separate mode-choice models based on 

different activity purposes: home-based work/school, home-based other, and non-home-based. 

Each choice is modeled using a nested-logit model, which includes nine transportation modes: 

driving alone, using TNC services, riding as a passenger, walking, biking, bus with walk access, 

bus with drive access, rail with walk access, and rail with drive access. In this model, driving alone 

and TNC are grouped under the "auto" branch (Figure 1), while the two rail modes are grouped 

under the "rail" branch. Various demographic factors, accessibility data, and level of service (LOS) 

factors are included in the model. The demographic factors include individual characteristics like 

education level, employment status, and whether a person holds a driver’s license, as well as 

household information such as income, household size, and vehicle and bike ownership. The 

model also includes factors such as land-use characteristics and the transportation network by 

using road-network density and activity density in the destination zone. For analysis, the LOS 

variables include in-vehicle travel time, wait time, and fare, where wait time is calculated from 

simulation runs and fares are inputs to the model. 

METHODOLOGY 

SAV simulations have used POLARIS previously (Dean et al., 2021; Huang and Verbas, 2021; 

Gurumurthy et al., 2022; Hunter et al., 2024), and a single SAV operator is responsible for the 

centralized management of ride requests and may reposition SAVs in response to changes in 

vehicle demand-supply ratios. The SAV operator performs repositioning tasks while maintaining 

a record of present and potential execution requests. The model addresses the needs of travelers 

who opt for ride-sharing using the DRS algorithm, which includes a heuristic approach to 

effectively handle travel delays encountered at various points during the trip, as discussed by 

Gurumurthy and Kockelman (2022a and 2022b). When an SAV trip request is logged, the operator 

assigns it to the nearest vehicle to reduce eVMT and wait time in a zone-based structure. This 

study extends the ride-option choice framework developed by Paithankar et al., 2024 for a single 

SAV operator to a two-operator scenario. At the upper level, travelers select SAV over other modes 

using a multinomial logit model based on network skims of travel time, wait time, and fare 

estimates (Figure 1). At the lower level, riders who opt for SAV compare the two operators based 

on predicted fares and trip durations. Rather than imposing fixed time-of-day or zone-based fare 

multipliers, each operator employs a ride-option-specific fare-prediction regression model. 

Estimated on NYC TLC data, this model forecasts the rider fare for each trip and ride type 

(economy 4-seater, economy 6-seater, premium 4-seater, premium 6-seater) as a function of 

distance, duration, instantaneous demand, past demand (demand ratio), and hour of day. The 
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regression-based pricing engine runs continuously: at every simulation run, each operator updates 

its fare predictions for each service option based on current demand densities and prior-period 

spillovers. These endogenously generated fares then feed back into both the operator-choice and 

service-choice utilities, capturing how profit-maximizing algorithms would calibrate prices in a 

competitive market. 

 
Figure 1 Mode Choice Model with Integrated Service Choice Framework (Paithankar et. 

al., 2025) 

Once a rider has selected both an operator and ride option type, the vehicle‐assignment logic 

executes in real time (see Figure 2). First, the system checks whether the trip request is for a future 

reservation or an immediate pickup: future reservations are added to a reservation queue, while 

immediate requests proceed directly to the matching module. In the matching phase, each 

operator’s SAV fleet is scanned, identifying SAVs who are currently idling or in a repositioning 

status. For each SAV, the simulation verifies (1) that the vehicle’s current onboard load plus the 

new party size does not exceed its seating capacity and (2) that assigning the party would not 

violate any DRS rules (for example, total delay stays within acceptable limits). If both conditions 

hold (i.e., capacity is sufficient and DRS constraints are satisfied), the vehicle is assigned to the 
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request, and a pickup time is scheduled for its next available slot. If either check fails, the search 

continues through the remaining idle/repositioning SAVs until a feasible match is found (or until 

the request is turned down if no suitable SAV becomes available).  

 
Figure 2 Flowchart of SAV Request Processing and Vehicle Assignment Logic in POLARIS 
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OPERATOR-SPECIFIC VARAIABLE FARE STRATEGY 

In NYC’s crowded ride-hailing market, Uber and Lyft have both adopted tiered fare structures, 

but they emphasize different levers to maximize revenue and manage fleet usage. This study has 

leveraged detailed ride-hailing trip data from NYC (TLC Trip Record Data, 2023) across all five 

boroughs (Bronx, Brooklyn, Manhattan, Queens, and Staten Island) and Newark Airport. The data 

includes trip records from medallion-regulated yellow and green taxis alongside app-based for-

hire services; however, our analysis is confined to the Uber and Lyft subsets, comprising 

approximately 9.8 million rides between September 15 and September 30, 2024. These trips 

represent roughly 65–70% of the total for-hire vehicle market in NYC. The variations of 2024 

ride-hailing volumes over a year reveal a gradual upward trend in average daily trips for Uber and 

Lyft, rising from about 630,000 in January 2024 to approximately 680,000 in December 2024. 

Seasonal demand intensifies during the October–December window, likely driven by holiday 

travel and year-end social activity. The highest daily average observed since January 2021 

occurred in March 2024, at approximately 690,000 trips per day. September was selected as a 

reference period because it reflects normative urban mobility conditions, schools are fully in 

session, workplaces operate at normal capacity, COVID-19 impacts have significantly diminished, 

and extreme weather conditions are generally absent.  

Table 1 provides summary statistics of all variables available in this dataset. Uber dominates 

NYC’s ride-hailing market, with approximately 72% of all trips analyzed (compared to Lyft's 

28%). The ride-sharing requests are relatively low, with only about 3.07% of all trips involving 

riders requesting this service and an even smaller fraction (0.99%) resulting in a matched ride. 

