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ABSTRACT

Ride-hailing providers like Uber, Lyft, and Didi compete daily in global markets, yet existing
research has largely overlooked the dynamic interdependence between fares and demand across
time, location, and service providers. This study addresses that gap by jointly estimating the
simultaneous relationship between demand and per-mile fares for Uber and Lyft in New York
City (NYC). A system of simultaneous equations is solved using instrumental variables that
account for cross-equation correlation and endogeneity. The analysis leverages operator-specific
fare data and served-trip demand every 10 minutes over a 15-day period across NYC’s 260
taxi zones. Weather variables (precipitation, temperature, wind speed) are used as instrumental
variables to identify exogenous shifts in demand. A multiway-clustered variance
estimator reflects heteroskedasticity plus correlations across time and space, and multiway
block bootstrapping captures cross-cluster correlations. Model estimates suggest that a $1-per-
mile rise in Uber’s and Lyft’s fares will lower the demand (trip requests) by 5.8% and 64%, and
a 1 SD rise in precipitation (3.35 inches) lowers demand by 17%. A 1 SD rise in temperature and
wind speed (6.1°F and 2.8 mph) raises demand by 4.4% and 3.7%, respectively. The cross-
equation effects suggest that a 1 SD rise in demand results in a 9% rise in Uber’s per-mile fares
but just 2.2% in Lyft’s fares.

Keywords: ride-hailing services, market competition, supply and demand, TNCs, demand
prediction, pricing strategies.



BACKGROUND

On-demand ride-hailing services are transforming urban travel patterns by facilitating efficient
matching between drivers and passengers through smartphone apps (Wang et al., 2016; Chen et
al., 2020; Ke et al., 2020; Zhou et al., 2022a and Zhou et al., 2022b). These apps collect real-time
data from passengers and drivers, giving them control over short-term supply and demand. On the
demand side, surge pricing, which varies based on time and location, influences passengers' choice
of provider (e.g., Uber or Lyft, DiDi or ApolloGo). On the supply side, providers adjust surge
pricing and vehicle dispatching strategies to manage the availability of vehicles throughout the day
(Chen et al., 2020). Ride-hailing apps are popular not just because of their convenience and
technology but also due to their pricing strategies. To draw in more users, many of these apps give
subsidies to both passengers and drivers (Wang et. al., 2016). It is also common for these providers
to strategize their fares and services to capture a larger market share while competing in local
markets. For instance, Didi and Uber China were in a price war until 2016, but by November 2023,
Uber regained a portion of its lost market share, stabilizing competitive dynamics between the two
companies. Didi also faces competition from Chinese rivals, like Shouqi, Meituan, and Shenzhou
(Zhou et al., 2022a). Currently, Uber and Lyft compete in the U.S., while Grab and Gojek compete
in Southeast Asia, Ola and Uber in India, Bolt and Uber in Europe, and Careem and Uber in the
Middle East (Wang and Yang, 2019).

Paronda et al. (2016) analyzed Uber, conventional taxis, and GrabCar in the Philippines, finding
that Uber's service was 75% faster than its competitors and 35% and 28% cheaper than GrabCar
and taxis, respectively. Their findings also revealed that GrabCar was the most reliable for vehicle
availability, while Uber received the highest service-quality ratings. But they did not consider the
role of drivers as a third party in the competition. Some of these limitations were later addressed
by Huang et al. (2023), who analyzed spatiotemporal variations in ride-hailing fares and driver
behavior characteristics to assess the social welfare of passengers and drivers. They also evaluated
market share and competition intensity to capture the competitive dynamics among four operators
in New York City (NYC): Uber, Lyft, Juno, and Via. The results showed that competition was
most intense during weekday morning rush hours (6 to 8 a.m.), significantly higher than on
weekends. This study highlighted that greater competition intensity lowers passenger costs and
raises driver income, although excessive competition reduces the profitability of ride-hailing
operators. Similarly, Meskar et al. (2023) investigated spatiotemporal pricing, driver
compensation, and matching rates on a dynamic fleet-based ride-hailing operator aimed at
maximizing profits. Their study considered drivers' possibility to accept or decline ride requests
and showed that networks with balanced demand patterns were the most profitable. They
concluded that the more balanced the demand across the network, the higher the potential profit
for the operator. But neither of these studies allowed for feedbacks between provider fares and
(instantaneous) service demands.

A few studies have emphasized the effects of pricing dynamics on operator revenue in a
competitive market (Chen et al., 2023; Huang, 2023). Rather than directly using the intractable
stochastic dynamic program to balance spatial-temporal mismatches between passenger demand
and driver supply, Chen et al., 2023 proposed a deterministic convex program (DCP) that captures
the trade-off between pricing revenue and vehicle availability across regions and time. Their
findings showed that dynamic pricing adjusted to local shortages and surpluses when tested on
NYC market, yielded 5-6% higher revenue and served 3—4% more passengers versus a best-
available static schedule. Huang (2023) focused on fare strategy modelling using machine learning
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methods. He predicted NYC taxi fares using trip distance (computed via the Haversine formula)
and passenger count, comparing linear regression, decision tree, and random forest models. As
expected, all three achieved reasonably low error; the two tree-based methods gave more accurate
results than ordinary least squares. The linear regression model yielded an RMSE of 1.718, a
decision tree cut that reduced the error by roughly 26% down to 1.277, and the random forest
improved accuracy further with an RMSE of 1.264, an additional 1% improvement over the
decision tree alone.

