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ABSTRACT 

Speeding contributes to one-third of all motor vehicle fatalities in the U.S., making it crucial to 

understand speeding behaviors for traffic safety. This work compares a random sample of 15.7 

million vehicle speeds in November 2024 to posted speed limits (PSLs) at 1.04 million roadway 

points across the Texas network, and reviews 12 non-infrastructure strategies to ensure greater 

PSL compliance.  

Least-squares and logistic regression models control for design variables, congestion, and land use 

to examine how average speeds and shares of vehicles exceeding the PSL vary by time of day, day 

of week, and setting. Results indicate that speeding is most common during late-night hours and 

on weekends, especially on roads with lower PSLs (30 and 40 mph), where 43% of drivers 

exceeded the limit. Almost half the probe vehicles exceed the PSL and 20% exceeded it by more 

than 15% (e.g., by more than 9 mph in a 60 mph zone) between 3 a.m. and 5 a.m. each day. PSL 

and access control were the top predictors of average traffic speed, with a 1 mph increase in PSL 

leading to a 0.75 mph rise in average speed and full access control (freeway-type setting) 

increasing average speeds by 0.37 mph – everything else constant. Urban settings and weekend 

variables were also impactful. This paper also emphasizes the effectiveness of non-infrastructure 

speed management strategies, highlighting the effectiveness of speed cameras, with enforcement 

and signal retiming also playing key roles in ensuring safe, legal speed choices. This work provides 

insights to help transportation agencies identify targeted enforcement locations and implement 

more effective speed management policies. 
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BACKGROUND 

Speeding on public roadways is a common behavior worldwide (Alonso et al., 2013; WHO, 2019). 

Pires et al. (2020) surveyed over 35,000 road users across 32 countries, with Americans and 

Canadians reporting the most speeding on freeways (71.6%), and Asian countries (Japan, South 

Korea, and India) reporting the lowest (46.4%). The American Automobile Association (AAA, 

2022) found that 63% of US drivers believed they would be cited for traveling 15 mph over the 

posted speed limit (PSL) on freeways, with half reporting having engaged in such speeding during 

the month prior to the survey. Beyond survey data, of 12 million vehicles measured at 677 sites 

across the U.S., more than half of arterial-using vehicles were found to exceed PSLs, with 16% to 

19% exceeding the limit by 10 mph or more on freeways, arterials, and collector roads (De 

Leonardis et al., 2018). State-level investigations also support these results: for example, Skszek 

(2004) found that 46% to 69% of vehicles were exceeding the limit on 55 mph-PSL highways in 

Arizona. Waymo’s 10-day study periods on urban streets in San Francisco and Phoenix (with over 

one-million speed observations) found that almost half the visible/nearby moving vehicles were 

exceeding the PSL. Of the vehicles observed, 6% were driving 10 mph or more above the limit on 

rather low-speed roadways—with PSLs of 40 mph or less (Waymo, 2023). That is an exceedance 

of 25% or more of the limit, but most police units will not ticket until 5 or 10 mph above the PSL 

on such roadways and streets (Kockelman and Ma, 2018). 

In the U.S., over the past two decades, speeding has contributed to one-third of all motor vehicle 

fatalities. In 2022 alone, more than 300,000 people were injured and 12,151 were killed in 

speeding-related crashes, accounting for 9% of traffic injuries and 29% of fatalities (NCSA, 2024). 

Figure 1 presents the state-level percentages of speeding-related traffic fatalities across the U.S. in 

2022, with Texas, California, and North Carolina having the highest numbers of such fatalities, 

with totals of 1,521, 1,403, and 660 speeding-related roadway deaths, respectively. Speeding 

imposes significant societal costs, including loss of life, vehicle damage, medical expenses, 

insurance claims, and other economic burdens. According to a report by NHTSA (Blincoe et al., 

2022), crashes result in annual economic-only and comprehensive costs of approximately $1,300 

and $4,100 per American. 

 
Figure 1: Percentage of Speeding-Related Traffic Fatalities by State in 2022 (Source: NCSA, 

2024) 



   
 

   

 

Operating speeds are highly associated with both the occurrence and severity of crashes, making 

speeding a significant concern. Evans (2004) investigated the relationship between crash rates and 

vehicle speeds, indicating that a 1% increase in speed resulted in a 4% increase in fatal crash rates 

and a 4–12% increase in occupant fatality rates. Rósen et al.’s (2011) review of others’ 

investigations found that only 10% of pedestrians survived 60 mph collision speeds, fewer than 

50% survived 50 mph speeds, and nearly all survived 12 mph or lower crash speeds (with roadway 

vehicles, of various body types). Kockelman et al.’s (2006) NCHRP report examined drivers’ 

speed choices, crash rates, injury severity, and PSLs. It was found that injury severity increases 

notably with higher PSLs. Crash fatalities rose by 28% when PSLs increased from 55 mph to 65 

mph, and by 13% when going from 65 mph to 75 mph. The probability of fatal injury rose by 24% 

in the first setting and by 12% in the higher-limit setting. Similarly, Rosén and Sander (2009) 

concluded that the average fatality risk at 30 mph is more than five times the risk at 18 mph, and 

more than twice the risk at 25 mph. 

Given the safety benefits of understanding vehicle speeds and speeding behavior, several studies 

(Zolali et al., 2021; Gargoum and El-Basyouny, 2016) have been consistently conducted on this 

topic. Malaghan et al. (2022) developed speed prediction models for 77 km of two-lane rural 

highway sections using continuous speed profile data for heavy passenger vehicles. They identified 

curve radius, degree of curvature, and preceding tangent length as key factors influencing vehicle 

speeds on curves. Theeuwes et al. (2024) investigated the effects of road design on drivers’ speed 

choices in the Netherlands and found that the presence of separate bike lanes, central line markings, 

asphalt surfaces (compared to pavers), multiple lanes, and one-way roads were associated with 

higher speeds. Existing research on speeding typically focuses on two major aspects: drivers’ 

perceptions of speeding and the factors influencing speeding behavior (Horvath et al., 2012; 

Schroeder et al., 2013; Truelove et al., 2017; Kockelman and Ma, 2018; Peterson et al., 2021). 

Mannering (2009) collected 988 responses regarding drivers’ perceptions of speeding and 

concluded that enforcement plays a crucial role in shaping safety perceptions, with drivers’ beliefs 

about safe speeds closely related to the speeds at which they expected to receive speeding tickets. 

Kim et al. (2022) developed a proportional ordered logit model to examine characteristics 

associated with speeding, using data from a survey of 2,930 licensed drivers. They found that 

among demographic variables, driver age was the most significant determinant, with younger 

drivers being more likely to speed. Additionally, the interaction between educational attainment 

and engagement in aggressive driving was also associated with speeding behavior. Large-scale 

naturalistic driving studies are another commonly approach for analyzing speeding behaviors. For 

example, Perez et al. (2021) analyzed recorded vehicle data from 3,500 drivers over a three-year 

period. Results showed that age and gender significantly influenced the likelihood of speeding: 

drivers aged 16 to 24 were 1.5 times more likely to speed than those over 80. Road type and PSLs 

also had an effect; the odds of speeding in zones with PSLs of 10 to 20 mph were 9.5 times higher 

than in zones with PSLs of 60 mph or more. 