Approximately 41% of trips incurred a congestion surcharge ($2.75 per trip), indicating that these 

rides began and ended in New York State and either originated, concluded, or passed through 

Manhattan south of 96th Street, while 24% of trips either originated, concluded, or passed through 

new congestion zone, which extends from 60th Street down to Battery Park and will now pay 

additional $1.5 per trip as per NYC's congestion pricing program launched on January 5, 2025 

(NYC TLC, 2024). In addition to these congestion fees, riders are subject to a $2.50 Airport Fee 

for airport-related trips, an 8.875% sales tax, and a 2.75% Black Car fund fee, which contributes 

to driver benefits and safety programs (Lyft Blog, 2025). 

Table 2 below summarizes the OLS fare‐prediction regression results using NYC TLC trip data 

during September 2024 (with 19.8 million ride observations, of which 15 million are Uber trips 

and 4.8 million are Lyft trips). In Uber’s fare regression model (R² = 0.868), the intercept of $2.52 

represents the estimated base fare (in dollars) when trip distance, duration, and other covariates 

are zero. The distance coefficient (0.958) implies that each additional mile adds about $0.96 to the 

fare, while each additional minute contributes about $0.49. Shared-ride trips receive substantial 

per-unit discounts: pooled services on average of 58% lower per-minute charges and 20% per-mile 

charges. Weekend trips are associated with 13% lower fares, everything else constant. Uber offers 

lower marginal per-mile rates for larger or premium vehicles but adds extra time-based fees, 

rewarding passengers for longer trips in bigger cars, and Uber still earns a premium for vehicle 

availability (due to a larger fleet of drivers, and brand familiarity). The 6‐seater economy tier 

(UberXL) reduces the per‐mile fare coefficeint by about 32% (dropping from $0.958 to $0.656) 
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while nearly tripling the marginal per-minute coefficient. An additional minute in UberXL is 

estimated to cost $1.447 versus $0.489 in UberX (on average), a 196% premium which suggest 

that riders will pay less per marginal mile but significantly more per added minute. In the case of 

Uber’s 4‐seat luxury cars (offered as UberBlack), the estimated marginal per‐mile fee is $0.734 

but the per‐minute fare rises 288% (to $1.896).  

Table 1 Summary Statistics of NYC’s Uber + Lyft Trips from September 15 to 30, 2025 (n 

= 9,875,667 ride-hailed trips) 

Variable Name Mean Std. Dev Min 
Median 

(50%) 
Max 

Trip Distance (miles) 2.87 mi 5.93 0.00 2.21 10.9 

Trip Duration (minutes) 18.4 min 10.98 0.00 15.8 52.1 

Passenger Wait Time per Trip (min) 4.66 min 2.24 0.00 4.25 11.3 

Fare Paid per Trip ($) $16.19 7.32 0.00 14.5 43.6 

Uber’s Fare ($ per mile) $6.35 2.60 0.03 6.10 15.6 

Lyft’s Fare ($ per mile) $8.07 3.03 0.01 6.50 15.6 

Tolls Paid per Trip ($) $0.72 2.65 0.00 0.00 66.6 

Black Car Fund per Trip ($) $0.46 0.22 0.00 0.42 1.16 

Sales per Tax per Trip ($) $1.43 0.65 0.00 1.28 3.43 

Congestion Surcharge per Trip ($) $0.93 1.30 0.00 0.00 5.50 

Airport Fee per Trip ($) $0.19 0.67 0.00 0.00 7.50 

Tips Paid per Trip ($) $1.01 2.72 0.00 0.00 100 

Driver's Pay per Trip ($) $13.7 6.18 0.00 11.3 30.9 

Monday Trips (Indicator) 0.12 0.32 0.00 00.0 1.00 

Tuesday Trips (Indicator) 0.12 0.32 0.00 0.00 1.00 

Wednesday Trips (Indicator) 0.12 0.33 0.00 0.00 1.00 

Thursday Trips (Indicator) 0.13 0.34 0.00 0.00 1.00 

Friday Trips (Indicator) 0.21 0.41 0.00 0.00 1.00 

Saturday Trips (Indicator) 0.17 0.37 0.00 0.00 1.00 

Sunday Trips (Indicator) 0.14 0.34 0.00 0.00 1.00 

The Lyft model (R² = 0.936) begins with a lower intercept of $1.85, with Lyft’s marginal per-mile 

charge ($1.568 per mile) being higher than its marginal per-minute rate ($0.367 per minute), 

indicating that Lyft leans more heavily on distance-based pricing. Each upgrade then adds a clear 

premium in both distance and time charges. The 6-seaters ride (“Lyft XL”) adds modest per-unit 

additions of about a 21% raise over standard in per mile charge and a 65% increase in marginal 

per minute charge ($0.33 per mile, $0.24 per minute), and luxury offerings raise marginal per-mile 

costs ($0.64 for 4-seat, $1.72 for 6-seat) alongside moderate time premiums ($0.48, $0.89). In case 

of luxury offerings, the 4-seat option boosts per-mile fees by $0.64 (a 41% bump) and marginal 

per-minute fees by $0.48 (a 132% jump). The most expensive option is the 6-seater luxury ride, 

which incurs an additional $1.72 per mile (110% above economy) and $0.89 per minute (241% 

above economy). Thus, when riders choose the largest luxury vehicle, they pay more than twice 

as much per mile and nearly four times as much per minute compared to the base service. 
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Uber and Lyft take fundamentally different approaches to time‐of‐day pricing in NYC. Uber’s fare 

adjustments are highly variable, with sharp surges when demand peaks, steep discounts when 

demand reduces, and continuous minute-by-minute tweaks. This contrasts with Lyft, which adds 

modest premiums around peak commute windows and holds fares largely flat the rest of the day. 