Fare-setting strategies under competition are not limited to ride-hailing markets. Airlines too
adjust fares to capture the market and optimize profits across millions of OD pairs and departure
times. Paithankar et al. (2024) analyzed seasonality, cabin type, and other features affecting US-
carrier airline fares using feasible generalized least square regression. They found that international
trips from the U.S. between October and December are more expensive than those in June, and
business-class tickets cost nearly five times more expensive than economy-class tickets. While
these studies shed light on pricing strategies, they fail to account for simultaneity between fares
and demand levels, by day of year, departure time, and OD pair. In reality, fare adjustments
influence demand, and demand fluctuations, in turn, affect fares, creating an endogeneity issue
that requires a more robust estimation to capture these interdependencies effectively.

This simultaneity issue has been partially addressed by Parvez et al. (2023), who analyzed both
the continuous decision of trip fare and the discrete destination choice of TNC users. They modeled
fare with a linear regression (LR) whose right-hand side includes trip attributes (distance, peak-
period indicators, shared-ride flag), origin and destination activity measures (recent demand,
distance to CBD), built-environment and weather covariates, plus a term for unobserved factors
shared with destination choice. Destination choice was predicted by a multinomial logit (MNL)
over 30 census-tract alternatives, with utilities that depend on origin—destination distance, land-
use mix, infrastructure (bus stops, bike lanes, transit score), demographics, and the same latent
factor in the LR. Their results showed that the joint LR-MNL model outperformed separate fare
and destination models: the joint system achieves a higher log-likelihood (LL = 222,717 vs.
222,858 for the independent models) and a lower Bayesian information criterion (BIC =45,793.20
vs. 46,075.04). In the fare equation, trip distance was the strongest positive driver of cost, peak-
period trips carried a significant surcharge, shared trips had lower fares, and both built-
environment (e.g., distance from CBD, nearby transit stations) and weather (snow depth) showed
measurable influence on fares. In the destination choice model, longer OD distances and residential
or institutional land uses suppressed choice probability, while commercial/recreational areas,
higher transit and walk scores, and street density attracted more trips. All else equal, rides that
begin farther from the central business district had higher fares, presumably due to drivers covering
longer empty distances (dead heading”) to pick up riders located far from other trip-makers,
resulting in more empty miles (as discussed in Gurumurthy et al., 2021, for example).

Related to this, Ozkan (2020) derived structural insights into when simple “charge-everyone-the-
same” fares and “serve-only-local” matches suffice. He also identified when operators must
optimize both origin-specific pricing and cross-zone matching (subject to supply) demand flow
conservation and the requirement that drivers earn the same per-unit-time revenue in every
location, to outperform one-size-fits-all policies. He showed that, under realistic heterogeneity in
willingness to pay, the joint “origin-based pricing + cross-matching” scheme can raise total match
rates by up to 60% over price-only or match-only baselines, even when accounting for dead-
heading costs, whereas in the special case of uniform valuations simple constant fares and local
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matching are already optimal. Unlike Ozkan (2020), Dey et al. (2021) did a data-driven, city-wide
analysis of NYC’s taxi market by jointly modeling two linked phenomena: the total number of
monthly trips originating (from January 2015 to December 2018) in each of the city’s 259 taxi
zones, and the proportion of those trips served by Yellow taxis, Green taxis, or TNCs
(Uber/Lyft/Juno/Via). They fit a joint econometric system made up of a negative-binomial count
model for total trips and a multinomial fractional-split model for service shares, linked through
shared latent-factor terms and estimated via simulated maximum likelithood using scrambled
Halton sequences. Their results reveal that ride-hailing demand more than doubled over the study
period—TNCs grew from 13% to 70% of all dispatches by late 2018—while traditional taxi
volumes fell sharply. In the demand model, zones with higher job density, more zero-car
households, and greater transit access saw the largest increases in trip counts, whereas snow depth
and dense bike-lane networks reduced ride-hailing use. In the share model, higher population and
median-income areas tended to favor yellow taxis, while zones farther from airports and with lower
transit access shifted toward TNCs; zero-car households also raised both Green-taxi and TNC
shares. A positive correlation term confirms that unobserved factors boosting the Yellow-taxi share
also tend to boost the TNC share.

Although most prior studies overlook distinctions by vehicle type, a few have examined service-
specific attributes and pricing. For instance, Schwieterman (2019) conducted a paired-trip analysis
of Lyft, Lyft Line, UberX, UberPool, and Chicago Transit Authority (CTA) services in Chicago
andfound that ride-hailing fares cost between $42 and $108 per hour of travel-time saved, far above
the $14.95 per hour value of time for personal travel recommended by the U.S. DOT (UDOT 2016,
in 2018 dollars). However, when accounting for business travelers, whose time is valued at $28.85
per hour under the same guidance, and for trips between neighborhoods with poor transit coverage,
ride-hailing often remains a cost-effective alternative. Meanwhile, Chao (2019) took a more
focused approach and analyzed UberX’s surge pricing, which adjusts fares in real-time based on
demand, supply, and other external conditions. He used real-time operational data from Uber's
APIs for ten different origin-destination pairs, and controlled for weather (thunderstorms, squalls,
mist/clouds), time of day, and day of the week. However, Schweiterman (2019) and Chao (2019)
did not control for or discuss competition between providers. This gap is important to address,
since competition can dramatically affect total demand, mode splits, provider profits, and traveler
welfare. Demand fluctuates across time and space, as a function of trip type, land uses, traveler
wealth, impatience, and so on. For example, passengers from higher-income residential areas are
more willing to pay for shorter wait times and more luxurious vehicles. As a result, competition
may vary greatly across different parts of a city and region, depending on the availability and
popularity of ride-hailing services by neighborhood and time of year.