However, few studies have quantitatively examined speeding behavior across roadway networks. 

De Leonardis et al. (2018) analyzed average free-flow speeds across various roadway types and 

found that under free-flow traffic conditions, more than half (56%) of vehicles on arterial roads 

likely exceeded the speed limit, with 16–18% exceeding it by more than 10 mph across 677 sites 

during a 24-hour period in 2015. A limitation of this study is that average roadway speeds do not 

intuitively capture individual speeding behavior. To address this, probe vehicle data are often used 

to quantify the distribution and frequency of speeding (Hong et al., 2014). Eboli et al. (2017) 



   
 

   

 

conducted a speed analysis using continuous speed data collected via smartphone-equipped 

vehicles driven by 27 participants on a rural two-lane road. Similarly, Richard et al. (2020) 

analyzed approximately 5.4 million trips from 3,539 passenger vehicle drivers over a 12 to 24-

month period. They concluded that driving 10 mph over PSLs was common, with average 

maximum speeds ranging from 12 to 15 mph above the PSL. However, due to limitations in 

obtaining accurate PSL data, their study focused only on higher-speed roadways—even though 

speeding often occurs on local roads with lower PSLs (Perez et al., 2021). 

In summary, the main limitations of existing speeding research include the absence of individual-

level speed data, small sample sizes, and unreliable PSL information. Currently, no studies have 

examined vehicle speeds and speeding behavior under near-real conditions at a regional scale. 

Gaining a better understanding of broader speeding patterns can offer valuable insights for law 

enforcement and support stakeholders in implementing proper and cost-effective countermeasures 

(Mears and Lindsey, 2016; FHWA, 2024). To reduce speeding behaviors and protect all road users, 

infrastructure treatments, including speed humps, chicanes, curb extensions, and non-

infrastructure strategies, such as variable speed limits and speed enforcement, have been proven 

to be effective in many research studies and documents (Shin et al., 2009; Fitzpatrick et al., 2014; 

Markovich, 2020; New York City, 2023). Compared to infrastructure countermeasures, non-

infrastructure ones are less costly, can be deployed more quickly, and are easily adapted to various 

conditions. Several evaluations (Kockelman et al., 2021; FHWA, 2018, 2024) have assessed the 

effectiveness of physical countermeasures. Among these, curb ramps, speed trailers, bollards, and 

raised center medians were found to be the most effective, with CMFs ranging from 0.93 to 0.95. 

However, the impacts of potential non-infrastructure strategies on operating speeds have not yet 

been sufficiently studied. 

To address these gaps, this paper uses INRIX trip trajectory data from individual vehicles to 

analyze speed and speeding patterns by time of day and day of the week across the entire Texas 

road network. To better understand speeding behavior, this study develops an ordinary least 

squares (OLS) model and a binomial logistic model to estimate the effects of road characteristics 

and land use patterns on speed and speeding choices. After that, the research identifies high-risk 

speeding locations and compares them with crash data to inform enforcement and policy 

interventions. Following the identification of high-risk locations, this study categorizes existing 

non-infrastructure strategies into three groups: operational, technological, and policy- and 

education-oriented, and summarizes their associated benefits on operating speeds to support 

policymakers in implementing more effective strategies. 

 

DATA DESCRIPTION 

This section provides an overview of the PSL dataset, INRIX speed data, and crash data used in 

this study, along with a summary of their key characteristics. 

Speed Limit Data 

PSLs are determined based on many factors, including road design and sight distance, roadside 

development and driveways, traffic signals, and the presence of parking and pedestrians 

(Fitzpatrick et al., 2021). Various publicly available datasets, such as OpenStreetMap (OSM), 

state-level datasets, and commercial datasets—including HERE and TomTom—provide PSL 

information. While the state-level dataset (TxDOT Roadway Inventory, TxDOT, 2025) is missing 

PSLs for 70% of centerline miles—particularly among lower functional classifications such as 



   
 

   

 

local roads and minor collectors, where PSLs are often below 30 mph—this study uses commercial 

datasets that offer better coverage for these roads, where speeding most commonly occurs. Figure 

2 shows the PSL dataset coverage by road class, indicating that most local roads have PSLs of 25 

mph or 30 mph.  

Figure 2. Texas’ Centerline-Miles by PSL and Road Class in the PSL dataset 

This study also compared the PSL dataset against ground-truth PSLs obtained from speed limit 

signs identified in Google Street View across all road types. For the comparison, 20 segments were 

randomly selected for each of TxDOT’s 7 functional classification defined, resulting in a total of 

140 segments covering approximately 100 centerline-miles across Texas. Figure 3 indicates that 

for interstates and other freeways and expressways, the PSL dataset accurately captures about 95% 

of road segments. On average, the dataset achieved 85.5% accuracy for exact PSL matches (with 

most PSL errors occurring on local roads and within a 10 mph range), which increased to 94.3% 

when allowing a ±5 mph tolerance. Therefore, this dataset is considered relatively reliable for 

identifying speeding patterns and modeling speeding behaviors across all road types. 



   
 

   

 

 
Figure 3. Shares of Segments (n=20 segments for each roadway type across Texas) where PSL 

Agreed with Actual PSL (or came within 5 mph) 

Speed Data 

Without the need for roadside equipment, mobile traffic sensors–such as probe vehicles equipped 

with GPS tracking devices–can collect real-time, network-wide traffic data at lower costs. Because 

of this, their use has grown rapidly in recent years. Probe vehicle data have proven useful for 

tracking traffic volumes and congestion (Sharma et al., 2017; Olszewski et al., 2018), estimating 

travel times (Zheng and Van Zuylen, 2013), and modeling vehicle speeds (Haghani et al., 2009; 

Ou et al., 2011; Kim and Coifman, 2014; Lobo et al., 2018). Several commercial vendors, 

including INRIX, HERE, TomTom, and NAVTEQ, provide real-time traffic data (e.g., speeds, 

traffic volume, traffic time) for a variety of applications. This study uses INRIX trip trajectory data 

from individual vehicles to calculate mean, median, 85th percentile, and 95th percentile speeds, as 

well as the shares of INRIX vehicles that are 15% to 30% above the PSL every hour of the 

November study week. 

INRIX’s 2024 trip data provide 2 to 4 million vehicle trajectories per day in Texas (for a state 

population of 31M, with more than 60M vehicle-trips per day), along with trip distance and 

duration (between engine on and off points), trip start and end times, and detailed trajectory 

tracking. Since INRIX data relies on connected vehicles equipped with in-vehicle GPS systems, it 

exhibits sample bias—primarily capturing light-duty vehicles. Additionally, the data cannot 

illuminate month-to-month variations in network use due to random fluctuations in sampling rates 

(Mori and Kockelman, 2024). This paper focuses on the available INRIX data to analyze speed 

and speeding behavior and does not further address this bias. Table 1 summarizes the key attributes 

included in the dataset. Given the large volume of data, this study focuses on a one-week sample—

from November 4 to November 10, 2024 (the most recent period available under TxDOT’s 

license)—for analysis. Each trajectory record includes the speed of a specific vehicle as it travels 

along each road segments, allowing for detailed analysis of speed variations across different 

segments.  