This difference stands out most sharply during the overnight and early morning hours. Between 1 

AM and 5 AM, Uber imposes substantial markups, peaking at $0.90 per minute around 4 AM to 

attract drivers into low-supply shifts. Lyft, by comparison, shows almost no overnight variation, 

signaling a “steady hands” strategy that trades big gains for consistent gains. At 8 AM, Uber offers 

a $0.03/minute discount to ease the morning rush, while Lyft adds $0.17/minute for its standard 

commute premium. During 11 AM–3 PM and again from 5 to 8 PM, Uber’s surcharges sit around 

$0.14–$0.17/minute, dip after lunch, and fall to $0.39 by 8 PM, while Lyft’s rates climb to 

$0.51/minute at 3 PM and hold at $0.25 from 4–7 PM. Lyft, in contrast, steadily increases fares 

into the afternoon (up to $0.51/minute at 3 PM) and then applies a consistent $0.25 uplift during 4 

to 7 PM. 

Table 2 OLS Fare-Prediction Regression Coefficients for Uber and Lyft Services (Y Fare 

per trip in dollars, N = 19 million rides) 

 
Y = Uber’s Fare 

per trip ($) 

Y = Lyft’s Fare 

per trip ($) 

 N= 15 million 

trips, R2=0.868 

N= 4.8 million 

trips, R2=0.936 

Variable Name Coefficient Coefficient 

Base Fare (Intercept) 2.524 1.849 

Trip Distance Rate ($/mile) 0.958 1.568 

Trip Time Rate ($/minute) 0.489 0.367 

Shared-Ride Time Discount ($/minute) -0.286 - 

Shared-Ride Distance Discount ($/mile) -0.189 - 

Weekend trip? -0.518 -0.215 

Demand Ratio Surcharge ($ per unit) 0.088 - 

 6-Seater Economy Distance Adjustment ($/mile) -0.302 0.331 

6-Seater Economy Time Adjustment ($/minute) 0.958 0.240 

4-Seater Luxury Distance Adjustment ($/mile) -0.224 0.638 

4-Seater Luxury Time Adjustment ($/minute) 1.407 0.483 

6-Seater Luxury Distance Adjustment ($/mile) -0.380 1.724 

6-Seater Luxury Time Adjustment ($/minute) 2.735 0.886 

Hour 1 AM–2 AM Trip? 0.351 - 

Hour 2 AM–3 AM Trip? 0.530 - 

Hour 3 AM–4 AM Trip? 0.627 0.030 

Hour 4 AM–5 AM Trip? 0.900 0.040 

Hour 5 AM–6 AM Trip? 0.616 - 

Hour 8 AM–9 AM Trip? -0.034 0.169 

Hour 10 AM–11 AM Trip? 0.170 - 

Hour 11 AM–12 PM Trip? 0.165 0.210 

Hour 12 PM–1 PM Trip? 0.138 0.318 

Hour 1 PM–2 PM Trip? 0.021 0.319 

Hour 2 PM–3 PM Trip? -0.075 0.410 

Hour 3 PM–4 PM Trip? -0.056 0.510 

Hour 4 PM–5 PM Trip? -0.212 0.510 
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Hour 5 PM–6 PM Trip? -0.001 0.510 

Hour 6 PM–7 PM Trip? 0.235 0.510 

Hour 7 PM–8 PM Trip? -0.129 - 

Hour 8 PM–9 PM Trip? -0.394 0.250 

Hour 9 PM–10 PM Trip? -0.063 0.138 

Hour 10 PM–11 PM Trip? 0.079 0.197 

Hour 11 PM–12 AM Trip? 0.216 0.217 

SAV DEMAND UNDER MULTI-OPERATOR AND RIDE OPTION SCENARIO 

Both operators assume a 4-seater standard SAV ownership cost of $40 per day plus $1.00 per mile; 

XL economy SAVs incur $60 per day plus $1.50 per mile, and premium (luxury) SAVs incur twice 

these operating costs. Previous studies have typically bundled cleaning and maintenance costs for 

SAVs into broader operational cost estimates (Loeb and Kockelman, 2019). They assumed a 

combined maintenance and cleaning cost of approximately $0.054–$0.066 per mile for privately 

owned vehicles. While Litman (2025) has suggested that cleaning costs could range from $0.33 to 

$2.00 per trip, depending on cleaning frequency and local labor rates, with these costs sometimes 

excluded from per-mile operating estimates. In this analysis, both operators assume a 4-seater 

standard SAV ownership cost of $40 per day plus $1.00 per mile; XL economy SAVs incur $60 

per day plus $1.50 per mile, and premium (luxury) SAVs incur twice these operating costs. To 

account for cleaning, this study further assumes a cleaning cost of $1.50 per trip, which is added 

to the operational expenses for each trip completed by the fleet. 

Temporal Patterns in Median Wait Times under Fixed and Variable Fare Strategies 

Figure 4 shows how median passenger wait times vary over 24 hours under the variable fare 

strategy for both operators’ 4 and 6‐seat economy and premium rides. In the pre‐dawn interval (1–

4 AM), waits are minimal, typically between 2 and 4.5 minutes. As demand increases toward the 

morning commute hours (7–10 AM), all 4-seated services rise, but Operator 2’s 4‐seat economy 

peaks most sharply at nearly 17 minutes wait time by 8 AM. At the same hour, Operator 1’s 4‐seat 

economy and Operator 2’s 4‐seat premium services climb to 6.3 and 8 minutes, respectively, while 

Operator 2’s 6‐seat economy and premium peak around 7.5 and 6.5 minutes. Following the 

morning surge, wait times narrow to a midday plateau of 1.5 to 3 minutes between 11 AM–3 PM 

for all services except Operator 2’s 6-seater economy service. This service-maintained wait times 

of 6.5 to 8 minutes throughout the day after 6 AM. A secondary, more modest wait time surge 

emerges in the evening (5–9 PM), when Operator 1’s 4‐seat economy returns to 6–7 minutes and 

Operator 2’s 4‐seat economy peaks at 8 minutes, while premium waits varies between to 1.5–4.5 

minutes. Operator 1’s 6-seat offerings remained inactive throughout due to the absence of demand. 