Several studies highlight demographic and built environment impacts on taxi demand (and, to
some extent, supply). McNally and Rafiq (2021) identified population and employment as key
factors, while Qian and Ukkusuri (2015) linked lower income neighborhoods to fewer NYC taxi
trips. Yu & Peng (2019) emphasized the effects of the built environment on ride-sourcing. Spatial
imbalances dominate taxi demand, with 90% of trips concentrated in Manhattan (Qian and
Ukkusuri, 2015), district-level disparities in Munich (Jager et al., 2016), and local imbalances in
Shanghai (Liu et al., 2012). Geographically Weighted Regression (GWR) models (Chen et al.,
2021; Li et al.,, 2019) address spatial heterogeneity, however, spatial spillover effects, or
interactions between neighboring areas, remain underexplored. While studies including Correa et
al. (2017), Pan et al. (2019), and Lavieri et al. (2018) employed spatial error/lag models or
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multivariate count models, none fully address spatial autocorrelation in explanatory variables or
quantify spillover effects. Temporally, demand fluctuates daily (Zhu and Mo, 2022; Liu et al.,
2015) and weekly (Zhao et al., 2016), with time series (Moreira-Matias et al., 2013) and machine
learning (Zhou et al., 2019a) aiding prediction. This study bridges existing gaps by jointly
estimating ride-hailing demand and corresponding fares while accounting for spatial and temporal
spillover effects.

This gap is important to address for dense urban areas like NYC, where competition among ride-
hailing operators is influenced not only by spatiotemporal variations but also by regulatory policies
and consumer preferences. In January 2025, the New York State government started a $1.50
congestion charge to be added to Uber and Lyft fares for trips entering Manhattan south of East
60th Street, which is passed on to riders (Congestion Pricing Program 2024). This charge is in
addition to the existing For-Hire Vehicle Congestion Surcharge of $2.75, which applies to all ride-
hailing trips that both begin and end in New York State and either begin, end, or pass-through
Manhattan south of, but not including, 96th Street (Congestion Surcharge, 2024). These fare
updates have influenced the demand for Manhattan ride-hailed trips, and probably also their fares,
as consumers may shift among service options available to reduce costs or avoid premium services.
This dynamic disequilibrium affects the competitiveness and pricing strategies of ride-hailing
providers, and this study examines the interdependence between fare and demand across NYC
operators.

This study extends previous research (Zheng et al., 2022; Zhu et al., 2022) by modeling
competitive fare interactions between two dominant ride-hailing operators while incorporating
spatiotemporal spillover effects that influence pricing strategies across urban regions and
endogeneity between fare and demand. It advances the understanding of fare and demand variation
among ride-hailing operators using a three-stage least square (IV3SLS) estimation approach to
analyze Uber and Lyft trips in NYC. It sheds light on how fare strategies diverge across operators,
neighborhoods, and times of day by integrating trip data with demographic, weather, and built
environment variables. The following section outlines the datasets used in this study, followed by
a description of the methodology employed. The last two sections present model estimates, and a
summary of findings.

DATA DESCRIPTION

This paper leverages detailed ride-hailing trip data from NYC (TLC Trip Record Data, 2024)
across all five boroughs (Bronx, Brooklyn, Manhattan, Queens, and Staten Island) and Newark
Airport. The full dataset includes trip records from medallion-regulated yellow and green taxis
alongside app-based for-hire services; however, our analysis is confined to the Uber and Lyft
subsets, comprising approximately 9.8 million rides between September 15 and September 30,
2024. These trips represent roughly 65-70% of the total for-hire vehicle market in New York City
(NYC TLC, 2024). The dataset contains pickup (trip start) and end times (to the second), origins
and destinations (to the level of 260 taxi zones), network distance traveled per trip (in tenths of
miles), whether the ride was requested as a shared ride, and whether a match was made. It includes
details on the base fare and any additional fees, such as, tolls, surcharges, and airport fees. These
zones collectively span over 306 square miles, covering the primary regions Uber and Lyft serve.
Table 1 provides summary statistics of all variables available in this dataset. Uber dominates
NYC’s ride-hailing market, with approximately 72% of all trips analyzed (compared to Lyft's
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28%). The ride-sharing requests are relatively low, with only about 3.07% of all trips involving
riders requesting this service and an even smaller fraction (0.99%) resulting in a matched ride.

