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ABSTRACT 

Ride-hailing providers like Uber, Lyft, and Didi compete daily in global markets, yet existing 

research has largely overlooked the dynamic interdependence between fares and demand across 

time, location, and service providers. This study addresses that gap by jointly estimating the 

simultaneous relationship between demand and per-mile fares for Uber and Lyft in New York 

City (NYC). A system of simultaneous equations is solved using instrumental variables that 

account for cross-equation correlation and endogeneity. The analysis leverages operator-specific 

fare data and served-trip demand every 10 minutes over a 15-day period across NYC’s 260 

taxi zones. Weather variables (precipitation, temperature, wind speed) are used as instrumental 

variables to identify exogenous shifts in demand. A multiway-clustered variance 

estimator reflects heteroskedasticity plus correlations across time and space, and multiway 

block bootstrapping captures cross-cluster correlations. Model estimates suggest that a $1-per-

mile rise in Uber’s and Lyft’s fares will lower the demand (trip requests) by 5.8% and 64%, and 

a 1 SD rise in precipitation (3.35 inches) lowers demand by 17%. A 1 SD rise in temperature and 

wind speed (6.1oF and 2.8 mph) raises demand by 4.4% and 3.7%, respectively. The cross-

equation effects suggest that a 1 SD rise in demand results in a 9% rise in Uber’s per-mile fares 

but just 2.2% in Lyft’s fares.  

Keywords: ride-hailing services, market competition, supply and demand, TNCs, demand 

prediction, pricing strategies. 
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BACKGROUND 1 

On-demand ride-hailing services are transforming urban travel patterns by facilitating efficient 2 

matching between drivers and passengers through smartphone apps (Wang et al., 2016; Chen et 3 

al., 2020; Ke et al., 2020; Zhou et al., 2022a and Zhou et al., 2022b). These apps collect real-time 4 

data from passengers and drivers, giving them control over short-term supply and demand. On the 5 

demand side, surge pricing, which varies based on time and location, influences passengers' choice 6 

of provider (e.g., Uber or Lyft, DiDi or ApolloGo). On the supply side, providers adjust surge 7 

pricing and vehicle dispatching strategies to manage the availability of vehicles throughout the day 8 

(Chen et al., 2020). Ride-hailing apps are popular not just because of their convenience and 9 

technology but also due to their pricing strategies. To draw in more users, many of these apps give 10 

subsidies to both passengers and drivers (Wang et. al., 2016). It is also common for these providers 11 

to strategize their fares and services to capture a larger market share while competing in local 12 

markets. For instance, Didi and Uber China were in a price war until 2016, but by November 2023, 13 

Uber regained a portion of its lost market share, stabilizing competitive dynamics between the two 14 

companies. Didi also faces competition from Chinese rivals, like Shouqi, Meituan, and Shenzhou 15 

(Zhou et al., 2022a). Currently, Uber and Lyft compete in the U.S., while Grab and Gojek compete 16 

in Southeast Asia, Ola and Uber in India, Bolt and Uber in Europe, and Careem and Uber in the 17 

Middle East (Wang and Yang, 2019).  18 

Paronda et al. (2016) analyzed Uber, conventional taxis, and GrabCar in the Philippines, finding 19 

that Uber's service was 75% faster than its competitors and 35% and 28% cheaper than GrabCar 20 

and taxis, respectively. Their findings also revealed that GrabCar was the most reliable for vehicle 21 

availability, while Uber received the highest service-quality ratings. But they did not consider the 22 

role of drivers as a third party in the competition. Some of these limitations were later addressed 23 

by Huang et al. (2023), who analyzed spatiotemporal variations in ride-hailing fares and driver 24 

behavior characteristics to assess the social welfare of passengers and drivers. They also evaluated 25 

market share and competition intensity to capture the competitive dynamics among four operators 26 

in New York City (NYC): Uber, Lyft, Juno, and Via. The results showed that competition was 27 

most intense during weekday morning rush hours (6 to 8 a.m.), significantly higher than on 28 

weekends. This study highlighted that greater competition intensity lowers passenger costs and 29 

raises driver income, although excessive competition reduces the profitability of ride-hailing 30 

operators. Similarly, Meskar et al. (2023) investigated spatiotemporal pricing, driver 31 

compensation, and matching rates on a dynamic fleet-based ride-hailing operator aimed at 32 

maximizing profits. Their study considered drivers' possibility to accept or decline ride requests 33 

and showed that networks with balanced demand patterns were the most profitable. They 34 

concluded that the more balanced the demand across the network, the higher the potential profit 35 

for the operator. But neither of these studies allowed for feedbacks between provider fares and 36 

(instantaneous) service demands. 37 

A few studies have emphasized the effects of pricing dynamics on operator revenue in a 38 

competitive market (Chen et al., 2023; Huang, 2023). Rather than directly using the intractable 39 

stochastic dynamic program to balance spatial–temporal mismatches between passenger demand 40 

and driver supply, Chen et al., 2023 proposed a deterministic convex program (DCP) that captures 41 

the trade-off between pricing revenue and vehicle availability across regions and time. Their 42 

findings showed that dynamic pricing adjusted to local shortages and surpluses when tested on 43 

NYC market, yielded 5–6% higher revenue and served 3–4% more passengers versus a best‐44 

available static schedule. Huang (2023) focused on fare strategy modelling using machine learning 45 
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methods.  He predicted NYC taxi fares using trip distance (computed via the Haversine formula) 1 

and passenger count, comparing linear regression, decision tree, and random forest models. As 2 

expected, all three achieved reasonably low error; the two tree‐based methods gave more accurate 3 

results than ordinary least squares. The linear regression model yielded an RMSE of 1.718, a 4 

decision tree cut that reduced the error by roughly 26% down to 1.277, and the random forest 5 

improved accuracy further with an RMSE of 1.264, an additional 1% improvement over the 6 

decision tree alone. 7 

Fare-setting strategies under competition are not limited to ride-hailing markets. Airlines too  8 

adjust fares to capture the market and optimize profits across millions of OD pairs and departure 9 

times. Paithankar et al. (2024) analyzed seasonality, cabin type, and other features affecting US-10 

carrier airline fares using feasible generalized least square regression. They found that international 11 

trips from the U.S. between October and December are more expensive than those in June, and 12 

business-class tickets cost nearly five times more expensive than economy-class tickets. While 13 

these studies shed light on pricing strategies, they fail to account for simultaneity between fares 14 

and demand levels, by day of year, departure time, and OD pair. In reality, fare adjustments 15 

influence demand, and demand fluctuations, in turn, affect fares, creating an endogeneity issue 16 

that requires a more robust estimation to capture these interdependencies effectively.  17 

This simultaneity issue has been partially addressed by Parvez et al. (2023), who analyzed both 18 

the continuous decision of trip fare and the discrete destination choice of TNC users. They modeled 19 

fare with a linear regression (LR) whose right-hand side includes trip attributes (distance, peak-20 

period indicators, shared‐ride flag), origin and destination activity measures (recent demand, 21 

distance to CBD), built-environment and weather covariates, plus a term for unobserved factors 22 

shared with destination choice. Destination choice was predicted by a multinomial logit (MNL) 23 

over 30 census‐tract alternatives, with utilities that depend on origin–destination distance, land-24 

use mix, infrastructure (bus stops, bike lanes, transit score), demographics, and the same latent 25 

factor in the LR. Their results showed that the joint LR-MNL model outperformed separate fare 26 

and destination models: the joint system achieves a higher log-likelihood (LL = 222,717 vs. 27 

222,858 for the independent models) and a lower Bayesian information criterion (BIC = 45,793.20 28 

vs. 46,075.04). In the fare equation, trip distance was the strongest positive driver of cost, peak-29 

period trips carried a significant surcharge, shared trips had lower fares, and both built-30 

environment (e.g., distance from CBD, nearby transit stations) and weather (snow depth) showed 31 

measurable influence on fares. In the destination choice model, longer OD distances and residential 32 

or institutional land uses suppressed choice probability, while commercial/recreational areas, 33 

higher transit and walk scores, and street density attracted more trips. All else equal, rides that 34 

begin farther from the central business district had higher fares, presumably due to drivers covering 35 

longer empty distances (dead heading”) to pick up riders located far from other trip-makers, 36 

resulting in more empty miles (as discussed in Gurumurthy et al., 2021, for example).  37 