Fixed fares resulted in two distinct rush-hour surges in wait times, accompanied by a broad midday 

plateau (Figure 5). During the early morning interval (1–3 AM), wait times for 4-seat economy 

and premium services were modest, at approximately 2 minutes. A pronounced commuter peak 

followed at 8–9 AM, when Operator 1’s 4-seat economy and premium SAVs reached median wait 

times of approximately 7–8 minutes, and Operator 2’s economy services both peaked at 4.8 

minutes for 4-seaters and 7.5 minutes for 6-seaters. Thereafter, from late morning through mid-

afternoon (10 AM – 5 PM), all active services reached a stable plateau of roughly 2–3 minutes. 

Operator 1’s 6-seat offerings remained inactive throughout due to the absence of demand, while 

Operator 2’s 6-seat fleet showed consistently higher wait times (compared to 4-seaters) at all hours. 

A secondary evening peak (5–7 PM) again raised Operator 1’s 4-seat economy and Operator 2’s 
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4-seat premium service’ wait times to 7 minutes, before service’s wait times declined toward 3 

minutes after 10 PM. Under the variable‐fare regime, the most price‐sensitive segment, Operator 

2’s 4-seat economy actually endures a much sharper morning peak (nearly 17 min at 8 AM) than 

under fixed fares (≈ 4.8 min). At the same time, mid-day and off-peak waits for economy and 

premium services collapse to 1.5–3 min, versus a slightly higher 2–3 min plateau under fixed 

pricing. In contrast, fixed fares produce more uniform rush-hour peaks of 7–8 min across all active 

services and maintain a broad, moderate midday plateau, without any extreme spikes. Thus, varible 

pricing amplifies delays for the least price-elastic (high-demand) economy rides while 

compressing waits for premium and larger-seat services. This suggests that fare elasticity drives a 

redistribution of service: intense congestion (long waits) is confined to a narrow, inelastic segment, 

while the rest of the system experiences shorter waits. 

 
Figure 3 Hourly Median Wait Times for SAV Services under Fixed-Fare Rules 

 
Figure 4 Hourly Median Wait Times for SAV Services under Variable Fare Pricing 
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Figure 5 Hourly Median Wait Times for SAV Services under Fixed-Fare Rules 

Temporal Patterns in Demand by Ride Type under Fixed and Variable Fare Strategies 

Figure 6 illustrates how hourly demand varies across 24 hours under variable and fixed fare 

strategies for both operators' 4-seater economy and premium services. During the pre-dawn hours 

(1–5 AM), demand remains minimal across all services, ranging from 10 to 50 rides per hour, with 

variable fare strategies for both operators' economy services showing slightly higher baseline 

demand than their fixed-fare counterparts. As the morning commute approaches (6–8 AM), all 

services experience dramatic increases, but variable fare strategies demonstrate the most 

pronounced surges. Operator 1's 4-seater economy service under variable pricing peaks most 

sharply at approximately 850 rides per hour around 7 AM, while Operator 2's 4-seater economy 

service reaches nearly 800 rides per hour at the same time. In contrast, fixed fare strategies show 

more modest peaks, with Operator 1's 4-seater economy climbing to roughly 500 rides per hour 

and Operator 2's reaching approximately 350 rides per hour. Premium services under both fare 

strategies remain consistently low throughout this period, maintaining demand levels below 100 

rides per hour. Following the morning surge, demand patterns reveal distinct differences between 

fare strategies during the midday period (9 AM – 4 PM).  

Variable-fare economy services experience a temporary dip to 350-400 rides per hour before 

maintaining elevated plateaus of 400-450 rides per hour, while fixed fare services drop more 

significantly to 100-200 rides per hour. Premium services across both operators and fare strategies 

remain relatively flat at 10-50 rides per hour throughout the midday hours. A secondary, more 

substantial evening surge emerges (5–9 PM), when variable fare strategies again demonstrate 

superior performance1. Operator 1's 4-seater economy service returns to peaks of approximately 

850 rides per hour around 7 PM, while Operator 2's 4-seater economy reaches 800 rides per hour. 

Fixed fare strategies show more moderate evening peaks, with Operator 1 achieving approximately 

300 rides per hour and Operator 2 reaching 250 rides per hour. Premium services maintain a 

consistently low demand profile throughout the evening hours, rarely exceeding 50 rides per hour, 

regardless of the fare strategy. After 10 PM, all services gradually decline toward their overnight 
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baseline levels, with variable-fare economy services maintaining higher residual demand than their 

fixed-fare counterparts through the late evening hours. 

 
Figure 6 Hourly Demand for 4-Seater SAVs under Fixed-Fare Rules vs Variable Fare 

Strategy 

The overall demand profiles revealed that variable fare strategies consistently generate 2–4 times 

higher total demand across all time periods, suggesting that the market shows high price elasticity. 

The dramatic peaks and troughs in variable fare profiles indicate that consumers are highly 

responsive to price signals, with variable pricing effectively capturing consumer surplus that 

remains untapped under fixed pricing structures. This responsiveness shows that ride-hailing 

demand contains significant elastic components that can be activated through strategic pricing 

mechanisms. Figure 7 shows hourly demand variation over a 24-hour period for 6-seater economy 

and premium SAVs, comparing variable and fixed fare strategies for both Operator 1 and Operator 

2. During the pre-dawn hours (1–5 AM), demand across all services is low, typically ranging from 

5 to 50 rides per hour. Fixed fare strategies for both operators’ 6-seater economy and premium 

services maintain a modest baseline, with Operator 2’s fixed fare economy and premium services 

showing slightly higher demand than their variable fare counterparts. As the morning commute 

(7–9 AM) approaches, all ride types of spikes: the fixed-fare 6-seat economy option peaks at nearly 

180 rides per hour around 8 AM, while the fixed-fare 6-seat premium segment stays relatively flat 

between 110 and 125 rides per hour throughout the day (7 AM – 9 PM). Operator 1’s 6-seat 

offerings (both economy and premium) receive virtually no demand and remain idle. When 

variable fares were applied, Operator 2’s 6-seat economy profile follows the similar pattern but at 

lower volumes: the morning peak softens to about 125 rides per hour at 8 AM, then settles into a 