   
 

   

 

 

Table 1: Overview of INRIX Trip Trajectory Data for Texas 

Field Description Example 

Trip_id Trip’s unique identifier bc65817ea62f3f95f2b85e49b2305326 

Device_id Device’s unique identifier 29453ce0e8a896c9556534f0d6081c74 

Provider_id Provider’s unique identifier 1700002963a49da13542e0726b7bb758 

Trip_raw_distance_m 

Cumulative distance of raw 

points in meters relative to start 

of trajectory 

10145.247308 (= 6.304 miles) 

Trip_raw_duration_millis 

Cumulative duration of raw 

points in milliseconds relative to 

start of trajectory 

525261 (= 8.754 minutes) 

Start_utc_ts Trip’s start in Unix epoch time 
1730749269541 (= November 4, 2024 
13:41:10 CST) 

End_utc_ts Tip’s end in Unix epoch time 
1730749794802 (= November 4, 2024 

13:49:55 CST) 

Timezone Trip’s start time zone America/Chicago 

Trajectories 

Segment ID, index in the 

trajectory, length, entry time, 

exit time, speed, and segment 

attributes 

[{'traj_idx': 0, 'solution_segments': 

array([{'segment_id': '104631619_0', 

'segment_idx': 0, 'length_m': 451.033, 

'start_utc_ts': 1730749269541.0, 

'end_utc_ts': 1730749283945.0, 

'speed_kph': 38.25701485585533},...])}] 

Crash Data 

TxDOT’s Crash Records Information System (CRIS) (2025) is a statewide automated database 

that includes all reported motor vehicle traffic crashes, with details such as crash time, location, 

facility type, and other characteristics. In this study, the CRIS Query Tool was used to collect all 

crashes that occurred in Texas in 2024. A total of 633,634 crashes were reported across the state; 

among these, 59,459 records were missing location information and were therefore excluded from 

the analysis. Figure 4 shows the spatial distribution of reported crashes, while Figure 5 presents 

the temporal distribution of all crashes and severe crashes (including fatalities and suspected 

serious injuries). Crashes are concentrated within city boundaries and occur most frequently 

between 4 p.m. and 7 p.m. on weekdays—a period that clearly overlaps with peak commuting 

hours. In contrast, fatalities and severe crashes occur primarily on weekends, particularly late at 

night on Fridays and Saturdays and early in the morning on Saturdays and Sundays. Of all reported 

crashes, 27% were speeding-related. This study includes all crashes to identify high-risk locations 

and ultimately improve roadway safety. 



   
 

   

 

 
Figure 4. Spatial Distribution of Texas’ Recorded Crashes in 2024 

  
Figure 5. Number of Texas’ Reported Crashes (left) and Severe Crashes (right) by Time of Day 

and Day of Week in 2024 

 
METHOD 

Vehicle speed data were extracted from individual trajectory records and segmented by time of 

day based on when each vehicle entered a specific segment. All Texas road segments in the INRIX 

database were integrated with PSLs to quantify vehicle speeding behavior. Speeding was measured 

at the segment level and was represented by the percentage of vehicles exceeding the PSL, as well 

as the percentages exceeding it by more than 15% and 30%. 



   
 

   

 

OLS and binomial logistic model (Kriswardhana et al., 2020) were used to estimate the 

dependence of segment-level vehicle speeds (average speed, 85th percentile speed, and 95th 

percentile speed) and segment-level vehicle speeding (percentages of vehicles exceeding the PSL, 

exceeding it by more than 15%, and exceeding it by more than 30%) on various roadway and land 

use attributes, respectively. The formula for the binomial logistic model is provided below: 

log (
𝑝

1 − 𝑝
) = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 +⋯

+ 𝛽𝑛𝑋𝑛 

where p = percentage of vehicles exceeding the PSL, or exceeding it by more than 15% or 30% 

(depending on the model run). Practical significance was assessed by increasing each covariate by 

one standard deviation (SD) in each speed record and calculating the ratio of average vehicle 

speeds (average speed, 85th percentile speed, and 95th percentile speed) after to that before the 

increase. It helps evaluate the magnitude of each variable’s impact. A positive value indicates an 

increase in speed, while a negative value indicates a decrease. 

Since the segment-level speed data totals approximately 25 million speed records per day across 

the state, a random 25% sample of those records was used each day during the week of November 

4 to November 10, 2024, to infer daily patterns. A total of 39.7 million records were extracted, and 

observations with 95th percentile speeds below 5 mph (due to road interruptions or other issues) 

were removed, resulting in a sample size of 39.1 million records for analysis. The TxDOT 

Roadway Inventory Dataset (2025) and the EPA Smart Location Database (2021) were used to 

obtain roadway attributes and land use characteristics. Missing data were also excluded from the 

analysis, and the final dataset included 15.7 million speed records. Table 2 presents summary 

statistics for the dataset of speed observations and related characteristics. Other explanatory 

variables (like lane width, time of day, road class) were not statistically significant and so are not 

shown in the final model results. 

Table 2: Summary Statistics for Texas Speed and Associated Roadway Data (n=15.72M vehicle-

points) 

Variable  Description Mean Median Std. Dev. Min Max 

Avg speed Average vehicle speed within the segment 

during the hour (miles/hour = mph) 
35.57 31.81 17.85 1.22 123.88 

85th speed 85th percentile vehicle speed within the 

segment during the hour (mph) 
39.03 36.05 18.91 0.23 123.88 

95th speed 95th percentile vehicle speed within the 

segment (mph) 40.41 37.72 19.57 5.00 123.88 

% over PSL Percentage of vehicles driving over PSLs 

within the segment during the hour 
0.31 0 0.38 0 1 

% over 

15PSL 

Percentage of vehicles driving over PSLs 

by more than 15% within the segment 

during the hour 

0.14 0 0.3 0 1 

% over 

30PSL 

Percentage of vehicles driving over PSLs 

by more than 30% within the segment 

during the hour 

0.08 0 0.23 0 1 

Weekend 1 if observed during weekends; 0 

otherwise 
0.26 0 0.44 0 1 

Daylight 1 if observed during daylight (7 a.m. to 6 

p.m. in November 2024); 0 otherwise 
0.46 0 0.5 0 1 



   
 

   

 

Urban 1 if the segment is in an urban area 

(population > 5,000); 0 otherwise 
0.75 1 0.43 0 1 

School 1 if the segment is in school zone; 0 

otherwise 
0 0 0.04 0 1 

Two-Way 1 if the segment is two-way; 0 one-way 0.91 1 0.28 0 1 

Full Control 1 if the segment has full access control 

(e.g., freeway); 0 otherwise 
0.06 0 0.23 0 1 

Partial 

Control 

1 if the segment has partial access control; 

0 otherwise 
0.01 0 0.1 0 1 

Median 1 if the segment has a median (a two-way 

left-turn lane is not considered as a 

median here); 0 otherwise 

0.13 0 0.34 0 1 

Med Width Width of the median (ft) 5.43 0 23.19 0 770 

 # Lanes Number of lanes per direction on the 

segment 
1.25 1 0.53 1 12 

Curve 1 if the segment has a curve; 0 otherwise 0.13 0 0.33 0 1 

Curve 

Degree 

Degree of the curve 
3.59 0 14.10 0 179.7 

Counts per 

Lane 

Number of vehicles per lane per direction 

on this segment during the hour 
2.77 5.28 1 0.06 238 

PSL PSL of the segment (mph) 41.60 35 14.83 5 85 

Pop Density Population density per acre 

(residents/acre) in the nearest block group 
3.29 1.74 4.25 0 107.97 

Job Density Jobs per acre in the nearest block group 2.78 0.34 11.90 0 270.62 

Network 

Density 

Total road network density per square 

miles 
13.17 11.60 10.01 0.14 55.84 

Ped Road 

Density 

Facility miles of pedestrian-oriented links 

per square miles 
8.94 7.24 7.52 0 53.88 

Intersection 

Density 

Street intersection density per square 

miles 
55.65 36.09 61.41 0 864.31 

PedIntersect 

Density 

Pedestrian-oriented intersections having 4 

or more legs per square miles 
16.27 5.43 27.96 0 320.88 

Walkability Walkability index score out of 20 8.27 7.67 3.87 1 20 

Sources: Speed data are from INRIX dataset. Road attributes and detailed specifications are from TxDOT’s 

Roadway Inventory Dataset (2025). And land use data are from the US EPA’s Smart Location Database (2021). 