TABLE 1 Summary Statistics of NYC’s Uber + Lyft Trips from September 15 to 30, 2024
(n= 9,875,667 ride-hailed trips)

Variable Name Mean ls)télv' Min l\élse(ﬁ,l/j)n Max

Trip Distance (miles) 2.87 mi 5.93 0.00 2.21 10.9

Trip Duration (minutes) 184 min | 10.98 | 0.00 15.8 52.1
Passenger Wait Time per Trip (min) | 4.66 min 2.24 0.00 4.25 11.3
Fare Paid per Trip ($) $16.19 7.32 0.00 14.5 43.6
Fare per mile-Uber ($ per mile) $6.35 2.60 0.03 6.10 15.6
Fare per mile- Lyft ($ per mile) $8.07 3.03 0.01 6.50 15.6
Tolls Paid per Trip ($) $0.72 2.65 0.00 0.00 66.6
Black Car Fund per Trip ($) $0.46 0.22 0.00 0.42 1.16
Sales per Tax per Trip ($) $1.43 0.65 0.00 1.28 3.43
Congestion Surcharge per Trip ($) $0.93 1.30 0.00 0.00 5.50
Airport Fee per Trip ($) $0.19 0.67 0.00 0.00 7.50
Tips Paid per Trip ($) $1.01 2.72 0.00 0.00 100
Driver's Pay per Trip ($) $13.7 6.18 0.00 11.3 30.9
Monday Trips (Indicator) 0.12 0.32 0.00 0.00 1.00
Tuesday Trips (Indicator) 0.12 0.32 0.00 0.00 1.00
Wednesday Trips (Indicator) 0.12 0.33 0.00 0.00 1.00
Thursday Trips (Indicator) 0.13 0.34 0.00 0.00 1.00
Friday Trips (Indicator) 0.21 0.41 0.00 0.00 1.00
Saturday Trips (Indicator) 0.17 0.37 0.00 0.00 1.00
Sunday Trips (Indicator) 0.14 0.34 0.00 0.00 1.00

The demographic data for the OD zones were obtained from EPA's Smart Location Data (NYC
Planning, 2024). In a competitive ride-hailing market, fare, destination, and trip distance all affect
demand (i.e., the number of ride requests), and demand can also influence fares. Daily weather
conditions were included in the analysis by retrieving daily meteorological data from Meteostat
(2023), at the weather station nearest Manhattan (40.7128° N, —74.0060° W). This data includes
average temperature, total precipitation, and average wind speed for each calendar day. These
variables were then merged with the ride-hailing records by date, ensuring that each 10-minute
fare bin in a given zone was associated with the corresponding daily weather conditions. During
peak periods, a surge in trip requests might lead to surge pricing, which raises fares. This surge in
demand may also lead to congestion, resulting in longer trip durations. To analyze the
interdependence between demand, supply, and fares, trips were grouped into 10-minute bins (over
15 days and 24 hours) for each of the 260 zones, capturing short-term demand fluctuations. Of a
potential 561,600 bins (260 zones x 15 days x 24 hours x 6 bins per hour), 495,128 bins exist in
the dataset.
TABLE 2 Summary Statistics of Trip, Demographic, Built-Environment, and Weather
Variables Within Spatiotemporal Bins (N = 495,128)
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Model Variables Mean | Median Ste(:, Min | Max
Demand (Trips Served within bin) 308.4 | 2395 253.8 | 2.0 | 2064
Tri ; - TR
Varia‘gles Uber's Fare ($ per mile within bin) 6.24 6.19 1.09 2.70 | 11.84
Lyft's Fare ($ per mile within bin in zone) 6.09 5.65 2.42 | 0.09 | 13.68
Population Density (people/acre in zone) 52.71 9.73 94.4 0.0 | 728.1
Employment Density (Jobs/acre in zone) 106.9 3.53 475.1 0.0 | 4925
Household Workers Per ZJ(;)IE)e;n Zone (Workers/Job in 0.501 0121 0.678 00 | 339
Total Road Network Density (Facility Miles of
Road Links Per Square Mile in Zone) 3587 | 26,07 49.07 0.0 13555
Street Intersection ]?en.suy (Intersections/Square 1827 79 2789 00 | 1804
Mile in Zone)
# Workers Earnmg. $1250 Per Month or Less at 185.8 115.8 2882 00 | 2407
Pickup Zone
# Workers Earning Between $1250 To $3333 Per
Month at Pickup Zone 275.7 147 456.7 | 0.0 | 4052
Demographic # Workers Earning $3333 Per Month Or More at 416.6 196 668.6 00 | 5398
. Pickup Zone
Variables
# Jobs In Zone Per Household in Pickup Zone 33.6 0.22 256.9 0.0 | 3034
# Household Workers Per Job at Pickup Zone 0.49 0.12 0.68 0.0 | 3.40
College/Assoc1ate. Degree Holders Per Capita 013 0.14 0.05 00 | 024
(Pickup Zone)
Bachelor’s Degree Holders Per Capita (Pickup Zone) | 0.16 0.15 0.09 0.0 | 048
Professional Degres:/Graduate People Per Capita 0.13 0.09 01 0.0 | 040
(Pickup Zone)
Married People Per Capita (Pickup Zone) 0.31 0.31 0.10 0.0 | 049
Divorced Or Separated People Per Capita (Pickup 0.08 0.08 0.03 00 | 0.15
Zone)
Widowed People Per Capita (Pickup Zone) 0.04 0.04 0.02 0.0 | 0.13
Daily Average Precipitation (mm) 0.307 0.00 341 0.0 | 78.9
Weather . o
Variables Daily Average Temperature (°C) 19.37 19.0 1.07 16.1 | 23.0
Daily Average wind speed (mi/h) 9.204 9.20 0.94 6.7 | 28.5
UN General Assembly Meeting (September 19-23) | 0.009 0.00 0.09 0.0 1.00
Event Climate Week (September 17-24) 0.032 0.00 0.18 0.0 1.00
Indicators Global Citizen Festival (September 23) 0.001 0.00 0.031 0.0 1.00
New York Film Fes‘uvai geptember 29 — October 0.001 0.00 0031 0.0 1.00
METHODOLOGY