50-ride-per-hour plateau from 10 AM to 2 PM before climbing to roughly 100 rides per hour 

around 7 PM and tapering off toward midnight. In contrast, the variable-fare 6-seat premium 

service maintains a steady demand of approximately 75 rides per hour from 6 AM to 11 PM, 

indicating that premium riders are less price-sensitive under the variable fare strategy. 
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Figure 7 Hourly Demand for 6-Seater SAVs under Fixed-Fare Rules vs Variable Fare 

Strategy 

RESULTS 

Tables 3 and 4 below summarize fleet performance metrics for the two-operator, multi–ride-option 

SAV simulation under fixed (time-invariant) pricing rules and under a variable fare strategy, where 

each provider’s regression-based pricing algorithm continuously recalibrates fares based on real-

time and lagged demand conditions. 

SAV Operational Performance Under Fixed Fares 

Under fixed fares, Operator 1 charges a base fare of $2.00 plus $0.40 per mile and $0.10 per minute 

for its 4-seater standard SAV, $3.00 plus $0.50 per mile and $0.30 per minute for the 6-seater 

standard ride, $4.00 plus $0.80 per mile and $0.20 per minute for the 4-seater luxury option, and 

$6.00 plus $1.00 per mile and $0.40 per minute for the 6-seater luxury ride. Operator 2’s fixed fare 

schedule comprises a base fare of $1.00 plus $0.20 per mile and $0.10 per minute for the 4-seater 

standard option, $1.50 plus $0.30 per mile and $0.20 per minute for the 6-seater standard option, 

$2.00 plus $0.40 per mile and $0.20 per minute for the 4-seater luxury option, and $3.00 plus $0.60 

per mile and $0.40 per minute for the 6-seater luxury SAV. In contrast, under the variable fare 

strategy scenario, each operator’s regression-based pricing model (shown in Table 2) determines 

fares endogenously as a function of trip distance, duration, instantaneous demand, past demand 

ratios, and the hour of day.  

Under fixed‐fare pricing, Operator 1 did not receive any demand (see Table 3) for 6‐seaters; hence, 

its fleet of 245 SAVs is overwhelmingly devoted to 4‐seater rides (179 SAVs), with 97% of 

vehicles assigned to 4-seater class and only 2% (7 SAVs) set aside for 6‐seater rides. Of 238, 4‐

seater SAVs, 75% (approximately 179 SAVs) cater to economy riders, while the remaining 25% 

(about 59) operate as 4‐seater luxury SAVs. A relatively smaller 6‐seater SAVs, comprising six 

economy SAVs (86% of the XL sub‐fleet) and one 6‐seater luxury SAV (15% of 7), sees no 

demand under fixed fares and thus produces zero revenue. Operator 2, in contrast, maintains its 

210‐vehicle fleet more evenly across SAV sizes: 66% (approximately 139) are 4‐seaters (split 68% 

economy, 32% luxury) and 34% (around 71 SAVs) are 6‐seaters (also split 64% economy, 36% 

luxury). This distribution enabled Operator 2 to maintain viable service offerings in all four ride‐
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option tiers once fixed fares are imposed. Operator 1 captured nearly 66% all 4‐seater demand 

under the fixed‐fare regime. The 165 four‐seater economy vehicles collectively serve about 10,678 

rides each day, yielding an average wait time of 7.6 minutes and a mean trip distance of 4.5 miles. 

Those 165 economy SAVs accumulate 331 miles of vehicle‐miles traveled (VMT) per vehicle per 

day, of which 29% is empty (deadheading), and average 59.6 trips per SAV, leaving roughly 14 

hours of idle time per day. The four‐seater luxury arm (41 vehicles) serves 3,036 daily rides, with 

passengers waiting 5.5 minutes on average and traveling 3.7 miles per trip; those SAVs record 306 

miles of daily VMT per vehicle (35% empty) and average 51.4 trips per day, with about 14.8 hours 

of idle time. Since Operator 2’s fixed fares for 6-seater options are lower, all 6-seater demand is 

captured by Operator 2. As a result, Operator 1’s 6-seater economy and luxury vehicles see zero 

assignments. 

Operator 2’s diversified fleet, in contrast, serves a mix of 4‐seater and 6‐seater demands under 

fixed fares. Its 88 4‐seater economy vehicles serve 3,967 rides per day, producing a shorter average 

wait time of 4.9 minutes and 4.38 miles traveled per trip. Each 4‐seater economy SAV covers on 

average 207 miles per day (28% empty) and averages 42.2 trips, experiencing about 17 hours of 

idle time daily. The 59 4‐seater luxury vehicles, facing slightly lower demand relative to economy 

SAVs, served 3,120 rides per day, with an average wait of 6.5 minutes and 3.50 miles per trip; 

they logged 421 miles of VMT daily per vehicle and completed 69 trips per day, idle for about 

11.4 hours. In the 6‐seater economy tier, 38 SAVs completed 2,562 rides daily, with a 6.4 minute 

wait, a trip distance of 3.98 miles, 369 miles of VMT per vehicle (39%), 57 trips per day, and 12.9 

hours idle. These usage patterns translate directly into each operator’s cost, revenue, and profit 

performance under fixed fares.  Operator 1’s 4‐seater economy SAVs incur roughly $351 in daily 

operating cost per vehicle (which includes owning, operating and cleaning costs) and generate 

$593 per SAV in daily revenue. While a 4-seater luxury yielded $62 per day per SAV. Operator 

2’s 4‐seater economy ride offering is its most lucrative: SAVs cost roughly $249 per day and earn 

$371 in daily revenue, yielding $121 per SAV per day. The 4‐seater luxury SAVs, however, incur 

$625 per day in operating costs but cannot keep up with operating outlays, so each luxury SAV 

loses $66 per day. In a 6‐seater economy service, each of the 38 SAVs costs $452 per day and 

brings in $478, for a $26 daily profit. In contrast, the 6-seater luxury SAVs, despite serving 83 

trips and 567 miles per day, incur $1,050 in daily costs but only earn $772, resulting in a $278 loss 

per SAV each day. 