 

  



   
 

   

 

RESULTS 

This section analyzes vehicle speeds by time of day on both weekdays and weekends, as well as 

speeding patterns by time of day and day of week, to better understand speeding behavior across 

the Texas road network. Models predicting speeds and the share of vehicles exceeding the PSL are 

then presented to illustrate how roadway characteristics and land use attributes affect vehicle 

speeds and speeding behavior. High-speeding locations are identified and compared with crash 

data to highlight risky locations for further study. 

Speed and Speeding Data 

Figure 6 presents the number of vehicle trips and corresponding speeds throughout the day for two 

specific dates: Monday, November 4, 2024, and Saturday, November 9, 2024. On Monday, 3.3 

million vehicles were recorded, while Saturday saw 2.8 million. Notably, nighttime traffic volumes 

were significantly higher on the weekend compared to the weekday. Peak traffic volumes on the 

weekday occurred between 7 and 9 a.m. and 4 to 6 p.m., aligning with typical commute hours. On 

the weekend, traffic peaked in the noon hour (12 to 1 p.m.), likely reflecting midday activities such 

as lunch outings. Vehicle speeds generally exhibited an inverse relationship with traffic volume. 

Speeds were highest during nighttime hours, particularly between 12 a.m. and 5 a.m., with 95th 

percentile speeds reaching 78 mph on both days. A sharp increase in speed was observed between 

2 and 4 a.m., while a noticeable decline occurred during weekday commute periods. Additionally, 

high speeds were more common on weekends than on weekdays. 

(a) 



   
 

   

 

(b) 

Figure 6: INRIX Vehicles and Speed Percentiles on Texas Roads by Time of Day on (a) 

Monday, November 4 & (b) Saturday, November 9, 2024 

Speeding across road types by time of day and day of week can be analyzed by integrating speed 

data with roadway characteristics. Figure 7 shows the share of vehicles exceeding PSLs on 

Monday, November 4, 2024. Speeding appeared most common on roads with 30 and 40 mph PSLs, 

with nearly 43% vehicles exceeding those PSLs, on average. On 30 mph roads, approximately 

32% of vehicles exceeded the limit by at least 10%, with 17% traveling more than 30% above the 

PSL. Similarly, approximately 23% of vehicles exceeded the limit by 10% on 35 mph roads. While 

roads posted above 60 mph saw 15% of vehicles exceeding PSLs by 10%, lower-speed roads 

(below 60 mph) experienced even higher exceedance rates, with a larger share of drivers 

significantly surpassing the limits. This trend is particularly concerning, since these roads often 

pass through residential and commercial areas with higher pedestrian and bicyclist activity. These 

are settings where speeding greatly increases crash severity risk. Figure 8 summarizes the 

percentage of vehicles driving over PSLs, and by more than 15% and 30% by day of week during 

the sample week. With the total traffic volume decreased during weekends, speeding peak was 

even higher. Throughout the week, the overall speeding pattern was similar for both weekdays and 

weekends. However, the percentage of aggressive driving varied by hour, with the highest rates 

occurring between 3 a.m. and 5 a.m. each day. During this time window, nearly half of all vehicles 

were driving over the PSLs, and 20% were exceeding the limits by more than 15%. On weekends, 

7% more vehicles were speeding during the same hour compared to weekdays, despite traffic 

volume being approximately 46,000 vehicles lower. 



   
 

   

 

Figure 7: Percentage of Vehicles Exceeding PSLs (on Monday, November 4, 2024) 

Figure 8: Number of Vehicles and Speeding Percentages on Texas Roads by Day of Week (Nov 

4 to Nov 10, 2024) 

Speed Model Results 

Table 3 presents regression model estimates for average speed, 85th percentile speed, and 95th 

percentile speed per hour on road segments, based on 15.7 million INRIX speed data. Across all 

models, PSL settings were the most significant variable, with a 1 mph increase in PSL associated 

with an increase of 0.75 mph in average speed, 0.80 mph in 85th percentile speed, and 0.81 mph 

in 95th percentile speed, underscoring that driving speeds are highly correlated with PSL settings. 

Increasing PSL variable by 1 SD increases average speeds, 85th percentile speeds and 95th 

percentile speeds by almost 30%. Roadway access control also impacted speeds, particularly 

average speeds. Full access control increased speeds by 9.3% to 15.4%, and partial access control 

raised speeds by 8.5% to 10.3%, relative to roads with no access control. In contrast, urban roads 

reduced vehicle speeds significantly, with rural segments increasing average speeds by 14.4%. 



   
 

   

 

Temporal and lighting conditions exhibited consistent effects across models. On average, vehicles 

travelled 1.66 mph faster on the weekend than on the prior weekdays and 0.29 mph faster under 

daylight conditions. Geometric characteristics also influenced speeds. For instance, two-way roads 

were associated with 6.0% to 7.6% lower speeds, while the presence of a school zone lowered 

speeds by 0.5% to 1.9%. The presence of median decreased average speeds by 0.82% but increased 

85th and 95th percentile speeds by 1.2% and 2%, suggesting that medians slow general traffic while 

encouraging faster driving among higher-speed vehicles. Curve features for on-system roads—

including the presence of curves and their degree—affected speeds modestly. The presence of 

curve was associated with a 2.0% to 2.4% increase in speed, while a higher curve degree reduced 

speeds by approximately 0.5%. 

Additionally, built environment and land use characteristics had small effects on speeds. One SD 

higher population and job densities reduced speeds by 0.4% and 0.9%, respectively, on average. 

Walkability scores were linked to 1.4% to 2.4% reductions in speeds, indicating that denser regions 

with more pedestrian activities tend to have lower speeds of vehicles. Pedestrian-related roadway 

and intersection density also contributed to slower speeds, with pedestrian road density reducing 

speeds by 4.1% to 4.5% and pedestrian intersection density by 0.03% to 0.14%. 

Table 3: OLS Model Estimates for Average, 85th Percentile, and 95th Percentile Speeds 

Variable 

Y = Avg speed in INRIX Y = 85th Percentile speed Y = 95th Percentile speed 

Coef. Std Err 
Pract. 

Sign 
Coef. Std Err 

Pract. 

Sign 
Coef. Std Err 

Pract. 