In this competitive ride-hailing market, endogeneity arises because demand (in terms of total trips)
and fares (for both Uber and Lyft) are determined simultaneously, i.e., demand depends on fares,
while fares adjust in response to demand. Such simultaneity renders the ordinary least squares
estimators inconsistent if the error terms are correlated with the endogenous regressors. Thus, each
fare equation (Eq 2 and 3) contains demand as a right-hand side variable, yet demand is itself a
function of those fares. To resolve this feedback correlation, instrumental variables are employed
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within a 3SLS framework (Zha et al., 2017; Feng et al., 2023). Weather variables (precipitation,
temperature, and wind speed) are used as instrumental variables since they are expected to shift
demand but not directly enter the fare-setting equations (apart from their effect on demand). This
methodology is implemented using Python packages “linearmodels” for [IV-3SLS estimation, and
“meteostat” for fetching weather data. Python is used for data preprocessing, data aggregation and
regression diagnostics (using scikit-learn tools and RobustScaler). The 3SLS estimator then jointly
estimates three equations: for demand (Eq. 1), Uber’s per-mile fare (Eq. 2), and Lyft’s per-mile
fare (Eq. 3), while allowing for correlation among the error terms. This approach mitigates bias
from simultaneity and yields consistent parameter estimates.

In practice, the error terms in these equations are correlated within a particular location over time
(temporal autocorrelation) or across nearby locations on the same date (spatial autocorrelation).
To address these dependencies (Tang et al., 2019; Oh et al., 2020; Wang et al., 2022), this study
allows for clustered and heteroskedastic standard errors. across timestamps and zones (He at al.,
2019; Kelleney and Ishak, 2021; Xing et al., 2022; Zhu et al., 2023; Zhang et al., 2023). The
analysis uses trip counts summed and trip fares-per-mile averaged over 10-minute intervals by
zone and operator (Table 2).

iT;otal — ,30 + BlWit + ﬁZFilt] +'83Fii,res +z VinEjPA +2 SkXSCdu,Marital status
j k
+ Z g XVesther Ly (BQu1)
m

U _ total EPA Edu, Marital Status Events
Fig = ap + a1Qip~ + ap Wi + Z GmXim - + Z YnXiy + Z pp Dt
m n p

FL =5 F) total EPA Edu,Marital Status Events
it =00 +6:Q;¢" + 6, Wi + AgXig ™+ Ur Xy + NsDy
q r s
+ Wit e e een e e e e (EQL 3)

The demand equation models the total number of trips (Qz;"t‘“) in a pickup zone i and during al0-

minute time interval t. This demand is influenced by several factors, including passenger wait
times, fares, socioeconomic characteristics, and weather conditions. ff; W;; represents the effect of
wait times ( W;; ) on demand. The coefficients f, and S5 correspond to the effects of Uber fares
(Fl-lt]) and Lyft fare residuals (FL.IZ’reS ), respectively. The equation also includes EPA demographic
variables (Z iviX fjp 4), which represent pickup-zone attributes, like education levels, employment
rates and household incomes. These variables help explain how socioeconomic factors in a pickup
zone affect ride-sharing demand. Similarly, education and marital status variables
(Xi S X EwMarttaly - capture  demographic influences on demand. The weather variables
(Zm O XY e“ther) such as, precipitation, average temperature, and wind speed, are included to
account for temporal variations in demand caused by weather conditions. The error term (u;;)
captures unobserved factors that affect demand which may include sudden events or localized
disruptions not explicitly specified in the model.
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The Uber fare equation (Eq 2) models the average Uber fare per mile (Filt]) in a pickup zone i
during a 10-minute time interval t., as a function of demand, wait times, socioeconomic
characteristics (of pickup zone residents), and event-specific shocks. The constant term (a,)

represents the baseline Uber fare when all other variables are zero. The term a; Q2! captures the

relationship between total trip demand (Q}?tal) and Uber fares. Higher demand typically leads to
increased fares to balance demand and supply. The term a,W;; accounts for the effect of wait times
(W;;), with longer passenger wait times potentially indicating lower ride availability, which could
drive up fares. The model aggregates neighborhood-specific socioeconomic factors

(O P X FACEPA) " capturing employment and income levels, along with normalized education and

marital status variables (¥, X iEnd w Maritaly "por example, areas with higher proportions of certain

demographic groups might exhibit different ride-sharing pricing patterns.