Related to this, Özkan (2020) derived structural insights into when simple “charge-everyone-the-38 

same” fares and “serve-only-local” matches suffice. He also identified when operators must 39 

optimize both origin-specific pricing and cross-zone matching (subject to supply) demand flow 40 

conservation and the requirement that drivers earn the same per-unit-time revenue in every 41 

location, to outperform one-size-fits-all policies. He showed that, under realistic heterogeneity in 42 

willingness to pay, the joint “origin-based pricing + cross-matching” scheme can raise total match 43 

rates by up to 60% over price-only or match-only baselines, even when accounting for dead-44 

heading costs, whereas in the special case of uniform valuations simple constant fares and local 45 
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matching are already optimal. Unlike Özkan (2020), Dey et al. (2021) did a data‐driven, city‐wide 1 

analysis of NYC’s taxi market by jointly modeling two linked phenomena: the total number of 2 

monthly trips originating (from January 2015 to December 2018) in each of the city’s 259 taxi 3 

zones, and the proportion of those trips served by Yellow taxis, Green taxis, or TNCs 4 

(Uber/Lyft/Juno/Via). They fit a joint econometric system made up of a negative‐binomial count 5 

model for total trips and a multinomial fractional‐split model for service shares, linked through 6 

shared latent‐factor terms and estimated via simulated maximum likelihood using scrambled 7 

Halton sequences. Their results reveal that ride-hailing demand more than doubled over the study 8 

period—TNCs grew from 13% to 70% of all dispatches by late 2018—while traditional taxi 9 

volumes fell sharply. In the demand model, zones with higher job density, more zero-car 10 

households, and greater transit access saw the largest increases in trip counts, whereas snow depth 11 

and dense bike-lane networks reduced ride-hailing use. In the share model, higher population and 12 

median-income areas tended to favor yellow taxis, while zones farther from airports and with lower 13 

transit access shifted toward TNCs; zero-car households also raised both Green-taxi and TNC 14 

shares. A positive correlation term confirms that unobserved factors boosting the Yellow-taxi share 15 

also tend to boost the TNC share. 16 

Although most prior studies overlook distinctions by vehicle type, a few have examined service-17 

specific attributes and pricing. For instance, Schwieterman (2019) conducted a paired-trip analysis 18 

of Lyft, Lyft Line, UberX, UberPool, and Chicago Transit Authority (CTA) services in Chicago 19 

andfound that ride-hailing fares cost between $42 and $108 per hour of travel-time saved, far above 20 

the $14.95 per hour value of time for personal travel recommended by the U.S. DOT (UDOT 2016, 21 

in 2018 dollars). However, when accounting for business travelers, whose time is valued at $28.85 22 

per hour under the same guidance, and for trips between neighborhoods with poor transit coverage, 23 

ride-hailing often remains a cost-effective alternative. Meanwhile, Chao (2019) took a more 24 

focused approach and analyzed UberX’s surge pricing, which adjusts fares in real-time based on 25 

demand, supply, and other external conditions. He used real-time operational data from Uber's 26 

APIs for ten different origin-destination pairs, and controlled for weather (thunderstorms, squalls, 27 

mist/clouds), time of day, and day of the week. However, Schweiterman (2019) and Chao (2019) 28 

did not control for or discuss competition between providers. This gap is important to address, 29 

since competition can dramatically affect total demand, mode splits, provider profits, and traveler 30 

welfare. Demand fluctuates across time and space, as a function of trip type, land uses, traveler 31 

wealth, impatience, and so on. For example, passengers from higher-income residential areas are 32 

more willing to pay for shorter wait times and more luxurious vehicles. As a result, competition 33 

may vary greatly across different parts of a city and region, depending on the availability and 34 

popularity of ride-hailing services by neighborhood and time of year.  35 

Several studies highlight demographic and built environment impacts on taxi demand (and, to 36 

some extent, supply). McNally and Rafiq (2021) identified population and employment as key 37 

factors, while Qian and Ukkusuri (2015) linked lower income neighborhoods to fewer NYC taxi 38 

trips. Yu & Peng (2019) emphasized the effects of the built environment on ride-sourcing. Spatial 39 

imbalances dominate taxi demand, with 90% of trips concentrated in Manhattan (Qian and 40 

Ukkusuri, 2015), district-level disparities in Munich (Jager et al., 2016), and local imbalances in 41 

Shanghai (Liu et al., 2012). Geographically Weighted Regression (GWR) models (Chen et al., 42 

2021; Li et al., 2019) address spatial heterogeneity; however, spatial spillover effects, or 43 

interactions between neighboring areas, remain underexplored. While studies including Correa et 44 

al. (2017), Pan et al. (2019), and Lavieri et al. (2018) employed spatial error/lag models or 45 
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multivariate count models, none fully address spatial autocorrelation in explanatory variables or 1 

quantify spillover effects. Temporally, demand fluctuates daily (Zhu and Mo, 2022; Liu et al., 2 

2015) and weekly (Zhao et al., 2016), with time series (Moreira-Matias et al., 2013) and machine 3 

learning (Zhou et al., 2019a) aiding prediction. This study bridges existing gaps by jointly 4 

estimating ride-hailing demand and corresponding fares while accounting for spatial and temporal 5 

spillover effects. 6 

This gap is important to address for dense urban areas like NYC, where competition among ride-7 

hailing operators is influenced not only by spatiotemporal variations but also by regulatory policies 8 

and consumer preferences. In January 2025, the New York State government started a $1.50 9 

congestion charge to be added to Uber and Lyft fares for trips entering Manhattan south of East 10 

60th Street, which is passed on to riders (Congestion Pricing Program 2024). This charge is in 11 

addition to the existing For-Hire Vehicle Congestion Surcharge of $2.75, which applies to all ride-12 

hailing trips that both begin and end in New York State and either begin, end, or pass-through 13 

Manhattan south of, but not including, 96th Street (Congestion Surcharge, 2024). These fare 14 

updates have influenced the demand for Manhattan ride-hailed trips, and probably also their fares, 15 

as consumers may shift among service options available to reduce costs or avoid premium services. 16 

This dynamic disequilibrium affects the competitiveness and pricing strategies of ride-hailing 17 

providers, and this study examines the interdependence between fare and demand across NYC 18 

operators.  19 

This study extends previous research (Zheng et al., 2022; Zhu et al., 2022) by modeling 20 

competitive fare interactions between two dominant ride-hailing operators while incorporating 21 

spatiotemporal spillover effects that influence pricing strategies across urban regions and 22 

endogeneity between fare and demand. It advances the understanding of fare and demand variation 23 

among ride-hailing operators using a three-stage least square (IV3SLS) estimation approach to 24 

analyze Uber and Lyft trips in NYC. It sheds light on how fare strategies diverge across operators, 25 

neighborhoods, and times of day by integrating trip data with demographic, weather, and built 26 

environment variables. The following section outlines the datasets used in this study, followed by 27 

a description of the methodology employed. The last two sections present model estimates, and a 28 

summary of findings. 29 

DATA DESCRIPTION 30 

This paper leverages detailed ride-hailing trip data from NYC (TLC Trip Record Data, 2024) 31 

across all five boroughs (Bronx, Brooklyn, Manhattan, Queens, and Staten Island) and Newark 32 

Airport. The full dataset includes trip records from medallion-regulated yellow and green taxis 33 

alongside app-based for-hire services; however, our analysis is confined to the Uber and Lyft 34 

subsets, comprising approximately 9.8 million rides between September 15 and September 30, 35 

2024. These trips represent roughly 65–70% of the total for-hire vehicle market in New York City 36 

(NYC TLC, 2024). The dataset contains pickup (trip start) and end times (to the second), origins 37 

and destinations (to the level of 260 taxi zones), network distance traveled per trip (in tenths of 38 

miles), whether the ride was requested as a shared ride, and whether a match was made. It includes 39 

details on the base fare and any additional fees, such as, tolls, surcharges, and airport fees. These 40 

zones collectively span over 306 square miles, covering the primary regions Uber and Lyft serve. 41 

Table 1 provides summary statistics of all variables available in this dataset. Uber dominates 42 

NYC’s ride-hailing market, with approximately 72% of all trips analyzed (compared to Lyft's 43 
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28%). The ride-sharing requests are relatively low, with only about 3.07% of all trips involving 1 

riders requesting this service and an even smaller fraction (0.99%) resulting in a matched ride.  2 

TABLE 1 Summary Statistics of NYC’s Uber + Lyft Trips from September 15 to 30, 2024 3 

(n = 9,875,667 ride-hailed trips) 4 

Variable Name Mean 
Std. 