Table 3 Fleet Performance Metrics for the Region of Bloomington City with Service 

Choices, DRS under Fixed Fares 

 Operator 1 Operator 2 

  4-seater (standard size) 6-seater (XL) 4-seater  6-seater  

  Economy Lux Eco Lux Economy Lux Eco Lux 

SAV fleet size  

(25% population) 
245 SAVs 210 SAVs 

Population per SAV 167 Persons /SAV  195 Persons /SAV  

25% Demand (# Requests) 13,714 rides per day 11,814 rides per day 

SAVs per service type (%) 179 SAVs 59 6 1 94 SAVs 45 45 26 
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# Served rides/day 10,678 rides 3,036 - - 3,967 3,120 2,562 2,165 

Peak hour median wait 

time (min) 
7.6 min 5.5 - - 4.9 6.5 6.4 6.7 

Average travel 

distance/SAV rider 

(miles/day) 

4.5 miles 3.7 - - 4.38 3.50 3.98 3.63 

Average VMT/SAV 

(miles/SAV/day) 
331 mi/day 306 - - 207 421 369 567 

% empty VMT 29% empty 35% - - 28% 42% 39% 47% 

SAV trips/SAV/day 59.6 trips 51.4 - - 42.2  69 57 83 

Idle time 

(hours /SAV/day) 
14 hours 14.8 - - 17  11.4 12.9 7.1 

AVO (per revenue-mile) 
1.19 pax per 

revenue-mile 
1 - - 1.32  1 1 1 

AVO (per revenue-min) 
1.16 pax per 

revenue-min 
1 - - 1.25  1 1 1 

Cost per SAV ($/SAV/day) $351/SAV/day 479 60 120 $249 625 452 1050 

Revenue per SAV 

($/SAV/day) 
$593/SAV/day 541 0 0 $371 559 478 772 

Profit per SAV 

($/SAV/day) 
$59/SAV/day 62 -60 -120 $121 -66 26 -278 

 

SAV Operational Performance under Variable Fares 

With 245 SAVs and variable pricing, Operator 1 serves nearly all 4-seater economy requests 

(12,164 rides per day) under 25% fixed demand (see Table 4). Each 4-seater economy SAV 

averages a 7.7-minute passenger wait and a 4.6-mile per trip, which translates to 389 miles of VMT 

per vehicle per day (30% empty) and 67.9 trips per SAV, leaving roughly 12 hours idle each day. 

Because regression-based fares rise during peak demand, these SAVs generated $786 in daily 

revenue against $399 in operating costs (ownership, per-mile, and cleaning), yielding $386 profit 

per SAV per day. Operator 1’s 4-seater luxury vehicles, however, receive only 400 ride requests, 

resulting in a 2.2-minute wait and just 0.78 miles per trip on average. Since each luxury SAV still 

incurs 11.5 miles of VMT per day (43% empty) but completes only 6.7 trips, its operating cost is 

$109 while revenue is only $47 per vehicle per day, resulting in a $62 daily loss per 4-seater luxury 

SAV. The six‐seater vehicles see no demand at all, producing no revenue (and therefore carry their 

full ownership and cleaning cost of $60 or $120 per day as a loss of $60 or $120 per SAV). 

Operator 2’s 4‐seater economy SAVs collectively saw demand of 4,213 rides per day, with 

passenger waiting an average of 15.7 minutes and traveling 5.9 miles. Those SAVs logged 439 

miles of VMT per day (26% empty) across 78 trips, leaving 11.1 hours idle. Under variable fares, 

each SAV in this tier earned $1,252 per day while costing $449 to operate, resulting in a $793 

profit per SAV per day. The 4‐seater luxury SAVs served 2,007 rides, with passengers waiting 4.8 

minutes on average and traveling 2.47 miles per trip. In the 6‐seater economy tier, 20 SAVs serve 

1,744 rides per day with a 7.2-minute passenger wait time and 4 miles per trip.  
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Table 4 Fleet Performance Metrics for the Region of Bloomington City with Service 

Choices, DRS under Variable Fares 

 Operator 1 Operator 2 

  4-seater (standard size) 6-seater (XL) 4-seater  6-seater 

  Economy Lux Eco Lux Eco Lux Eco Lux 

SAV fleet size (25% 

population) 
245 SAVs 140 SAVs 

Population per SAV 144 Persons /SAV  252 Persons /SAV  

25% Demand (# Requests) 12,564 rides per day 9,357 rides per day 

SAVs per service type (%) 179 SAVs 59 6 1 54  41 20 25 

# Served rides 12,164 rides 400 - - 4,213  2,007 1,744 1,393 

Peak hour median wait 

time (min) 
7.7 min 2.2     15.7 4.8 7.2 5.2 

Average travel 

distance/SAV rider (miles) 
4.6 miles 0.78 - - 5.9  2.47 4.12 2.42 

Average VMT/SAV 

(miles/day) 
389 mi/day 11.5 - - 439  212 664 250 

% empty VMT 30% empty 43% - - 26%  33% 36% 46% 

SAV trips/SAV/day 67.9 trips 6.7 - - 78  49 87.2 55.7 

Idle time/day (hours 

/SAV/day) 
12 hours 21 - - 11 17.5 4.6 16.4 

AVO (per revenue-mile) 
1.18 pax per 

revenue-mile 
1 - - 1.55  1 1 1 

AVO (per revenue-min) 
1.15 pax per 

revenue-min 
1 - - 1.45  1 1 1 

Cost per SAV 

($/SAV/day) 
$399/SAV/day 109 60 120 $449 396 720 587 

Revenue per SAV 

($/SAV/day) 
$786/SAV/day 47  0  0 $1252 576 1266 902 

Profit per SAV 

($/SAV/day) 
$386/SAV/day -62 -60 -120 $793 180 547 314 

 