Lyft’s fare equation (Eq 3) similarly follows a similar structure but uses the Lyft fare residual (the
portion of Lyft’s fare unexplained by Uber’s fare) when regressed on Uber fares to account for
their correlation and effectively isolating Lyft-specific pricing effects after removing common
pricing patterns shared with Uber. The Lyft’s fare model includes local demand local demand

(@YX, and economic, demographic factors (Xq AqXSJPA, > urXiidu’Marital). Event indicator
variables (3, pprvems, Y neDEVS)  capture temporal shocks for both Uber and Lyft,
respectively, events conferences or festivals that capture temporal shocks in demand and fares.
The error term v;, and w;; account for unobserved local factors that influence each operator’s fares

in pickup zone i at time interval t. he variance-covariance of the errors, Var(ei,t), not assumed to
be independent and identically distributed. Instead, Var(ei_t) = () allows within-cluster
correlation. For example, if errors are clustered by pickup zone i means all observations in the
location i across different times ¢ may have correlated errors and observations in different locations
i # j are taken to be uncorrelated. In this analysis, errors are clustered by a combined identifier
that merges the location and timestamp, so that all observations sharing the same cluster C(i,t)
can show correlated errors. The cluster-robust estimator of the variance-covariance matrix for f is
then defined as follows:

C
Var(#) custer = X'X) 71 <Z X'Cécégxc> KX)o e (EQL4)
c=1

Where, ¢ = 1, ..., C indexes the clusters, X, is the design matrix for observations in cluster ¢ and
&, represents the vector of residuals for that cluster. In system of equations, let w;; , v;;, u; denote
the unobserved error terms in the demand, Uber fare, and Lyft fare equations, respectively, for
location i at time t. These error components are then stacked into a single vector as follows;

Wit
5i,t =| Vit
Uit

If &, follows a multivariate distribution with a covariance matrix X, then cross-equation
correlation arises whenever X is not diagonal. For instance, in a three-equation system, the
covariance matrix (X, Eq.5) allows for nonzero off-diagonal elements, indicating correlation
across the demand (QiTtOtal), Uber fare (F\/), and Lyft fare (Fj) equations.
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Opp Opy OpyL
LZ=|0up Oyu OUL|..uinerenn . (EQ.5)
O,p Oy Oy

Where, apy = Cov(w;t, Vit ), 0p, = Cov(Wye, Uy ), oy, = Cov(v;, u;: ). The diagonal elements
Opp» Opp» Opp represent the variances of the errors in each equation, and the off-diagonal elements
Opu, OpL, Oy, capture the covariance between pairs of error terms. For instance, o, measures the
correlation between the demand and Uber fare equation errors.

While robust variance estimator addresses heteroskedasticity within each cluster, it does not
account for cross-cluster correlations. Citywide events or regional weather patterns can induce
dependencies across these clusters. For instance, shocks affecting one zone might also impact
neighbouring zones or different time intervals, creating cross-cluster correlations. Hence, this
study employed the multiway cluster bootstrap method, which produces a distribution of bootstrap
estimates for each model parameter and captures the variability across clusters. The multiway
cluster bootstrap identifies the unique clusters in both the temporal (77) and spatial dimensions (2)
and estimate the initial 3SLS model () using the full dataset, serving as a point of reference for
the bootstrap replications. In each bootstrap iteration (b), clusters are resampled with replacement
separately in each dimension, randomly drawing sample of fare bins (N;) and zones (N;), each of
the same size as their original sets.

* * * *
Ty = {th1thzr o thwp)

* * * *
2, = {Zb,l'zb,zr ""Zb,NZ}

Where, T = {tl, ty, e, tNT} denote the set of time clusters (i.e., fare bins) and Z = {zl, Zy, ) ZNZ}
denote the set of spatial clusters (i.e., zones), where Ny and N are the number of fare bins and
zones, respectively. Let, 6 = {él, 0,, ..., 9p} be the initial 3SLS parameter vector, with p
representing the number of estimated parameters, and let b = 1,2, ..., B denote bootstrap iterations.
The bootstrap sample (Sj, Eq. 6) is then constructed by retaining only those observations i whose
fare bin belongs to 7,° and whose zone belongs to Z;,.

S, = {i | Fare bin (i) € 7, and pick-up zone (i) € Z5} ... es s cev vev ver ev ... (EQ. 6)

The 3SLS model is re-estimated on bootstrap sample S, yielding a new set of parameter estimates
6, for that replication, producing a distribution of bootstrap estimates for each parameter. The
bootstrap mean (éj*) and standard deviation (SD;) for each parameter 6; is given by

B

B
.1 A . 1 A ~\2
9]- =§Z Bb,j and SDj = ﬁz (Hb,j —Hj)

RESULTS

Table 2 shows the estimated coefficients of the demand equation, all of which are statistically
significant. This study further calculated practical significance, which yields a standardized
measure that captures the impact of a one-standard-deviation change in a given variable on the
outcome relative to the overall variability in demand. This was achieved by first generating
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baseline predictions using the original 3SLS model and then changing each regressor by one
standard deviation while holding other variables constant. The difference between the new and
baseline predicted values was computed and then standardized by dividing it by the standard
deviation of the baseline predictions. The results showed that higher fares substantially reduce
demand. A one-standard-deviation rise in Uber’s fares is associated with a 27% reduction in
demand, while the same rise in Lyft’s fares leads to an 89% drop in demand. Using a $1-per-mile
increment in place of a one-standard-deviation change yields a 5.8% reduction in Uber demand
and a 64% reduction in Lyft demand. The substantially larger effect of the Lyft fare residual
suggests that net variations in Lyft’s pricing (beyond what is explained by Uber’s fare)
significantly reduced passenger demand. Moreover, 1 SD longer wait times (1.54 minutes) tie to a
37% reduction in demand, highlighting the strong sensitivity of consumers to delays.