Dev 
Min 

Median 

(50%) 
Max 

Trip Distance (miles) 2.87 mi 5.93 0.00 2.21 10.9 

Trip Duration (minutes) 18.4 min 10.98 0.00 15.8 52.1 

Passenger Wait Time per Trip (min) 4.66 min 2.24 0.00 4.25 11.3 

Fare Paid per Trip ($) $16.19 7.32 0.00 14.5 43.6 

Fare per mile-Uber ($ per mile) $6.35 2.60 0.03 6.10 15.6 

Fare per mile- Lyft ($ per mile) $8.07 3.03 0.01 6.50 15.6 

Tolls Paid per Trip ($) $0.72 2.65 0.00 0.00 66.6 

Black Car Fund per Trip ($) $0.46 0.22 0.00 0.42 1.16 

Sales per Tax per Trip ($) $1.43 0.65 0.00 1.28 3.43 

Congestion Surcharge per Trip ($) $0.93 1.30 0.00 0.00 5.50 

Airport Fee per Trip ($) $0.19 0.67 0.00 0.00 7.50 

Tips Paid per Trip ($) $1.01 2.72 0.00 0.00 100 

Driver's Pay per Trip ($) $13.7 6.18 0.00 11.3 30.9 

Monday Trips (Indicator) 0.12 0.32 0.00 0.00 1.00 

Tuesday Trips (Indicator) 0.12 0.32 0.00 0.00 1.00 

Wednesday Trips (Indicator) 0.12 0.33 0.00 0.00 1.00 

Thursday Trips (Indicator) 0.13 0.34 0.00 0.00 1.00 

Friday Trips (Indicator) 0.21 0.41 0.00 0.00 1.00 

Saturday Trips (Indicator) 0.17 0.37 0.00 0.00 1.00 

Sunday Trips (Indicator) 0.14 0.34 0.00 0.00 1.00 

The demographic data for the OD zones were obtained from EPA's Smart Location Data (NYC 5 

Planning, 2024). In a competitive ride-hailing market, fare, destination, and trip distance all affect 6 

demand (i.e., the number of ride requests), and demand can also influence fares. Daily weather 7 

conditions were included in the analysis by retrieving daily meteorological data from Meteostat 8 

(2023), at the weather station nearest Manhattan (40.7128° N, –74.0060° W). This data includes 9 

average temperature, total precipitation, and average wind speed for each calendar day. These 10 

variables were then merged with the ride-hailing records by date, ensuring that each 10-minute 11 

fare bin in a given zone was associated with the corresponding daily weather conditions. During 12 

peak periods, a surge in trip requests might lead to surge pricing, which raises fares. This surge in 13 

demand may also lead to congestion, resulting in longer trip durations. To analyze the 14 

interdependence between demand, supply, and fares, trips were grouped into 10-minute bins (over 15 

15 days and 24 hours) for each of the 260 zones, capturing short-term demand fluctuations. Of a 16 

potential 561,600 bins (260 zones × 15 days × 24 hours × 6 bins per hour), 495,128 bins exist in 17 

the dataset. 18 

TABLE 2 Summary Statistics of Trip, Demographic, Built-Environment, and Weather 19 

Variables Within Spatiotemporal Bins (N = 495,128) 20 
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Model Variables   Mean Median 

Std 

Dev 
Min Max 

Trip 

Variables 

Demand (Trips Served within bin) 308.4 239.5 253.8 2.0 2064 

Uber's Fare ($ per mile within bin) 6.24 6.19 1.09 2.70 11.84 

Lyft's Fare ($ per mile within bin in zone) 6.09 5.65 2.42 0.09 13.68 

Demographic 

Variables 

Population Density (people/acre in zone) 52.71 9.73 94.4 0.0 728.1 

Employment Density (Jobs/acre in zone) 106.9 3.53 475.1 0.0 4925 

Household Workers Per Job in Zone (Workers/Job in 

Zone)  
0.501 0.121 0.678 0.0 3.39 

Total Road Network Density (Facility Miles of  
Road Links Per Square Mile in Zone) 

35.87 26.07 49.07 0.0 355.5 

Street Intersection Density (Intersections/Square 

Mile in Zone) 
182.7 72.9 278.9 0.0 1804 

# Workers Earning $1250 Per Month or Less at 

Pickup Zone 
185.8 115.8 288.2 0.0 2407 

# Workers Earning Between $1250 To $3333 Per 

Month at Pickup Zone 
275.7 147 456.7 0.0 4052 

# Workers Earning $3333 Per Month Or More at 

Pickup Zone 
416.6 196 668.6 0.0 5398 

# Jobs In Zone Per Household in Pickup Zone 33.6 0.22 256.9 0.0 3034 

# Household Workers Per Job at Pickup Zone 0.49 0.12 0.68 0.0 3.40 

College/Associate Degree Holders Per Capita 

(Pickup Zone) 
0.13 0.14 0.05 0.0 0.24 

Bachelor’s Degree Holders Per Capita (Pickup Zone) 0.16 0.15 0.09 0.0 0.48 

Professional Degree/Graduate People Per Capita 

(Pickup Zone) 
0.13 0.09 0.1 0.0 0.40 

Married People Per Capita (Pickup Zone) 0.31 0.31 0.10 0.0 0.49 

Divorced Or Separated People Per Capita (Pickup 

Zone) 
0.08 0.08 0.03 0.0 0.15 

Widowed People Per Capita (Pickup Zone) 0.04 0.04 0.02 0.0 0.13 

Weather 

Variables 

Daily Average Precipitation (mm) 0.307 0.00 3.41 0.0 78.9 

Daily Average Temperature (°C)  19.37 19.0 1.07 16.1 23.0 

Daily Average wind speed (mi/h)  9.204 9.20 0.94 6.7 28.5 

Event 

Indicators 

UN General Assembly Meeting (September 19–23) 0.009 0.00 0.09 0.0 1.00 

Climate Week (September 17–24) 0.032 0.00 0.18 0.0 1.00 

Global Citizen Festival (September 23) 0.001 0.00 0.031 0.0 1.00 

New York Film Festival (September 29 – October 

15) 
0.001 0.00 0.031 0.0 1.00 

METHODOLOGY  1 

In this competitive ride-hailing market, endogeneity arises because demand (in terms of total trips) 2 

and fares (for both Uber and Lyft) are determined simultaneously, i.e., demand depends on fares, 3 

while fares adjust in response to demand. Such simultaneity renders the ordinary least squares 4 

estimators inconsistent if the error terms are correlated with the endogenous regressors. Thus, each 5 

fare equation (Eq 2 and 3) contains demand as a right-hand side variable, yet demand is itself a 6 

function of those fares. To resolve this feedback correlation, instrumental variables are employed 7 
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within a 3SLS framework (Zha et al., 2017; Feng et al., 2023). Weather variables (precipitation, 1 

temperature, and wind speed) are used as instrumental variables since they are expected to shift 2 

demand but not directly enter the fare-setting equations (apart from their effect on demand). This 3 

methodology is implemented using Python packages “linearmodels” for IV-3SLS estimation, and 4 

“meteostat” for fetching weather data. Python is used for data preprocessing, data aggregation and 5 

regression diagnostics (using scikit-learn tools and RobustScaler). The 3SLS estimator then jointly 6 

estimates three equations: for demand (Eq. 1), Uber’s per-mile fare (Eq. 2), and Lyft’s per-mile 7 

fare (Eq. 3), while allowing for correlation among the error terms. This approach mitigates bias 8 

from simultaneity and yields consistent parameter estimates.  9 

In practice, the error terms in these equations are correlated within a particular location over time 10 

(temporal autocorrelation) or across nearby locations on the same date (spatial autocorrelation). 11 