Economic Comparison  

When fares remain fixed, Operator 1’s strategy of concentrating almost entirely on 4‐seater service 

yields a 51% margin overall (Table 11) driven by modestly profitable 4‐seater economy and luxury 

SAVs, while its small 6‐seater arm sits idle. 4‐seater economy SAVs earn $593 per day and net 

$59 per day after operating costs, while 4‐seater luxury SAVs earn $541 and net $62. Because the 

6-seater economy and luxury tiers receive no demand, since their posted prices are too high relative 

to riders’ willingness to pay, they generate zero revenue and run losses of $60 and $120 per SAV 

per day, respectively. In contrast, Operator 2’s mixed‐fleet strategy under fixed fares yields just a 

2% overall margin. Although 4‐seater economy remains profitable, both 4‐seater luxury and 6‐

seater luxury SAVs incur steep losses that significantly outweigh the gains from 4‐seater and 6‐

seater economy, owing to their high operating costs. Thus, with static pricing, Operator 1 succeeds 

by cutting its 6-seater fleet to avoid losses, while Operator 2 loses money in its higher-cost 
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segments because those tiers cannot attract enough riders to cover operating expenses. Under 

variable fares, regression‐based pricing changes the economic performance dramatically for both 

operators. Operator 1’s 4‐seater economy SAVs now earn far more per day—turning a $386 profit 

per SAV. Even after “losing” money on a handful of 4‐seater luxury vehicles (which now receive 

few ride requests), its overall margin climbs to 83%. However, its 6‐seater vehicles remain unused 

even under variable fares. In contrast, Operator 2’s variable fares transform every tier into a 

profitable ride offering: 4‐seater economy SAVs earn $793 in daily profit per SAV, 4‐seater luxury 

SAVs net $180, 6‐seater economy SAVs net $547, and 6‐seater luxury SAVs net $314. As a result, 

Operator 2’s overall margin rises to 99%, eliminating the losses it suffered under fixed fares. 

Table 5 Revenue and Profit per SAV for Operators 1 and 2 under Fixed vs. Variable Fare 

Regimes 

 

Operator 1 Operator 2 

4-seater  

(standard size) 
6-seater (XL) 4-seater  6-seater 

Eco Lux Eco Lux Eco Lux Eco Lux 

Fixed 

Fares 

Revenue per SAV 

($/SAV/day) 
$593  $541  $0  $0  $371  $559  $478  $772  

Profit per SAV 

($/SAV/day) 
$59  $62  -$60 -120 $121  -$66 $26  -$278 

%Profit across 

Service  
51% ($189/SAV/Day) 2% ($11.5/SAV/Day) 

Variable 

Fares 

Revenue per SAV 

($/SAV/day) 
$786  $47  $0  $0  $1,252  $576  $1,266  $902  

Profit per SAV 

($/SAV/day) 
$386  -$62 -$60 -$120 $793  $180  $547  $314  

%Profit across 

Service 
83% ($265/SAV/day) 99% ($492/SAV/day) 

CONCLUSIONS 

This study demonstrates that incorporating regression‐based, ride‐option–specific pricing into a 

multi‐operator SAV simulation addresses the limitations of static‐multiplier approaches. By 

calibrating each operator’s fare models using NYC TLC data and allowing hourly adjustments in 

response to real‐time demand, competitor pricing, and historical spillovers, the study revealed how 

profit‐maximizing algorithms rebalance service tiers, an effect that fixed fares are unable to 

capture. With variable pricing in place, economy rides get squeezed into a very sharp morning 

bottleneck, Operator 2’s 4-seat economy riders wait almost 17 minutes at 8 AM, compared to 

under 5 minutes with flat fares, yet those same riders wait just 1.5–3 minutes during midday and 

off-peak hours. Premium and larger-seat services also see their waits shrink to that 1.5–3 minute 

window. By contrast, keeping fares fixed yields more even peaks, approximately 7–8 minutes for 

all services at rush hour, and a steady wait of 2–3 minutes throughout the day. Variable pricing 

also magnified economy-tier demand by roughly 2-3 times at rush hours, peaking at 800–850 

rides/hour versus 350–500 under fixed fares, and raises the midday plateau to 400–450 rides/hour 

(compared with 100–200). In contrast, fixed fares showed moderate variation in their demand, 

with economy demand peaking at 350–500 rides/hour in the morning and evening and dipping to 

10–50 rides/hour pre-dawn. Premium segments remain underused (<100 rides/hour) under both 

regimes. By raising economy fares during surges and simultaneously narrowing premium 
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surcharges when demand eases, variable pricing halves the morning and evening peaks for 4-seat 

economy trips and makes premium rides comparatively more attractive, driving premium volumes 

to more than double under surge conditions. During non‐peak times, variable pricing attracted a 

consistent level of trip demand across SAV types, contrasting with the dramatic troughs and peaks 

resulted from the fixed fare regime. In effect, adaptive pricing not only tempers extreme surges 

but also shifts riders toward higher-yield options, resulting in a smoother and more balanced 

utilization profile throughout the day. Fixed‐fare rules also forced every operator to decide which 

ride type it can profitably field at posted prices. Operator 1, for example, allocates almost its entire 

fleet to 4‐seater rides because fixed XL fares fail to cover the higher operating costs, those SAVs 

simply sit idle and lose money. Operator 2, by contrast, maintained a mixed fleet of both 4 and 6‐

seater vehicles, betting that there will be enough riders willing to pay fixed premium and XL fares 

to cover the high per‐mile and cleaning costs.  