Demographic factors further contribute: a one-standard-deviation increase in the number of
household workers per available job in the pickup zone results in a 9% rise in demand, and denser
residential areas drive a 3.6% increase in ride-hailing usage, although employment-dense zones
may shift some trips to alternative modes. Several education categories showed distinct effects on
ride-hailing demand. For instance, a one-standard-deviation increase in the proportion of residents
with a college degree corresponds to a 31% increase in demand. In contrast, neighborhoods with
a higher share of individuals holding bachelor’s degrees experience a 14% decline, while those
with more professional degree holders see an 11% reduction in demand. These differences likely
reflect underlying disparities in income, access to alternative transportation, and preferences for
convenience. Marital status influences demand as well; compared to never-married individuals,
married residents exhibit approximately a 10% lower demand, whereas divorced or separated
individuals and widowed individuals show modest increases of 4.4% and 3.7%, respectively.

Table 2 Demand Model Estimates (Y= Q%% N = 437K, Adj R? =0.613)

Variable Name Coefficient
Passenger Wait Time (min) -54.52
Uber’s Fare ($ per mile) -16.17
Lyft’s Fare Residual (per mile) -278.2
Population density (people/acre) at PU Zone 0.115
Employment density (jobs/acre) at PU Zone -0.024
# Workers earning $1250 per month or less at PU Zone -0.114
# Workers earning between $1250 to $3333 per month at PU Zone 0.036
# Workers earning $3333 per month or more at PU Zone 0.004
# Jobs in Zone per Household in Pickup Zone -0.027
# Household Workers per Job at Pickup Zone 2.462
College/Associate Degree Holders per Capita (PU Zone) 148.4
Bachelor’s Degree Holders per Capita (PU Zone) -363.3
Professional Degree/Graduate Degree Holders per Capita (PU Zone) -2754
Married people per Capita (PU Zone) -38.90
Divorced or Separated people per Capita (PU Zone) 217.2
Widowed people per Capita (PU Zone) 314.2
Daily Average Precipitation (mm) -12.20
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Daily Average Temperature (°C) 12.70

Daily Average wind speed (mi/h) 32.40
(All variables are statistically significant at o = 0.05)

The fare equations reveal distinct operator-specific pricing dynamics. Uber’s fare equation
estimates (Table 3) indicate that real-time supply availability (approximated by wait times) has a
positive and highly significant effect on per-mile charges. A one-standard-deviation rise in wait
time () was associated with a 9.8% rise in per-mile fares. Overall market demand, as measured by
the total trip count, significantly drives fare levels: a one-standard-deviation increase in demand
raises Uber's per-mile fares by 9% and Lyft's fares by 2.2% (Table 3 and 4), indicating that the
operator’s pricing algorithm responds strongly to real-time supply-demand imbalances.
Demographic and economic variables also show a strong association with ride-hailing demand.
zones with a higher share of top earners experience slightly lower surge levels, possibly because
these areas are better serviced or see travel patterns that mitigate peak-time shortages. Meanwhile,
the job concentration shows small but significant fare increases in more employment-dense areas,
potentially because commuting hotspots face more frequent or pronounced surges during rush
hours. Lyft’s fare estimates (Table 4) show that its pricing is less sensitive to broader market-wide
demand surges than to local, real-time driver availability. The share of workers in the highest wage
bracket is negatively associated with fares, and the effects differ considerably among education
variables. Taxi zones with a higher concentration of high school graduates tend to have elevated
fares, potentially due to peak-hour usage.

In addition to the main market-level drivers, the model includes four event-based indicators that
capture temporal shocks resulting from major gatherings and festivals in September 2023. The
United Nations General Assembly is associated with a slight reduction in per-mile fares, whereas
Climate Week and the Global Citizen Festival led to modest rises in per-mile charges. The
bootstrap approach provides a comprehensive view of the variability in the 3SLS estimates across
multiple resampled spatiotemporal clusters. For the demand equation, the results show moderate
variability in its parameters. For instance, the initial coefficient for wait time is —54.5, with a
bootstrap mean of —58.8 and a standard deviation of 44.2, indicating moderate uncertainty in its
impact on demand. Lyft fare residual showed variability too, with its original coefficient at —278,
a bootstrap means of —247, and a standard deviation of 44.8. In the Uber fare equation, the impact
of wait time remains relatively stable; the original coefficient of 1.14 is closely mirrored by a
bootstrap mean of 1.21 and a low standard deviation of 0.12. This consistency suggests that the
surge pricing effect driven by supply constraints is robust across resampled clusters. For the Lyft
fare equation, similar patterns emerge. The wait time parameter is consistently estimated with an
original value of 1.25 and a bootstrap mean of 1.33, with a standard deviation of 0.12, reinforcing
the critical role of real-time supply in determining fare levels. Other coefficients in Lyft’s fare
equation, including those for demographic factors, display narrower bootstrap variances compared
to some of the demand equation parameters, suggesting that Lyft’s pricing is less sensitive to
broader market fluctuations and more stable in response to local conditions.
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Table 3 Uber’s Fare Model Estimates (Y= Q1'% N = 437K, Adj R? =0.609)