To address these dependencies (Tang et al., 2019; Oh et al., 2020; Wang et al., 2022), this study 12 

allows for clustered and heteroskedastic standard errors. across timestamps and zones (He at al., 13 

2019; Kelleney and Ishak, 2021; Xing et al., 2022; Zhu et al., 2023; Zhang et al., 2023). The 14 

analysis uses trip counts summed and trip fares-per-mile averaged over 10-minute intervals by 15 

zone and operator (Table 2).  16 

𝑄𝑖𝑡
𝑇𝑜𝑡𝑎𝑙 = 𝛽0 + 𝛽1𝑊𝑖𝑡 + 𝛽2𝐹𝑖𝑡

𝑈 + 𝛽3𝐹𝑖𝑡
𝐿,𝑟𝑒𝑠 + ∑  

𝑗

𝛾𝑗𝑋𝑖𝑗
𝐸𝑃𝐴 + ∑  

𝑘

𝛿𝑘𝑋𝑖𝑘
𝐸𝑑𝑢,𝑀𝑎𝑟𝑖𝑡𝑎𝑙 𝑠𝑡𝑎𝑡𝑢𝑠

17 

+ ∑  

𝑚

𝜃𝑚𝑋𝑡
Weather + 𝑢𝑖𝑡 … … … … … … … … (Eq. 1) 18 

𝐹𝑖𝑡
𝑈 = 𝛼0 + 𝛼1𝑄𝑖𝑡

total + 𝛼2𝑊𝑖𝑡 + ∑  

𝑚

𝜙𝑚𝑋𝑖𝑚
EPA + ∑  

𝑛

𝜓𝑛𝑋𝑖𝑛
Edu, Marital Status + ∑  

𝑝

𝜌𝑝𝐷𝑡
Events 19 

+ 𝑣𝑖𝑡 … … … … … … … … (Eq. 2) 20 

𝐹𝑖𝑡
𝐿 = 𝛿0 + 𝛿1𝑄𝑖𝑡

total + 𝛿2𝑊𝑖𝑡 + ∑  

𝑞

𝜆𝑞𝑋𝑖𝑞
EPA + ∑  

𝑟

𝜇𝑟𝑋𝑖𝑟
Edu,Marital Status + ∑  

𝑠

𝜂𝑠𝐷𝑡
Events 21 

+ 𝑤𝑖𝑡 … … … … … … … … (Eq. 3) 22 

The demand equation models the total number of trips (𝑄𝑖𝑡
𝑇𝑜𝑡𝑎𝑙) in a pickup zone 𝑖 and during a10-23 

minute time interval 𝑡. This demand is influenced by several factors, including passenger wait 24 

times, fares, socioeconomic characteristics, and weather conditions. 𝛽1𝑊𝑖𝑡 represents the effect of 25 

wait times ( 𝑊𝑖𝑡 ) on demand. The coefficients 𝛽2 and 𝛽3 correspond to the effects of Uber fares 26 

(𝐹𝑖𝑡
𝑈) and Lyft fare residuals (𝐹𝑖𝑡

𝐿,res
 ), respectively. The equation also includes EPA demographic 27 

variables (∑𝑗  𝛾𝑗𝑋𝑖𝑗
𝐸𝑃𝐴), which represent pickup-zone attributes, like education levels, employment 28 

rates and household incomes. These variables help explain how socioeconomic factors in a pickup 29 

zone affect ride-sharing demand. Similarly, education and marital status variables 30 

(∑𝑘  𝛿𝑘𝑋𝑖𝑘
𝐸𝑑𝑢,𝑀𝑎𝑟𝑖𝑡𝑎𝑙

) capture demographic influences on demand. The weather variables 31 

(∑𝑚  𝜃𝑚𝑋𝑡
𝑊𝑒𝑎𝑡ℎ𝑒𝑟) such as, precipitation, average temperature, and wind speed, are included to 32 

account for temporal variations in demand caused by weather conditions. The error term (𝑢𝑖𝑡) 33 

captures unobserved factors that affect demand which may include sudden events or localized 34 

disruptions not explicitly specified in the model. 35 
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The Uber fare equation (Eq 2) models the average Uber fare per mile (𝐹𝑖𝑡
𝑈) in a pickup zone 𝑖 1 

during a 10-minute time interval 𝑡., as a function of demand, wait times, socioeconomic 2 

characteristics (of pickup zone residents), and event-specific shocks. The constant term (𝛼0) 3 

represents the baseline Uber fare when all other variables are zero. The term 𝛼1𝑄𝑖𝑡
total  captures the 4 

relationship between total trip demand (𝑄𝑖𝑡
total) and Uber fares. Higher demand typically leads to 5 

increased fares to balance demand and supply. The term 𝛼2𝑊𝑖𝑡 accounts for the effect of wait times 6 

(𝑊𝑖𝑡), with longer passenger wait times potentially indicating lower ride availability, which could 7 

drive up fares. The model aggregates neighborhood-specific socioeconomic factors 8 

(∑𝑚  𝜙𝑚𝑋𝑖𝑚
FareEPA), capturing employment and income levels, along with normalized education and 9 

marital status variables (∑𝑛  𝜓𝑛𝑋𝑖𝑛
Edu, Marital

). For example, areas with higher proportions of certain 10 

demographic groups might exhibit different ride-sharing pricing patterns.  11 

Lyft’s fare equation (Eq 3) similarly follows a similar structure but uses the Lyft fare residual (the 12 

portion of Lyft’s fare unexplained by Uber’s fare) when regressed on Uber fares to account for 13 

their correlation and effectively isolating Lyft-specific pricing effects after removing common 14 

pricing patterns shared with Uber. The Lyft’s fare model includes local demand local demand 15 

(𝑄𝑖𝑡
total), and economic, demographic factors (∑  𝑞  𝜆𝑞𝑋𝑖𝑞

EPA, ∑  𝑟 𝜇𝑟𝑋𝑖𝑟
𝐸𝑑𝑢,𝑀𝑎𝑟𝑖𝑡𝑎𝑙

). Event indicator 16 

variables (∑𝑝  𝜌𝑝𝐷𝑡
Events, ∑  𝑠 𝜂𝑠𝐷𝑡

Events)  capture temporal shocks for both Uber and Lyft, 17 

respectively, events conferences or festivals that capture temporal shocks in demand and fares. 18 

The error term 𝑣𝑖𝑡 and 𝑤𝑖𝑡 account for unobserved local factors that influence each operator’s fares 19 

in pickup zone 𝑖 at time interval 𝑡. he variance-covariance of the errors, Var(𝜀𝑖,𝑡), not assumed to 20 

be independent and identically distributed. Instead, Var(𝜀𝑖,𝑡) = Ω allows within-cluster 21 

correlation. For example, if errors are clustered by pickup zone 𝑖 means all observations in the 22 

location 𝑖 across different times 𝑡 may have correlated errors and observations in different locations 23 

𝑖 ≠ 𝑗 are taken to be uncorrelated. In this analysis, errors are clustered by a combined identifier 24 

that merges the location and timestamp, so that all observations sharing the same cluster 𝐶(𝑖, 𝑡) 25 

can show correlated errors. The cluster-robust estimator of the variance-covariance matrix for 𝛽̂ is 26 

then defined as follows: 27 

Var̂(𝛽̂)cluster = (X′X)−1 (∑  

𝐶

𝑐=1

 X𝑐
′ 𝜀𝑐𝜀𝑐

′ X𝑐) (X′X)−1 … … … … … … … … (Eq. 4) 28 

Where, 𝑐 = 1, … , 𝐶 indexes the clusters, X𝑐 is the design matrix for observations in cluster 𝑐 and 29 

𝜀𝑐 represents the vector of residuals for that cluster. In system of equations, let 𝑤𝑖𝑡 , 𝑣𝑖𝑡 , 𝑢𝑖𝑡 denote 30 

the unobserved error terms in the demand, Uber fare, and Lyft fare equations, respectively, for 31 

location 𝑖 at time 𝑡. These error components are then stacked into a single vector as follows; 32 