Sign 

Constant 13.326 0.023  12.874 0.024  12.927 0.025  

Weekend 1.658 0.006 4.66% 1.452 0.007 3.72% 1.363 0.007 3.37% 

Daylight 0.291 0.006 0.82% 0.112 0.006 0.29% 0.068 0.006 0.17% 

Urban -5.107 0.009 -14.36% -4.140 0.009 -10.60% -3.807 0.010 -9.42% 

School -0.658 0.073 -1.85% -0.349 0.076 -0.89% -0.188 0.078 -0.46% 

Two-Way -2.120 0.012 -5.96% -2.664 0.013 -6.82% -3.074 0.013 -7.61% 

Full Control 5.472 0.016 15.38% 3.995 0.017 10.24% 3.744 0.018 9.26% 

Partial 

Control 
3.663 0.031 10.30% 3.441 0.032 8.81% 3.417 0.033 8.46% 

Median -0.298 0.013 -0.84% 0.466 0.014 1.19% 0.803 0.014 1.99% 

Med Width 0.009 0.000 0.55% 0.009 0.000 0.56% 0.010 0.000 0.58% 

 # Lanes -2.286 0.006 -3.41% -1.726 0.007 -2.34% -1.479 0.007 -1.94% 

Curve 0.698 0.012 1.96% 0.892 0.012 2.28% 0.987 0.013 2.44% 

Curve 
Degree 

-0.013 0.000 -0.5% -0.015 0.000 -0.52% -0.015 0.000 -0.51% 

Counts per 

Lane 
0.154 0.000 4.88% 0.284 0.000 8.20% 0.356 0.000 9.92% 

PSL 0.749 0.000 31.23% 0.796 0.000 30.22% 0.808 0.000 29.64% 

Pop Density -0.035 0.001 -0.42% -0.038 0.001 -0.41% -0.043 0.001 -0.46% 

Job Density -0.029 0.000 -0.97% -0.029 0.000 -0.89% -0.028 0.000 -0.82% 

Network 

Density 
0.119 0.001 3.34% 0.129 0.001 3.30% 0.138 0.001 3.41% 

Ped Road 

Density 
-0.196 0.001 -4.14% -0.225 0.001 -4.34% -0.241 0.002 -4.48% 



   
 

   

 

Intersection 

Density 
0.001 0.000 0.17% 0.002 0.000 0.36% 0.003 0.000 0.38% 

PedIntersect 

Density 
-0.000 0.000 -0.03% -0.002 0.000 -0.14% -0.002 0.000 -0.11% 

Walkability -0.225 0.001 -2.44% -0.170 0.001 -1.68% -0.144 0.001 -1.38% 

Nobs 15,722,918 15,722,918 15,722,918 

R2 0.604 0.622 0.622 

Log-Lik -6.033e+07 -6.089e+07 -6.143e+07 

Note: All covariates with p-values over 0.10 were removed. 

 

Speeding-Shares Model Results 

The speeding-shares model analyzes several factors influencing the percentage of vehicles 

exceeding PSLs per hour across three thresholds: any speeding, speeding by more than 15%, and 

speeding by more than 30%. Table 4 presents the model estimates based on 15.7 million speed 

observations combined with PSL information. Roadway access control, weekends, and urban 

settings were the most significant variables affecting speeding behavior. The percentage of 

speeding vehicles increased by 5.57% on weekends for speeding, and by 0.85% for speeding over 

15%. In contrast to the speed models, more speeding occurred during nighttime hours. Urban 

roadways consistently led to reductions in speeding shares, with decreases of 9.42%, 1.35%, and 

0.22% at the three thresholds, respectively. 

Roadway features also influenced speeding rates. Two-way roads were associated with a 7.52% 

lower share of speeding vehicles compared to one-way roads, while fully access-controlled roads 

were linked to increased speeding rates: 8.91% for speeding, declining to 0.22% for extreme 

speeding. Partially controlled roads showed similar patterns, with 7.55% increase in speeding 

behaviors. The presence of medians, roadway curvature, and traffic volumes had relatively small 

effects. Built environment characteristics, such as population and job density, slightly reduced the 

share of speeding by 0.33% and 0.15%, respectively. Other factors like network density, pedestrian 

road density, and walkability also showed small but consistent negative impacts, suggesting that 

denser, more pedestrian-friendly areas experience lower levels of speeding. 

Comparing the speed and speeding-shares models reveals that various factors influence driving 

behavior in different ways. Both PSL and roadway access control had strong impacts on operating 

speeds and the percentage of vehicles driving over PSLs, though they had a more direct influence 

on vehicle speeds. In contrast, temporal variables, particularly weekends and lighting conditions, 

exhibited a stronger influence on the likelihood of speeding. This suggests that aggressive driving 

is more common at night and on weekends. Geometric and environmental characteristics such as 

curves, medians, population density, and walkability showed modest impacts across models, 

though urban environments consistently reduced speeding, possibly due to stricter enforcement 

and local traffic regulations. These findings suggest that interventions targeting speeding may 

benefit from focusing on temporal patterns and enforcement strategies, while speed management 

efforts may be more effectively addressed through roadway design and PSL adjustments. 

Table 4: Binomial Logistic Model Estimates for Speeding Shares (Y = % vehicles) 

Variable 

Y = % over PSL in INRIX Y = % over PSL by 15% Y = % over PSL by 30% 

Coef. Std Err 
Pract. 

Sign 
Coef. Std Err 

Pract. 

Sign 
Coef. Std Err 

Pract. 

Sign 



   
 

   

 

Constant 1.645 0.002  3.673 0.002  5.944 0.003  

Weekend 0.395 0.001 5.57% 0.419 0.001 0.85% 0.393 0.001 0.08% 

Daylight -0.084 0.000 -1.39% -0.065 0.001 -0.17% -0.037 0.001 -0.01% 

Urban -0.496 0.001 -9.42% -0.440 0.001 -1.35% -0.613 0.001 -0.22% 

School -0.204 0.004 -3.54% -0.421 0.008 -1.28% -0.620 0.012 -0.22% 

Two-Way -0.407 0.001 -7.52% -1.078 0.001 -4.58% -1.643 0.002 -1.08% 

Full Control 0.704 0.001 8.91% 1.316 0.001 1.85% 1.793 0.002 0.22% 

Partial 

Control 
0.589 0.002 7.55% 0.790 0.003 1.37% 1.013 0.004 0.17% 

Median 0.159 0.001 2.44% 0.332 0.001 0.7% 0.611 0.002 0.12% 

Med Width 0.000 8.23e-06 0.01% 0.001 1.14e-05 0.0% 0.002 1.66e-05 0.0% 

 # Lanes -0.163 0.000 -2.78% -0.231 0.001 -0.64% -0.360 0.001 -0.11% 

Curve 0.013 0.001 0.21% 0.149 0.001 0.34% 0.308 0.001 0.07% 

Curve 

Degree 
5.188e-05 1.79e-05 0.0% 0.001 2.32e-05 0.0% -0.000 3.1e-05 -0.0% 

Counts per 

Lane 
0.008 8.32e-06 0.13% 0.012 1.11e-05 0.03% 0.020 1.58e-05 0.01% 

PSL -0.027 0.000 -0.44% -0.089 3.12e-05 -0.23% -0.153 5.54e-05 -0.04% 

Pop Density -0.021 0.000 -0.33% -0.025 0.000 -0.06% -0.027 0.000 -0.01% 

Job Density -0.009 0.000 -0.15% -0.012 3.44e-05 -0.03% -0.014 4.73e-05 -0.0% 

Network 

Density 
0.030 5.94e-05 0.48% 0.043 7.68e-05 0.1% 0.053 0.000 0.01% 

Ped Road 

Density 
-0.035 0.000 -0.57% -0.059 0.000 -0.15% -0.082 0.000 -0.02% 

Intersection 

Density 
-0.001 1.22e-05 -0.02% -0.001 1.66e-05 -0.0% -0.001 2.38e-05 -0.0% 

PedIntersect 

Density 
0.000 0.000 0.0% -0.000 2.18e-05 -0.0% -0.001 3.16e-05 -0.0% 

Walkability -0.033 0.000 -0.54% -0.040 0.000 -0.1% -0.060 0.000 -0.02% 

Nobs 15,722,918 15,722,918 15,722,918 

Pseudo R2 0.728 0.954 0.978 

Log-Lik -2.191e+07 -1.492e+07 -9.548e+06 

Note: All covariates with p-value more than 0.10 were removed. 