In practice, however, Operator 2’s 4‐seater premium and 6‐seater premium SAVs operate at a loss 

($66 and $278 per day) because the static fare schedule is too high relative to riders’ willingness 

to pay: these vehicles never attract enough trips to break even. Meanwhile, its 4‐seater economy 

and 6‐seater economy SAVs manage only modest profits ($121 and $26 per day), which barely 

offset the losses in the premium tiers and produce an overall margin of just 2%. Once simulation 

is switched to a variable‐fare strategy, the entire profitability landscape shifts because the system 

can raise or lower per‐ride prices in response to real‐time demand conditions. In every economy 

tier (both 4 and 6‐seater), variable pricing unlocks large surge premiums during peak hours. For 

Operator 1, 4‐seater economy profit jumps from $59 to $386 per SAV per day. Though running 

costs rise by nearly $50, the ability to charge surge‐adjusted fares during rush demands yields a 

sixfold increase in net profit. Operator 2’s 4‐seater economy SAVs fare even better, with profits 

per SAV-day leaping from $121 to $793! The same increases hold for 6‐seater economy under 

Operator 2: fixed pricing produces only $26 per‐SAV-day profit, but variable pricing pushes that 

to $547. As long as sufficient riders book during peak times, the higher surge fares for economy 

rides outweigh the extra mileage and cleaning expenses, turning a slim profit into a substantial 

one. In the premium tiers, variable pricing can have one of two effects, depending on whether an 

operator successfully targets truly price‐insensitive riders. Operator 2’s 4‐seater premium service, 

which lost $66 per SAV per day under fixed fares, results in an overall profit under variable 

pricing: its cost per SAV-day falls from $625 to $396 (because few of those vehicles run outside 

peak windows), and its revenue per SAV increases modestly from $559 to $576. As a result, 4‐

seater premium flips from a loss to a $180 daily profit (per SAV).  

Similarly, Operator 2’s 6‐seater premium vehicles move from a fixed‐fare loss of $278 per day to 

a $314 daily profit (per SAV-day) under variable fares. However, because an operator’s fleet is 

based on anticipated demand, aiming to minimize both empty VMT and idle time, the premium 

tiers under variable pricing become heavily undersized and unprofitable. Fixed- and variable-

pricing strategies have differing outcomes for operators. First, in a fixed‐fare environment, 

operators must “pick winners” ahead of time: Operator 1’s 6‐seaters had to be abandoned and 

focussed on 4‐seaters to protect its margins, while Operator 2’s distributed demand across its 

diverse fleet ended up losing money in its high‐cost premium segments. Second, variable fares 

transform every tier that can capture a willingness‐to‐pay spike into a profit center, regardless of 

how unprofitable that same tier appeared under fixed fares. When a tier truly cannot attract riders 

at any price (as in Operator 1’s 6‐seaters), those vehicles simply sit idle, halting incremental losses 

rather than compounding them.  
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The operational and financial bottom line of this strategic shift is quite clear. Across the entire 

Bloomington network, the variable fare strategy drove significant gains in operational efficiency: 

while overall demand was reduced by 14%, total VMT fell by 17%, with eVMT declining even 

more sharply by 21%. This improved efficiency had a significant financial payoff, yielding a 174% 

boost in total profit and raising the average daily profit per SAV from $107 to $348. These impacts 

of variable pricing were also driven by better SAV usage, especially for Operator 2 with a 

diversified fleet. While Operator 1’s already focussed 4-seater fleet saw little change in its 

occupancy rates, Operator 2’s performance saw significant boost. Its average vehicle occupancy 

rose 19% per revenue-minute (from 1.32 to 1.55 persons), while occupancy per revenue-mile rose 

16% (from 1.25 to 1.45 persons), confirming that variable pricing successfully turned its underused 

premium and XL vehicles into efficiently dispatched, profitable assets. These findings carry 

significant policy and operational implications and can help regulators to recognize that simplistic 

fare caps or surge multipliers risk starving SAV fleets of revenue and forcing some ride options 

withdrawals. Instead, policies should promote data-driven pricing frameworks that align operator 

profitability while minimizing empty VMT. SAV operators should also tailor their fleet 

compositions to both local demand patterns and the competitive landscape. As the analyses 

showed, while economy-focused fleets can excel in low-demand areas, mixed fleets paired with 

variable pricing can capture broader market segments without sacrificing margins. 

LIMITATIONS AND FUTURE SCOPE 

While this study examines a focused window in which two SAV fleets compete, several key 

assumptions cause the modeled scenarios to differ in many ways from real markets. For example, 

these simulations exclude vehicle downtime for refueling, charging, routine cleaning, and 

maintenance, factors that, in practice, reduce fleet availability and generate added empty miles, 

thereby overestimating operational efficiency. The competitive framework assumes the 

simultaneous presence of two operators, each maintaining a full portfolio of four distinct service 

options throughout the simulation period. In reality, SAV markets are experiencing sequential 

operator entry where leading operators like Waymo currently dominate with little immediate 

competition, while emerging operators (e.g., Zoox and Tesla) enter progressively over time. Such 

staggered entry will affect customer loyalty formation, pricing leverage, and ongoing viability of 

various service options. The variable pricing models implemented assume that each operator 

adjusts fares independently, without anticipating or strategically responding to competitors’ fares.  

In practice, ride-hailing market competitors continuously track and respond to one another’s fare 

changes through sophisticated competitive fare adjustment algorithms. As a result, real-world 

outcomes may result in optimistic projections of profits as fare undercutting, or dynamic “fare 

wars” are not explicitly simulated. Moreover, this study holds SAV fleet sizes constant across the 

day and uses different pricing strategies to allocate scarce capacity, yielding pronounced peak 

waits for economy riders. In contrast, traditional TNCs expand human-driver supply during peaks, 

mitigating wait spikes without relying exclusively on higher prices. A hybrid design such as, 

baseline SAV capacity complemented by flexible human-driven supply during peaks and special 

events, could further reduce peak waits and price volatility. Future extensions can include 

simulating such mixed fleets, as well as policies that promote all-day pooling and intercity 

repositioning of SAVs during major events. Over a longer horizon, restrictions on human-driven 

trips in sensitive zones (e.g., CBDs) could further shift the balance toward pooled SAV services. 
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