𝜀𝑖,𝑡 = (

𝑤𝑖𝑡 

𝑣𝑖𝑡 

𝑢𝑖𝑡 

) 33 

If 𝜀𝑖,𝑡 follows a multivariate distribution with a covariance matrix Σ, then cross-equation 34 

correlation arises whenever Σ is not diagonal. For instance, in a three-equation system, the 35 

covariance matrix (Σ, Eq. 5) allows for nonzero off-diagonal elements, indicating correlation 36 

across the demand (𝑄𝑖𝑡
𝑇𝑜𝑡𝑎𝑙), Uber fare (𝐹𝑖𝑡

𝑈), and Lyft fare (𝐹𝑖𝑡
𝐿) equations. 37 
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Σ = (

𝜎𝐷𝐷 𝜎𝐷𝑈 𝜎𝐷𝐿

𝜎𝑈𝐷 𝜎𝑈𝑈 𝜎𝑈𝐿

𝜎𝐿𝐷 𝜎𝐿𝑈 𝜎𝐿𝐿

) … … … … … … … … (Eq. 5) 1 

Where, 𝜎𝐷𝑈 = Cov(𝑤𝑖𝑡 , 𝑣𝑖𝑡 ), 𝜎𝐷𝐿 = Cov(𝑤𝑖𝑡 , 𝑢𝑖𝑡 ), 𝜎𝑈𝐿 = Cov(𝑣𝑖𝑡 , 𝑢𝑖𝑡 ). The diagonal elements 2 

𝜎𝐷𝐷, 𝜎𝐷𝐷, 𝜎𝐷𝐷 represent the variances of the errors in each equation, and the off-diagonal elements 3 

𝜎𝐷𝑈 , 𝜎𝐷𝐿 , 𝜎𝑈𝐿 capture the covariance between pairs of error terms. For instance,  𝜎𝐷𝑈  measures the 4 

correlation between the demand and Uber fare equation errors.  5 

While robust variance estimator addresses heteroskedasticity within each cluster, it does not 6 

account for cross-cluster correlations. Citywide events or regional weather patterns can induce 7 

dependencies across these clusters. For instance, shocks affecting one zone might also impact 8 

neighbouring zones or different time intervals, creating cross-cluster correlations. Hence, this 9 

study employed the multiway cluster bootstrap method, which produces a distribution of bootstrap 10 

estimates for each model parameter and captures the variability across clusters. The multiway 11 

cluster bootstrap identifies the unique clusters in both the temporal (𝒯) and spatial dimensions (𝒵) 12 

and estimate the initial 3SLS model (𝜃̂) using the full dataset, serving as a point of reference for 13 

the bootstrap replications. In each bootstrap iteration (𝑏), clusters are resampled with replacement 14 

separately in each dimension, randomly drawing sample of fare bins (𝑁𝑇) and zones (𝑁𝑍), each of 15 

the same size as their original sets.  16 

𝒯𝑏
∗ = {𝑡𝑏,1

∗ , 𝑡𝑏,2
∗ , … , 𝑡𝑏,𝑁𝑇

∗ } 17 

𝒵𝑏
∗ = {𝑧𝑏,1

∗ , 𝑧𝑏,2
∗ , … , 𝑧𝑏,𝑁𝑍

∗ } 18 

Where, 𝒯 = {𝑡1, 𝑡2, … , 𝑡𝑁𝑇
} denote the set of time clusters (i.e., fare bins) and  𝒵 = {𝑧1, 𝑧2, … , 𝑧𝑁𝑍

} 19 

denote the set of spatial clusters (i.e., zones), where  𝑁𝑇 and 𝑁𝑍 are the number of fare bins and 20 

zones, respectively. Let, 𝜃̂ = {𝜃̂1, 𝜃̂2, … , 𝜃̂𝑝} be the initial 3SLS parameter vector, with  𝑝 21 

representing the number of estimated parameters, and let 𝑏 = 1,2, … , 𝐵 denote bootstrap iterations. 22 

The bootstrap sample (𝒮𝑏 , 𝐸𝑞. 6) is then constructed by retaining only those observations 𝑖 whose 23 

fare bin belongs to 𝒯𝑏
∗ and whose zone belongs to 𝒵𝑏

∗. 24 

𝒮𝑏 = {𝑖 ∣ Fare bin (𝑖) ∈ 𝒯𝑏
∗ and pick-up zone (𝑖) ∈ 𝒵𝑏

∗} … … … … … … … … (Eq. 6) 25 

The 3SLS model is re-estimated on bootstrap sample 𝒮𝑏, yielding a new set of parameter estimates 26 

𝜃̂𝑏 for that replication, producing a distribution of bootstrap estimates for each parameter. The 27 

bootstrap mean (𝜃‾𝑗
∗) and standard deviation (SD𝑗

∗) for each parameter 𝜃𝑗  is given by 28 

𝜃‾𝑗
∗ =

1

𝐵
∑  

𝐵

𝑏=1

𝜃̂𝑏,𝑗  and  SD𝑗
∗ = √

1

𝐵 − 1
∑  

𝐵

𝑏=1

  (𝜃̂𝑏,𝑗 − 𝜃‾𝑗
∗)

2
 29 

RESULTS 30 

Table 2 shows the estimated coefficients of the demand equation, all of which are statistically 31 

significant. This study further calculated practical significance, which yields a standardized 32 

measure that captures the impact of a one-standard-deviation change in a given variable on the 33 

outcome relative to the overall variability in demand. This was achieved by first generating 34 
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baseline predictions using the original 3SLS model and then changing each regressor by one 1 

standard deviation while holding other variables constant. The difference between the new and 2 

baseline predicted values was computed and then standardized by dividing it by the standard 3 

deviation of the baseline predictions.  The results showed that higher fares substantially reduce 4 

demand. A one-standard-deviation rise in Uber’s fares is associated with a 27% reduction in 5 

demand, while the same rise in Lyft’s fares leads to an 89% drop in demand. Using a $1-per-mile 6 

increment in place of a one-standard-deviation change yields a 5.8% reduction in Uber demand 7 

and a 64% reduction in Lyft demand. The substantially larger effect of the Lyft fare residual 8 

suggests that net variations in Lyft’s pricing (beyond what is explained by Uber’s fare) 9 

significantly reduced passenger demand. Moreover, 1 SD longer wait times (1.54 minutes) tie to a 10 

37% reduction in demand, highlighting the strong sensitivity of consumers to delays.  11 

Demographic factors further contribute: a one-standard-deviation increase in the number of 12 

household workers per available job in the pickup zone results in a 9% rise in demand, and denser 13 

residential areas drive a 3.6% increase in ride-hailing usage, although employment-dense zones 14 

may shift some trips to alternative modes. Several education categories showed distinct effects on 15 

ride-hailing demand. For instance, a one-standard-deviation increase in the proportion of residents 16 

with a college degree corresponds to a 31% increase in demand. In contrast, neighborhoods with 17 

a higher share of individuals holding bachelor’s degrees experience a 14% decline, while those 18 

with more professional degree holders see an 11% reduction in demand. These differences likely 19 

reflect underlying disparities in income, access to alternative transportation, and preferences for 20 

convenience. Marital status influences demand as well; compared to never-married individuals, 21 

married residents exhibit approximately a 10% lower demand, whereas divorced or separated 22 

individuals and widowed individuals show modest increases of 4.4% and 3.7%, respectively.  23 

Table 2 Demand Model Estimates (Y= 𝑸𝒊𝒕
𝑻𝒐𝒕𝒂𝒍, N = 437K, Adj R2 =0.613)   24 

Variable Name Coefficient 

Passenger Wait Time (min) -54.52 

Uber’s Fare ($ per mile) -16.17 

Lyft’s Fare Residual (per mile) -278.2 

Population density (people/acre) at PU Zone 0.115 

Employment density (jobs/acre) at PU Zone -0.024 

# Workers earning $1250 per month or less at PU Zone -0.114 

# Workers earning between $1250 to $3333 per month at PU Zone 0.036 

# Workers earning $3333 per month or more at PU Zone 0.004 

# Jobs in Zone per Household in Pickup Zone -0.027 

# Household Workers per Job at Pickup Zone 2.462 

College/Associate Degree Holders per Capita (PU Zone) 148.4 

Bachelor’s Degree Holders per Capita (PU Zone) -363.3 

Professional Degree/Graduate Degree Holders per Capita (PU Zone) -275.4 

Married people per Capita (PU Zone) -38.90 

Divorced or Separated people per Capita (PU Zone) 217.2 

Widowed people per Capita (PU Zone) 314.2 

Daily Average Precipitation (mm) -12.20 
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Daily Average Temperature (°C)  12.70 