 

  



   
 

   

 

High-Speeding-Shares Locations 

Based on speed data collected during the sample week, this study identified the top 20,000 road 

segments with the highest frequency of speeding behaviors across Texas at four specific times of 

day: 8 a.m., 12 p.m., 6 p.m., and 12 a.m., as illustrated in Figure 9. Compared to Figure 4, high-

speeding locations largely overlapped with crash-prone areas, particularly around major cities 

(Dallas, Houston, San Antonio, Austin). Vehicles primarily exceeded limits in urban regions 

throughout the day, while extreme speeding behaviors were more concentrated in rural areas. Late-

night speeding was more geographically clustered, suggesting potential priority areas for targeted 

speed management. In contrast, daytime speeding appeared to be closely associated with high 

traffic volume locations. 

 
(a) 8 a.m. (b) 12 p.m. (Noon) 

 
(c) 6 p.m. 

 
(d) 12 a.m. (Midnight) 

Figure 9: Top 20k Segments with Speeding (orange) and Speeding over 15% above PSL (red) 

across Texas 

 



   
 

   

 

LITERATURE REVIEW OF NON-INFRASTRUCTURE COUNTERMEASURES 

Building on the speeding results and high-risk location identification, this section focuses on the 

next step for implementing speed management countermeasures. It focuses on operational, 

technological, policy, and education-oriented non-infrastructure strategies, and summarizes 

existing literature on their effects on operating speeds. 

Operational Countermeasures 

Operational strategies manage vehicle speeds by implementing enforcement (e.g., speed cameras, 

police/patrol enforcement, and high-visibility enforcement), controlling traffic operations (e.g., 

speed limit settings, signal timing, and phase changing), and other strategies. These types of 

countermeasures regulate or optimize vehicle and pedestrian movements at specific locations, 

offering greater precision. In the short term, operational countermeasures are more flexible and 

effective and are therefore commonly implemented by transportation agencies. 

Speed cameras, including fixed cameras, point-to-point (P2P) systems, and mobile cameras, are 

discussed extensively in the literature regarding their effectiveness in reducing average speeds, the 

number of speeding vehicles over PSLs, and speed-related crash counts (Christie et al., 2003; 

Champness et al., 2005; De Pauw et al., 2014; Montella et al., 2015). By using multiple cameras 

and detectors along a stretch of road, P2P camera systems extend the detection range and can more 

accurately calculate the average speed of vehicles. On the other hand, unlike fixed and P2P speed 

cameras, which have limited sight distances and are site-specific, mobile units are portable and 

can be easily relocated. In real-world, permanent cameras exist in the US, mainly in New York 

City (NYC), Los Angeles, Chicago and many other big cities. As of January 2025, the NYC 

Department of Transportation (2024) has over 2,200-speed enforcement cameras in 750 school 

zones operating 24/7. Vehicle owners are quickly alerted via email to each violation and fined $50 

(typically paid online). This speed-management program has resulted in 94 percent fewer PSL 

violations since 2014. Likewise, in the City of Portland, Oregon’s Bureau of Transportation 

implemented a traffic safety program along key corridors in 2016 (FHWA, 2024). The city began 

with a 30-day warning period, during which speeding drivers received warning letters only. After 

this period, official citations with $160 fines for exceeding PSLs by more than 10 mph were issued 

by mail. The program resulted in 40% to 75% fewer PSL violations depending on location and 

65% to 96% fewer drivers exceeding the PSL by more than 10 mph. Nowadays, Portland is still 

using these speed cameras as part of its Vision Zero initiative to eliminate fatalities and serious 

injuries. 

Stationary and mobile police enforcement are both widely used in patrol operations. Nazif-Munoz 

et al. (2014) carried out a quantitative study on the impact of traffic law reform, police 

enforcement, and road infrastructure investment using data from 13 regions collected between 

2000 and 2012. They developed structural equation models, considering traffic fatalities, severe 

injuries, and crashes as dependent variables. The findings indicated that the presence of police 

enforcement led to a 60% reduction in pedestrian fatalities and a 12.1% decrease in pedestrian 

crashes, making it significantly more effective than traffic law reform and road infrastructure 

investment. 

Additionally, strategies such as lowering PSLs, implementing variable speed limits (VSL) 

(congestion-responsive and weather-responsive VSL), and adopting city-wide PSLs have also 

been proposed as feasible and effective solutions. In practice, the U.S. and many European 



   
 

   

 

countries have been working for a long time to lower PSLs and, in turn, reduce the number of 

accidents and casualties. The effectiveness of these strategies in decreasing crashes is well-

documented in several studies, as listed in Table 5 (Waiz et al., 1983; Wong et al., 2005; European 

Data Journalism Network, 2023). A study by Waiz et al. (1983) examined car-pedestrian incidents 

in Zurich over a two-year period before and after lowering PSLs from 60 km/h to 50 km/h across 

the city. The analysis showed a 16% reduction in car-pedestrian injuries, a 20% decrease in 

pedestrian injuries, and a 25% decline in fatalities. 

Basic traffic signal timing plays an important role in managing traffic flow and protecting all road 

users. For instance, Safe Waves, a signal timing strategy that uses shorter cycles (66 seconds for 

AM peak and 84 seconds for PM peak), reduced coordination zones, pedestrian recall in areas with 

moderate pedestrian demand, undersized phases where demand is low, and adjusted offsets—was 

tested over three weekdays on a suburban arterial with a 40 mph PSL in Danvers, MA (Furth et 

al., 2024). It reduced the number of vehicles exceeding PSLs by 79% overall. Other pedestrian-

specific signal timing strategies, such as leading pedestrian intervals (LPIs) and No Turn on Red 

(NTOR), are also used to protect vulnerable road users and reduce crashes (Fayish and Gross, 

2010; Chen et al., 2013; Joshua, 2022).  

Table 5 summarizes existing literature examining the relationship between operational 

countermeasures and operating speeds. In conclusion, speed cameras have significant effects in 

reducing operating speeds and speeding violations, with substantial research supporting these 

findings. On the other hand, traffic operation-related measures, such as signals and PSL settings, 

have a relatively minor impact on speeds and are less studied. 