Variable Name Coefficient
Demand (Total Trips Requests) 0.002
Passenger Wait Time (min) 1.158

employment density (jobs/acre) at PU Zone 9.69E-05

# Workers earning $1250 per month or less at PU Zone 0.001
# Workers earning between $1250 to $3333 per month at PU Zone -0.001

# Workers earning $3333 per month or more at PU Zone -2.65E-04
High School Graduate people per Capita (PU Zone) 1.683
College/Associates Degree Holders per Capita (PU Zone) -0.432
Married (people per Capita (PU Zone) 0.698
Divorced or Separated people per Capita (PU Zone) 2.445
Widowed people per Capita (PU Zone) -0.845
UN General Assembly (September 19-23) -1.583
Climate Week (September 17-24) 0.410
0.242

Global Citizen Festival (September 23)

(Variables are statistically significant at a = 0.05)

Table 3 Lyft’s Fare Model Estimates (Y= Q7°'% N = 2194, Adj R? =0.609)

Variable Name Coefficient
Demand (Total Trips Requests) 0.0002
Passenger Wait Time (min) 1.263
Gross employment density (jobs/acre) at PU Zone -3.16E-05
# Workers earning $1250 per month or less at PU Zone 0.001
# Workers earning between $1250 to $3333 per month at PU Zone -0.001
# Workers earning $3333 per month or more at PU Zone -2.87E-04
High School Graduate people per Capita (PU Zone) 2.566
College/Associate's Degree Holders per Capita (PU Zone) -0.409
Married people per Capita (PU Zone) 0.884
Divorced or Separated people per Capita (Pickup Zone) 3.551
Widowed people per Capita (PU Zone) -2.881
UN General Assembly Indicator (September 19-23) -1.643
Climate Week Indicator (September 17-24) 0.078
2.124

Global Citizen Festival Indicator (September 23)

(Variables are statistically significant at a = 0.05)

CONCLUSIONS

Ride-hailing services like Uber and Lyft offer a dynamic alternative to traditional taxis and public
transportation. Despite their growing significance, conventional models often overlook the
feedback relationship between fare and demand across time, space, and competing providers. This
study addressed this gap by jointly estimating the relationship between demand and per-mile fares
for Uber and Lyft in New York City using a three-stage least squares (IV3SLS) system of
simultaneous equations. On the demand side, the analysis showed that both fare levels and wait
times are key drivers, with higher fares and longer wait times resulting in significantly fewer trip
requests, especially for Lyft users, who showed higher sensitivity to fares compared to Uber users.
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A dollar per mile rise in Uber’s fares reduces demand by 5.8%, whereas the same increase in Lyft’s
residual fare leads to a 64% drop. A one standard deviation (SD) rise in wait times (1.54 minutes),
too, was associated with a 37% reduction in demand, emphasizing that riders are highly susceptible
to delays. These associations are additionally affected by underlying demographic and
environmental conditions. The results showed that educational attainment and income levels have
a differentiated impact on ride-hailing demand. Areas with more college-educated residents show
a 31% increase in demand, while regions with higher proportions of bachelor’s or professional
degree holders experience declines.

Marital status also plays a role, with married individuals showing lower demand relative to never-
married individuals, while divorced or widowed populations exhibit modest increases. Weather
conditions are equally influential; rainy conditions reduce demand by 17%, whereas hotter
temperatures and higher wind speeds (+6.1°F and +2.8 mph) lead to modest increases, reflecting
consumers’ preferences for comfort and convenience. On the fare side, both Uber and Lyft employ
dynamic pricing models that respond to real-time supply constraints. The results showed that fares
increased with longer wait times, reflecting the surge pricing effect triggered by limited driver
availability. However, Uber’s fares were observed to be more responsive to overall market demand
than those of Lyft. Moreover, wealthier neighborhoods tend to experience lower surge levels,
likely due to higher driver availability or less pronounced peak-hour fluctuations. In contrast,
middle- and lower-income areas tend to see slightly higher fares, suggesting greater supply-
demand mismatches in these regions. Although the demand estimates show only moderate
variability across clusters, this moderate variability reflects local and temporal heterogeneity that
significantly influences consumer behavior. For example, the effect of wait time on demand differs
considerably across taxi zones and time intervals, indicating that localized congestion and regional
economic conditions have a substantial impact on ride-hailing usage. In contrast, the fare equations
for both Uber and Lyft display remarkably stable wait time coefficients. This stability implies that
surge pricing mechanisms are robust across diverse spatiotemporal clusters, regardless of the
specific pickup zone or time of day, the response to supply constraints remains consistent.

These outcomes emphasize the diverse factors influencing ride-hailing dynamics, which are
systematically examined by addressing several key challenges simultaneously. It resolves
simultaneity by modeling the bidirectional feedback between operator-specific fares and demand
using instruments within a three-stage least squares framework. It captures spatiotemporal
dependencies by including both within-cluster and cross-cluster correlations across time and space,
revealing distinct pricing strategies and demand sensitivities across competitors. Future research
should extend the timeframe to capture longer-term and seasonal variations, particularly under
evolving regulatory regimes like new tolling policies. Further exploration into different service
tiers, namely, premium or luxury options, and a deeper examination of driver-side factors,
including acceptance rates and fleet size, are warranted. Exploring unobserved rider factors, like
brand loyalty and past wait-time experiences, may further refine the understanding of operator
preferences and lead to more adaptive fare strategy models.
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