Daily Average wind speed (mi/h)  32.40 

(All variables are statistically significant at α = 0.05) 1 

The fare equations reveal distinct operator-specific pricing dynamics. Uber’s fare equation 2 

estimates (Table 3) indicate that real-time supply availability (approximated by wait times) has a 3 

positive and highly significant effect on per-mile charges. A one-standard-deviation rise in wait 4 

time () was associated with a 9.8% rise in per-mile fares. Overall market demand, as measured by 5 

the total trip count, significantly drives fare levels: a one-standard-deviation increase in demand 6 

raises Uber's per-mile fares by 9% and Lyft's fares by 2.2% (Table 3 and 4), indicating that the 7 

operator’s pricing algorithm responds strongly to real‐time supply-demand imbalances. 8 

Demographic and economic variables also show a strong association with ride-hailing demand. 9 

zones with a higher share of top earners experience slightly lower surge levels, possibly because 10 

these areas are better serviced or see travel patterns that mitigate peak‐time shortages. Meanwhile, 11 

the job concentration shows small but significant fare increases in more employment‐dense areas, 12 

potentially because commuting hotspots face more frequent or pronounced surges during rush 13 

hours. Lyft’s fare estimates (Table 4) show that its pricing is less sensitive to broader market-wide 14 

demand surges than to local, real-time driver availability. The share of workers in the highest wage 15 

bracket is negatively associated with fares, and the effects differ considerably among education 16 

variables. Taxi zones with a higher concentration of high school graduates tend to have elevated 17 

fares, potentially due to peak-hour usage.  18 

In addition to the main market-level drivers, the model includes four event-based indicators that 19 

capture temporal shocks resulting from major gatherings and festivals in September 2023. The 20 

United Nations General Assembly is associated with a slight reduction in per-mile fares, whereas 21 

Climate Week and the Global Citizen Festival led to modest rises in per-mile charges. The 22 

bootstrap approach provides a comprehensive view of the variability in the 3SLS estimates across 23 

multiple resampled spatiotemporal clusters. For the demand equation, the results show moderate 24 

variability in its parameters. For instance, the initial coefficient for wait time is –54.5, with a 25 

bootstrap mean of –58.8 and a standard deviation of 44.2, indicating moderate uncertainty in its 26 

impact on demand. Lyft fare residual showed variability too, with its original coefficient at –278, 27 

a bootstrap means of –247, and a standard deviation of 44.8. In the Uber fare equation, the impact 28 

of wait time remains relatively stable; the original coefficient of 1.14 is closely mirrored by a 29 

bootstrap mean of 1.21 and a low standard deviation of 0.12. This consistency suggests that the 30 

surge pricing effect driven by supply constraints is robust across resampled clusters. For the Lyft 31 

fare equation, similar patterns emerge. The wait time parameter is consistently estimated with an 32 

original value of 1.25 and a bootstrap mean of 1.33, with a standard deviation of 0.12, reinforcing 33 

the critical role of real-time supply in determining fare levels. Other coefficients in Lyft’s fare 34 

equation, including those for demographic factors, display narrower bootstrap variances compared 35 

to some of the demand equation parameters, suggesting that Lyft’s pricing is less sensitive to 36 

broader market fluctuations and more stable in response to local conditions. 37 

 38 

 39 
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Table 3 Uber’s Fare Model Estimates (Y= 𝑸𝒊𝒕
𝑻𝒐𝒕𝒂𝒍, N = 437K, Adj R2 =0.609) 1 

Variable Name Coefficient 

Demand (Total Trips Requests) 0.002 

Passenger Wait Time (min) 1.158 

employment density (jobs/acre) at PU Zone 9.69E-05 

# Workers earning $1250 per month or less at PU Zone 0.001 

# Workers earning between $1250 to $3333 per month at PU Zone -0.001 

# Workers earning $3333 per month or more at PU Zone -2.65E-04 

High School Graduate people per Capita (PU Zone) 1.683 

College/Associates Degree Holders per Capita (PU Zone) -0.432 

Married (people per Capita (PU Zone) 0.698 

Divorced or Separated people per Capita (PU Zone) 2.445 

Widowed people per Capita (PU Zone) -0.845 

UN General Assembly (September 19–23) -1.583 

Climate Week (September 17–24) 0.410 

Global Citizen Festival (September 23) 0.242 

(Variables are statistically significant at α = 0.05) 2 

Table 3 Lyft’s Fare Model Estimates (Y= 𝑸𝒊𝒕
𝑻𝒐𝒕𝒂𝒍, N = 2194, Adj R2 =0.609)   3 

Variable Name Coefficient 

Demand (Total Trips Requests) 0.0002 

Passenger Wait Time (min) 1.263 

Gross employment density (jobs/acre) at PU Zone -3.16E-05 

# Workers earning $1250 per month or less at PU Zone 0.001 

# Workers earning between $1250 to $3333 per month at PU Zone -0.001 

# Workers earning $3333 per month or more at PU Zone -2.87E-04 

High School Graduate people per Capita (PU Zone) 2.566 

College/Associate's Degree Holders per Capita (PU Zone) -0.409 

Married people per Capita (PU Zone) 0.884 

Divorced or Separated people per Capita (Pickup Zone) 3.551 

Widowed people per Capita (PU Zone) -2.881 

UN General Assembly Indicator (September 19–23) -1.643 

Climate Week Indicator (September 17–24) 0.078 

Global Citizen Festival Indicator (September 23) 2.124 

(Variables are statistically significant at α = 0.05) 4 

CONCLUSIONS 5 

Ride-hailing services like Uber and Lyft offer a dynamic alternative to traditional taxis and public 6 

transportation. Despite their growing significance, conventional models often overlook the 7 

feedback relationship between fare and demand across time, space, and competing providers. This 8 

study addressed this gap by jointly estimating the relationship between demand and per-mile fares 9 

for Uber and Lyft in New York City using a three-stage least squares (IV3SLS) system of 10 

simultaneous equations. On the demand side, the analysis showed that both fare levels and wait 11 

times are key drivers, with higher fares and longer wait times resulting in significantly fewer trip 12 

requests, especially for Lyft users, who showed higher sensitivity to fares compared to Uber users.  13 
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A dollar per mile rise in Uber’s fares reduces demand by 5.8%, whereas the same increase in Lyft’s 1 

residual fare leads to a 64% drop. A one standard deviation (SD) rise in wait times (1.54 minutes), 2 

too, was associated with a 37% reduction in demand, emphasizing that riders are highly susceptible 3 

to delays. These associations are additionally affected by underlying demographic and 4 

environmental conditions. The results showed that educational attainment and income levels have 5 

a differentiated impact on ride-hailing demand. Areas with more college-educated residents show 6 

a 31% increase in demand, while regions with higher proportions of bachelor’s or professional 7 

degree holders experience declines.  8 

Marital status also plays a role, with married individuals showing lower demand relative to never-9 

married individuals, while divorced or widowed populations exhibit modest increases. Weather 10 

conditions are equally influential; rainy conditions reduce demand by 17%, whereas hotter 11 

temperatures and higher wind speeds (+6.1°F and +2.8 mph) lead to modest increases, reflecting 12 

consumers’ preferences for comfort and convenience. On the fare side, both Uber and Lyft employ 13 

dynamic pricing models that respond to real-time supply constraints. The results showed that fares 14 

increased with longer wait times, reflecting the surge pricing effect triggered by limited driver 15 

availability. However, Uber’s fares were observed to be more responsive to overall market demand 16 

than those of Lyft. Moreover, wealthier neighborhoods tend to experience lower surge levels, 17 

likely due to higher driver availability or less pronounced peak-hour fluctuations. In contrast, 18 

middle- and lower-income areas tend to see slightly higher fares, suggesting greater supply-19 

demand mismatches in these regions. Although the demand estimates show only moderate 20 

variability across clusters, this moderate variability reflects local and temporal heterogeneity that 21 

significantly influences consumer behavior. For example, the effect of wait time on demand differs 22 

considerably across taxi zones and time intervals, indicating that localized congestion and regional 23 

economic conditions have a substantial impact on ride-hailing usage. In contrast, the fare equations 24 

for both Uber and Lyft display remarkably stable wait time coefficients. This stability implies that 25 

surge pricing mechanisms are robust across diverse spatiotemporal clusters, regardless of the 26 

specific pickup zone or time of day, the response to supply constraints remains consistent.  27 