Table 5. Studies on the Relationship Between Operational Strategies and Speeds 

Study Description Method Study 

Characteristic Change in Travel Speed 

Speed Camera 

Mountain (2004) assessed the effect of 

62 fixed speed cameras at various 

locations across the UK. 
Before-after • 30 mph PSLs 

• Average speeds fell by 13.4% 

• 85th percentile speeds fell by 15.2% 

• % vehicles exceeding PSLs fell 35% points 

De Pauw et al. (2014) investigated 

speed effects of fixed speed cameras on 

motorways in Belgium. 
Before-after • 75 mph PSLs • Average speeds fell by 4 mph 

Shin et al. (2009) analyzed the impact 

of a fixed camera program on one 

urban freeway in Scottsdale, Arizona. 

Generalized 

least square 

estimation 
• 6.5-mile segment • Average speeds fell by 12.3% 

New York City (2024) examined the 

effectiveness of fixed cameras installed 

in 750 school zones. 
Before-after • $50 flat fine 

• % vehicles exceeding PSLs fell by 94% 

since 2014 

Portland, Oregon BOT (FHWA, 2024) 

evaluated a fixed camera program 

along key corridors in 2016. 
Before-after 

• $160 fine for 

speeding 10+ mph 

over PSLs 

• % vehicles exceeding PSLs fell 40% to 75% 

points 

• % vehicles speeding 10+ mph over PSLs fell 

65% to 96% points 

Montella et al. (2015) analyzed a P2P 

system on a urban motorway in Italy. Before-after 
• 50/43 mph PSLs 

for light/heavy 

vehicles 

• Average speeds fell by 9.8% and 4.8% for 

light and heavy vehicles 

• 85th percentile speeds fell by 14.1% and 

8.4% for light and heavy vehicles 

Ragnøy (2011) implemented P2P 

enforcement trials at three sites in 

Norway. 
Before-after • 50 mph PSLs • Average speeds fell by 8.5% 



   
 

   

 

De Pauw et al. (2014) examined the 

P2P enforcement at four locations on a 

three-lane motorway in Belgium. 
Before-after 

• 75 mph PSLs 

• 7.5-mile study 

segment for each 

location 

• Average speeds fell by 4.8% 

• % vehicles exceeding PSLs fell 74% points 

• % vehicles speeding 10+ mph over PSLs fell 

86% points 

Champness et al. (2005) conducted 

speed experiments at seven highway 

sites in Queensland. 

Before-after • 62 mph PSLs 

• Average speeds fell by 3.7 mph 

• 85th percentile speeds fell by 4.3 mph 

• % vehicles exceeding PSLs fell 37% points 

Patrol Enforcement 
Armour (1986) investigated speed 

impacts of police presence along two-

lane urban streets in New South Wales. 

Before-after • 37 mph PSLs • % vehicles exceeding PSLs fell 70% points 

Walter et al. (2011) tracked speed 

changes along a 6-mile corridor on the 

highway in London. 
Before-after   • 85th percentile speeds fell by 3.4 mph 

Vaa (1997) experimented a 6-week 

police enforcement on a 21-mile road in 

Norway. 
Before-after • 37 to 50 mph PSLs • Average speeds fell by 0.6 to 3 mph 

Speed Limit Setting 

Switzerland (1996) decreased PSLs on 

motorways and examined the change of 

operating speeds. 
Before-after • PSLs decreased 

from 80 to 75 mph 
• Average speeds fell by 3 mph 

Elvik et al. (2004) explored the 

relationship between changes in 

operating speeds and PSLs. 

Meta-

analysis 

• 98 studies 

• PSLs decreased by 

5 mph 

• Average speeds fell by 1 to 2 mph 

Kockelman et al. (2006) tested safety 

impacts of PSL increases on high-speed 

roads in Washington State, Southern 

California and Austin, Texas. 

Before-after 

• PSLs increased 

from 65 to 75 mph 

and from 55 to 65 

mph 

• Average speeds rose by 3 mph 

Wyoming DOT (2010) examined speed 

effectiveness of one weather-responsive 

VSL system along the corridor. 
Before-after • 65/75 mph PSLs 

for winter/summer 

• Average speeds fell by 4.7 to 7.5 mph in 

winter 

Brussels Times (2021) assessed safety 

effects of a region-wide PSL settings 

for five months in Belgium. 
Before-after • 19 mph PSLs • Average speeds fell by 7% to 19% 

Traffic Operations 
Furth et al. (2024) tested “Safe 

Wavers” (a signal timing strategy) for 

3-weekday periods on suburban arterial 

in Danvers, Massachusetts. 

Before-after • 40 mph PSLs 
• % vehicles exceeding PSLs fell up to 15% 

points 

Technological Countermeasures 

Besides transportation agencies, manufacturers are actively integrating new safety-related features 

and designs into the vehicles themselves. Technologies such as intelligent speed assistance (ISA), 

speed governors and limiters, automated emergency braking (AEB), and vehicle front-end 

geometry design are discussed in this section, focusing on their effectiveness in controlling 

operating speeds. 

ISA, a speed-related alert system that informs drivers of the speed limit and warns them when they 

exceed it, has been shown to improve the effectiveness of vehicles in reducing speeding (Oei et 

al., 2002; Van Der Pas et al., 2014; De Vos et al., 2023), as listed in Table 4. By controlling speeds, 

ISA helps reduce speeding-related crashes. According to Lai et al. (2012), the universal adoption 



   
 

   

 

of intervening ISA could reduce serious road traffic injuries by up to 29%. Different forms of ISA 

contribute to varying levels of accident reduction, and mandatory dynamic ISA has the most 

significant impact, potentially preventing 36% of injury accidents and 59% of fatal accidents 

(Carsten and Tate, 2005). Starting in July 2024, the European Union requires all newly launched 

vehicles to be equipped with ISA (European Commission, 2019), but   it can be easily over-ridden 

by drivers (Rowe et al., 2021). Besides, various vehicle trackers have been widely adopted for 

personal use. For example, the LandAirSea 54 GPS Tracker provides location updates every 3 

seconds, along with historical playback and speed alerts. It requires a one-time installation fee of 

$14.95 and a monthly fee of $9.95, which is relatively cheap and can enhance driving safety. 

Table 6. Studies on the Impact of ISA on Vehicle Speeds 

Study Description Method Study 

Characteristic Safety Impact 

Reagan et al. (2013) tested an auditory 

and visual advisory alerting system in 

Michigan. 
Before-after • 35 mph PSLs 

• Time spent driving 1 to 4 mph over PSLs 

fell by 10% 

Albert et al. (2007) evaluated speed 

benefits of equipping light goods 

vehicles with speed limiters. 

Traffic 

simulation 
• 62 and 75 mph 

speed limiters 
• Average speeds fell by 10% 

Várhelyi and Mäkinen (2001) examined 

the effects of in-car speed limiters on 

urban and rural roads. 
Before-after • 19 to 75 mph 

PSLs 
• Average speeds fell by 16.7% 

The AEB system detects potential collisions ahead and can automatically apply or assist in braking 

to prevent a crash. Cicchino (2022) conducted quasi-induced exposure analyses on police-reported 

crashes from 18 states between 2017 and 2020, accounting for drivers, vehicles, and environmental 

risk factors when evaluating the effects of AEB with pedestrian detection. The results showed that 

AEB reduced half of reported crashes. On the other hand, geometric design for vehicles, especially 

embedded safety-related features, is important for road users. Monfort et al. (2024) analyzed 121 

pedestrian crashes between 2015 and 2021 to examine the relationship between vehicle design and 

pedestrian injury severity. The vehicles involved had an average speed of 45 km/h and an average 

model year of 2009. Using a Poisson model, the study found that vehicles with a lower leading-

edge height (less than 89 cm) were associated with a 28% reduction in pedestrian injury severity 

scores (ISS) compared to those with a higher leading-edge height (greater than 89 cm). 