These outcomes emphasize the diverse factors influencing ride-hailing dynamics, which are 28 

systematically examined by addressing several key challenges simultaneously. It resolves 29 

simultaneity by modeling the bidirectional feedback between operator-specific fares and demand 30 

using instruments within a three-stage least squares framework. It captures spatiotemporal 31 

dependencies by including both within-cluster and cross-cluster correlations across time and space, 32 

revealing distinct pricing strategies and demand sensitivities across competitors. Future research 33 

should extend the timeframe to capture longer-term and seasonal variations, particularly under 34 

evolving regulatory regimes like new tolling policies. Further exploration into different service 35 

tiers, namely, premium or luxury options, and a deeper examination of driver-side factors, 36 

including acceptance rates and fleet size, are warranted. Exploring unobserved rider factors, like 37 

brand loyalty and past wait-time experiences, may further refine the understanding of operator 38 

preferences and lead to more adaptive fare strategy models. 39 

ACKNOWLEDGMENTS 40 

This article and the work described were sponsored by the U.S. Department of Energy (DOE) 41 

Vehicle Technologies Office (VTO) under the Systems and Modeling for Accelerated Research in 42 

Transportation (SMART) Mobility Laboratory Consortium, an initiative of the Energy Efficient 43 

Mobility Systems (EEMS) Program. The U.S. Government retains for itself, and others acting on 44 



15 

 

its behalf, a paid-up nonexclusive, irrevocable worldwide license in said article to reproduce, 1 

prepare derivative works, distribute copies to the public, and perform publicly and display 2 

publicly, by or on behalf of the Government. 3 

AUTHOR CONTRIBUTIONS 4 

The authors confirm the contribution to the paper as follows: Conceptualization, data curation, 5 

formal analysis, investigation and methodology: Priyanka, P.; Gurumurthy, K.M; and Kockelman, 6 

K.; Project administration and Supervision: Kockelman, K. and Gurumurthy, K.M; Visualization 7 

and Writing – original draft: Priyanka, P., Kockelman, K.; Writing – review & editing: Kockelman, 8 

K. and Gurumurthy, K.M; The authors confirm their respective contributions to this manuscript as 9 

outlined above. We acknowledge and thank Aditi Bhasker for her review and valuable feedback.  10 

REFERENCES 11 

Chao, J., 2019. Modeling and Analysis of Uber’s Rider Pricing. Proceedings of the International 12 

Conference on Economic Management and Cultural Industry (ICEMCI 2019), Atlantis 13 

Press, pp. 693–711. 14 

Chen, C., Feng, T., Ding, C., Yu, B. and Yao, B., 2021. Examining the spatial-temporal 15 

relationship between urban built environment and taxi ridership: Results of a semi-16 

parametric GWPR model. Journal of Transport Geography, 96, p.103172. 17 

Chen, Q., Lei, Y. and Jasin, S., 2023. Real-Time Spatial–Intertemporal Pricing and Relocation 18 

in a Ride-Hailing Network: Near-Optimal Policies and the Value of Dynamic Pricing. 19 

Operations Research. https://doi.org/10.1287/opre.2022.2425. 20 

Chen, X.M., Zheng, H., Ke, J. and Yang, H., 2020. Dynamic Optimization Strategies for On-21 

Demand Ride Services Platform: Surge Pricing, Commission Rate, and Incentives. 22 

Transportation Research Part B: Methodological, 138, pp.23–45. 23 

City of New York, 2024. Congestion Pricing Program. Available at: 24 

https://portal.311.nyc.gov/article/?kanumber=KA-03612 [Accessed 25 March 2025]. 25 

Correa, D., 2017. Exploring the taxi and Uber demands in New York City: An empirical 26 

analysis and spatial modeling. SSRN 4229042. 27 

Dey, B.K., Tirtha, S.D., Eluru, N. and Konduri, K.C., 2021. Transformation of Ride-Hailing in 28 

New York City: A Quantitative Assessment. Transportation Research Part C: Emerging 29 

Technologies, 129, p.103235. 30 

Feng, Y., Niazadeh, R. and Saberi, A., 2024. Two-Stage Stochastic Matching and Pricing with 31 

Applications to Ride Hailing. Operations Research, 72(4), pp.1574–1594. 32 

https://doi.org/10.1287/opre.2022.2398. 33 

Gurumurthy, K.M., Kockelman, K.M. and Auld, J., 2021. A system of shared autonomous 34 

vehicles for Chicago. Journal of Transport and Land Use, 14(1), pp.933–948. 35 

https://doi.org/10.1287/opre.2022.2425
https://portal.311.nyc.gov/article/?kanumber=KA-03612


16 

 

He, S. and Shin, K.G., 2019. Spatio-temporal Adaptive Pricing for Balancing Mobility-on-1 

Demand Networks. ACM Transactions on Intelligent Systems and Technology, 10(4), 2 

Article 39. https://doi.org/10.1145/3331450. 3 

Huang, G., Liang, Y. and Zhao, Z., 2023. Understanding Market Competition Between 4 

Transportation Network Companies Using Big Data. Transportation Research Part A: Policy 5 

and Practice, 178, p.103861. 6 

Huang, H., 2023. Taxi Fare Prediction Based on Multiple Machine Learning Models. 7 

Proceedings of the 5th International Conference on Computing and Data Science. doi: 8 

10.54254/2755-2721/16/20230849. 9 

Jäger, B., Wittmann, M. and Lienkamp, M., 2016. Analyzing and modeling a City’s 10 

spatiotemporal taxi supply and demand: A case study for Munich. Journal of Traffic and 11 

Logistics Engineering, 4(2). 12 

Ke, J., Zheng, H., Yang, H. and Chen, X., 2020. Pricing Strategies for Ride-Sourcing Platforms: 13 

A Dynamic Game-Theoretic Approach. Transportation Research Part C: Emerging 14 

Technologies, 113, pp.73–92. 15 

Kelleny, B. and Ishak, S., 2021. Exploring and visualizing spatial effects and patterns in ride-16 

sourcing trip demand and characteristics. Journal of Sustainable Development of Transport 17 

and Logistics, 6(2), pp.6–24. https://doi.org/10.14254/jsdtl.2021.6-2.1. 18 

Lavieri, P.S., Dias, F.F., Juri, N.R., Kuhr, J. and Bhat, C.R., 2018. A model of ridesourcing 19 

demand generation and distribution. Transportation Research Record, 2672(46), pp.31–40. 20 

Li, B., Cai, Z., Jiang, L., Su, S. and Huang, X., 2019. Exploring urban taxi ridership and local 21 

associated factors using GPS data and geographically weighted regression. Cities, 87, 22 

pp.68–86. 23 

Liu, X., Gong, L., Gong, Y. and Liu, Y., 2015. Revealing travel patterns and city structure with 24 

taxi trip data. Journal of Transport Geography, 43, pp.78–90. 25 

Liu, Y., Wang, F., Xiao, Y. and Gao, S., 2012. Urban land uses and traffic ‘source-sink areas’: 26 

Evidence from GPS-enabled taxi data in Shanghai. Landscape and Urban Planning, 106(1), 27 

pp.73–87. 28 

Lyft Blog, 2025. Navigating the New NYC Congestion Fee with Lyft. Available at: 29 

https://www.lyft.com/blog/posts/navigating-the-new-nyc-congestion-fee-with-lyft 30 

[Accessed 2 February 2025]. 31 

McNally, M.G. and Rafiq, R., 2021. Analysis of Activity-Travel Patterns and Tour Formation 32 

of Transit Users. Pacific Southwest Region University Transportation Center, Report No. 33 

PSR-19-33. 34 

Meskar, M., Aslani, S. and Modarres, M., 2023. Spatio-temporal pricing algorithm for ride-35 

hailing platforms where drivers can decline ride requests. Transportation Research Part C: 36 

Emerging Technologies, 153, p.104200. 37 



17 

 

Meteostat, 2023. Meteostat Python library. GitHub. Available at: 1 

https://github.com/meteostat/meteostat [Accessed 25 March 2025]. 2 

Moreira-Matias, L., Gama, J., Ferreira, M., Mendes-Moreira, J. and Damas, L., 2013. Predicting 3 

taxi–passenger demand using streaming data. IEEE Transactions on Intelligent 4 

Transportation Systems, 14(3), pp.1393–1402. 5 

New York City Taxi and Limousine Commission (2024) 2024 Annual Report. Available at: 6 

https://www.nyc.gov/assets/tlc/downloads/pdf/annual_report_2024.pdf (Accessed: 2725 7 

April 2025). 8 

New York City Taxi and Limousine Commission, 2024. Industry Notice #24-10: MTA 9 

Congestion Pricing Toll to Go into Effect January 5, 2025. Available at: 10 

https://www.nyc.gov/assets/tlc/downloads/pdf/industry-11 

notices/industry_notice_24_10_english.pdf [Accessed 25 March 2025]. 12 

New York City Taxi and Limousine Commission, 2025. TLC Trip Record Data. Available at: 13 

https://www.nyc.gov/site/tlc/about/tlc-trip-record-data.page [Accessed 25 March 2025]. 14 

New York State Department of Taxation and Finance, 2024. Congestion Surcharge. Available 15 

at: https://www.tax.ny.gov/bus/cs/csidx.htm [Accessed 25 March 2025]. 16 

Oh, S., Kondor, D., Seshadri, R., Zhou, M., Le, D.-T. and Ben-Akiva, M., 2020. Spatiotemporal 17 

Characteristics of Ride-sourcing Operation in Urban Area. Available at: 18 

http://export.arxiv.org/pdf/2011.07673 [Accessed 25 March 2025]. 19 

Özkan, E., 2020. Joint pricing and matching in ride-sharing systems. European Journal of 20 

Operational Research, 287(3), pp.1149–1160. 21 

Paithankar, P., Fakhrmoosavi, F., Kockelman, K.M. and Perrine, K.A., 2024. International 22 

Travel Patterns: Exploring Destination Preferences and Airfare Trends to and from the 23 

USA. Transportation Planning and Technology, pp.1–19. 24 

Pan, R., Zhang, S., Yang, H., Xie, K. and Wen, Y., 2019. Analysis of spatial equity in taxi 25 

services: A case study of New York City. In 2019 IEEE Intelligent Transportation Systems 26 

Conference (ITSC), IEEE, pp.2659–2664. 27 

Paronda, A.G.A., Regidor, J.R.F. and Napalang, M.S.G., 2016. Comparative Analysis of 28 

Transportation Network Companies (TNCs) and Conventional Taxi Services in Metro 29 

Manila. Proceedings of the 23rd Annual Conference of the Transportation Science Society 30 

of the Philippines, Vol. 8. 31 

Parvez, D.A., Tirtha, S.D., Bhowmik, T. and Eluru, N., 2023. Joint Econometric Model 32 

Framework for Transportation Network Company Users’ Trip Fare and Destination Choice 33 

Analysis. Transportation Research Record: Journal of the Transportation Research Board, 34 

2677(7), pp.545–557. 35 

Qian, X. and Ukkusuri, S.V., 2015. Spatial variation of the urban taxi ridership using GPS data. 36 

Applied Geography, 59, pp.31–42. 37 

https://www.nyc.gov/assets/tlc/downloads/pdf/annual_report_2024.pdf


18 

 

Schwieterman, J.P., 2019. Uber economics: Evaluating the monetary and travel time trade-offs 1 

of transportation network companies and transit service in Chicago, Illinois. Transportation 2 

Research Record, 2673(4), pp.295–304. 3 

Tang, J., Gao, F., Liu, F., Zhang, W. and Qi, Y., 2019. Understanding Spatio-Temporal 4 

Characteristics of Urban Travel Demand Based on the Combination of GWR and GLM. 5 

Sustainability, 11(19), p.5525. https://doi.org/10.3390/su11195525. 6 

US Department of Transportation (2016) Revised Departmental Guidance on Valuation of 7 

Travel Time in Economic Analysis. Washington, DC: US Department of Transportation. 8 

https://www.dot.gov/sites/dot.gov/files/docs/2016%20Revised%20Value%20of%20Travel9 

%20Time%20Guidance.pdf (Accessed: 25 April 2025). 10 

Wang, H. and Yang, H., 2019. Ridesourcing systems: A framework and review. Transportation 11 

Research Part B: Methodological, 129, pp.122–155. 12 

Wang, X., He, F., Yang, H. and Gao, H.O., 2016. Pricing Strategies for a Taxi-Hailing 13 

Platform. Transportation Research Part E: Logistics and Transportation Review, 93, pp.212–14 

231. 15 

Xing, D., Zhao, C. and Wang, G., 2022. A Spatial-Temporal Attention Multi-Graph 16 

Convolution Network for Ride-Hailing Demand Prediction Based on Periodicity with 17 

Offset. arXiv preprint arXiv:2203.12505. https://doi.org/10.48550/arXiv.2203.12505. 18 

Yu, H. and Peng, Z.R., 2020. The impacts of built environment on ridesourcing demand: A 19 

neighbourhood level analysis in Austin, Texas. Urban Studies, 57(1), pp.152–175. 20 

Zha, L., Yin, Y. and Du, Y., 2017. Surge Pricing and Labor Supply in the Ride-Sourcing 21 

Market. Transportation Research Procedia, 23, pp.2–21. 22 

https://doi.org/10.1016/j.trpro.2017.05.002. 23 

Zhang, D., Xiao, F., Kou, G., Luo, J. and Yang, F., 2023. Learning Spatial-Temporal Features 24 

of Ride-Hailing Services with Fusion Convolutional Networks. Journal of Advanced 25 

Transportation, 2023, pp.1–12. https://doi.org/10.1155/2023/4427638. 26 

Zhao, K., Khryashchev, D., Freire, J., Silva, C. and Vo, H., 2016. Predicting taxi demand at 27 

high spatial resolution: Approaching the limit of predictability. In 2016 IEEE International 28 

Conference on Big Data (Big Data), IEEE, pp.833–842. 29 

Zheng, Z., Zhang, J., Zhang, L., Li, M., Rong, P. and Qin, Y., 2022. Understanding the impact 30 

of the built environment on ride-hailing from a spatio-temporal perspective: A fine-scale 31 

empirical study from China. Cities, 126, p.103706. 32 

https://doi.org/10.1016/j.cities.2022.103706. 33 

Zhou, X., Wang, M. and Li, D., 2019. Bike-sharing or taxi? Modeling the choices of travel 34 

mode in Chicago using machine learning. Journal of Transport Geography, 79, p.102479. 35 

Zhou, Y., Yang, H. and Ke, J., 2022. Price of Competition and Fragmentation in Ride-Sourcing 36 

Markets. Transportation Research Part C: Emerging Technologies, 143, p.103851. 37 

https://www.dot.gov/sites/dot.gov/files/docs/2016%20Revised%20Value%20of%20Travel%20Time%20Guidance.pdf
https://www.dot.gov/sites/dot.gov/files/docs/2016%20Revised%20Value%20of%20Travel%20Time%20Guidance.pdf


19 

 

Zhou, Y., Yang, H., Ke, J., Wang, H. and Li, X., 2022. Competition and Third-Party Platform-1 

Integration in Ride-Sourcing Markets. Transportation Research Part B: Methodological, 2 

159, pp.76–103. 3 

Zhu, P. and Mo, H., 2022. The potential of ride-pooling in VKT reduction and its environmental 4 

implications. Transportation Research Part D: Transport and Environment, 103, p.103155. 5 

Zhu, P., Huang, J., Wang, J., Liu, Y., Li, J., Wang, M. and Qiang, W., 2022. Understanding taxi 6 

ridership with spatial spillover effects and temporal dynamics. Cities, 125, p.103637. 7 

https://doi.org/10.1016/j.cities.2022.103637. 8 

 9 

 10 

 11 

 12 

 13 

 14 

 15 

 16 

https://doi.org/10.1016/j.cities.2022.103637