Additionally, vehicles with flatter bumper leads (<65°) had 34% lower pedestrian ISS than those 

with a bumper lead angle greater than 65°. However, AEB systems and geometric design have not 

been proven to impact operating speeds. 

Policy- and Education-Oriented Countermeasures 

Lastly, speed management is a collaborative effort involving governments, local communities, 

public campaigns, and citizens. This section discusses policy- and education-oriented 

countermeasures (including monetary incentives, Neighborhood Speed Watch programs, driver 

training, and other strategies) while exploring their feasibility in reducing speeding violations. 

Although most research has examined their effectiveness through small-scale pilot projects or 

simulator studies, these efforts still offer valuable insights into their feasibility and applicability. 

To directly control driver behaviors, Reagan et al. (2013) tested a monetary incentive system in 

Michigan, involving a total of 50 participants over a 4-week period. Participants received an initial 

amount of $25, which decreased by 3¢ per 6 seconds for driving 5 to 8 mph over the PSL and 6¢ 

per 6 seconds for exceeding the PSL by 9 mph or more. Bonus amounts were visually displayed 



   
 

   

 

and updated in the assigned vehicles. Results revealed that the incentive system led to significant 

reductions in speeding. In 25 mph PSL zones, the average speed decreased by approximately 6.5% 

(1.6 to 1.8 mph), and the time spent driving above the PSL decreased by 11% to 13%. On the other 

hand, driver training has a longer-lasting effect (Brown et al., 2025). Crundall et al. (2010) 

examined the relationship between commentary training and driver performance using a driving 

simulator. The study divided 40 learners into two groups, and the experimental group received a 

classroom introduction in commentary training and a two-hour on-road training session. This work 

analyzed their behaviors (e.g., speed, braking) when encountering driving hazards. Observation 

results indicated that trained drivers responded to hazards more quickly and reduced their speed 

more significantly compared to untrained drivers. 

Many apps are also designed to help parents monitor their children’s driving behavior and detect 

risky driving, as teenagers are known for driving aggressively. The University of Minnesota 

(Creaser et al., 2015) developed the Teen Driver Support System (TDSS), which provides real-

time feedback and reports monitored behaviors to parents if risky driving persisted for a relatively 

long time. To assess its effectiveness, they divided 300 newly licensed teen drivers into three 

groups: control group (received no feedback), partial TDSS group (received in-vehicle feedback 

only), and full TDSS group (received both in-vehicle feedback and parental notifications). Final 

results over 52 weeks showed that the full TDSS group had the lowest percentage of miles spent 

speeding, reducing speeding by 7% compared to the control group and 2% compared to the partial 

TDSS group. 

Campaigns and neighborhood programs encourage all possible road users and residents to enhance 

road safety as well. A one-month test conducted by Blume et al. (2000) assessed the effectiveness 

of the Neighborhood Speed Watch program in reducing speeds on two local roads in 

Massachusetts, with PSLs of 25 mph and 30 mph, respectively. Speed results on these two local 

roads, shows a 1 to 2 mph reduction in average speeds and a 5-mph reduction in 85th percentile 

speeds. Additionally, the percentage of vehicles exceeding PSL declined from 17.9% to 14.1% 

after the intervention. Few speed campaigns were adequately evaluated in terms of their impact on 

actual speed behaviors. For instance, Van Schagen et al. (2016) monitored speeds of 10 million 

vehicles over a 16-week anti-speeding campaign conducted at twenty locations in the Netherlands, 

with ten locations of 50 km/h PSLs and ten of 30 km/h PSLs. In this campaign, posters were placed 

at half of each group of locations to remind drivers of the speed limit. Results showed that average 

speeds on 30 km/h roads fell by 7.6 km/h with local posters installed. 

As policy- and education-oriented countermeasures are often evaluated through pilot projects or 

case studies, their overall effectiveness on a larger scale remains unclear and requires further 

investigation for better implementation. 

 

CONCLUSIONS  

This study provides a comprehensive analysis of vehicle speeds and speeding behaviors across 

Texas using 15.7 million sampled vehicle speeds in November 2024. Speed data were merged with 

detailed PSL and land use information into both speed and speeding models, and ordinary least 

squares (OLS) and binomial logistic regression models illuminate how temporal, geometric, and 

environmental characteristics influence speed choices. 



   
 

   

 

Key findings reveal that PSL and roadway access control are the most influential predictors of 

vehicle speeds. A 1 mph increase in PSL was associated with a 0.75 mph increase in average speed, 

0.80 mph in 85th percentile speed, and 0.81 mph in 95th percentile speed. Full access control raised 

average speeds by 15.4%. In contrast, speeding behavior, particularly extreme speeding, was more 

sensitive to temporal and contextual conditions. Nighttime and weekend periods saw increased 

speeding rates, with up to 50% of vehicles exceeding PSLs and 20% exceeding them by more than 

15% between 3 a.m. and 5 a.m. on weekends. These patterns were especially prevalent on lower-

speed roads (30–40 mph) in pedestrian-dense urban areas, where over 30% of drivers were 

observed speeding. Built environment features such as urban settings, walkability, and pedestrian-

oriented infrastructure were associated with both lower travel speeds and reduced speeding rates, 

suggesting that denser, pedestrian-friendly environments discourage speeding. 

In addition, while traditional physical countermeasures are well-evaluated using CMFs and 

benefit-cost analyses, non-physical strategies lack a comprehensive framework to guide 

researchers and practitioners. This paper provides a systematic overview to support future efforts 

in speed management. Among all non-infrastructure countermeasures, speed cameras are the most 

effective in reducing speeds and are well studied. 

However, this work is limited by its reliance on a single week of connected vehicle data, which 

may underrepresent certain driving populations. It also does not account for variables such as 

weather, enforcement activity, or real-time traffic conditions. Future work will expand this analysis 

over longer periods and broader driver samples, integrating additional variables. This study lays 

the groundwork for future research using probe vehicle data and offers valuable insights for 

policymakers in developing targeted speed management and enforcement strategies. Besides, new 

non-physical strategies for speed management continue to emerge and will be the focus of future 

work. For example, Li et al. (2024) proposed a smartphone-based approach with computer-vision-

based speed estimation and vehicle identification (like vehicle make, model, and color, plus license 

plate reading). Several machine-learning approaches, including SVM, random forests, artificial 

neural networks, and time-series-based models, were tested to classify three speed cases: 

accelerating, decelerating, and maintaining constant speeds. All approaches yielded 90% to 95% 

accuracy in identifying speed changes among 188 cases. Although acoustic-based “cameras” 

(which “see” sounds to produce image for speed inference) are still under development to assist 

law enforcement, existing research suggests it is quite feasible. Of course, the legality of 

implementation (with standard cameras for vehicle identification) remains in doubt in many US 

states (GHSA, 2024). 
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