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1. Introduction

Understanding roadway safety is an important task, but is complicated by the rare nature of
crash incidents and the large number of potential causal factors. In addition, there is a lack of
subject matter theory regarding the appropriate functional forms to use for relating causal factors
to crash rates. As described in Wahba’s (1978) classic paper, functional data analysis involves
complex curve fitting. The current paper adds to the transportation literature by applying
Bayesian nonparametric tools for functional analysis to crash data. Related work includes
Mahamassani et al.’s (1988) direct use of cubic regression splines for urban density patterns,
Biller’s (2000) adaptive computational methods for Bayesian semi-parametric models, and Biller
and Fahrmeir’s (2001) method to allow for varying coefficients. Fahrmeir and Osuna (2007)
used regression splines for a negative binomial model of count data in the context of automobile
insurance claims data, while Xie and Zhang (2008) use regression splines in a frequentist context
with fixed knot locations to model accident counts at traffic intersections. Neelon and Dunson
(2004), Dunson (2005), Schipper et al. (2007) and Shively, Sager and Walker (2009) considered
monotonic function estimation in additive models.

This paper uses a Bayesian nonparametric monotone function estimation methodology in the
context of a Poisson-gamma model to model and estimate the relationships between the number
of crashes on segments of two-lane rural highways and roadway characteristics such as degree of
curvature, vertical grade, amount of traffic and speed limit, among others (in all, there are 15
explanatory variables included in the model). The resulting function estimates provide valuable
information regarding which characteristics explain the variability in crash counts across
roadway segments and therefore which characteristics transportation officials should focus on to
improve road safety. The nonlinear relationships can provide a better understanding of the effect
roadway characteristics have on crash rates and road safety.

Unfortunately, transportation data sets are often imperfect, with some design variables out of
date (e.g., the road was improved but the road file was not updated) and many crashes going

unreported. Also, important explanatory variables are often unavailable (e.g., number of snowy
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days at a location, roadside clear zone slope and width, and average speeds of travel). Given the
issues related to crash data and the inherent noise in the data, it is important to impose a
reasonable amount of structure on the analysis without imposing so much that the results are
potentially misleading due to incorrect assumptions. A fully parametric analysis lies at one end
of the “structure spectrum”, and a fully nonparametric analysis at the other end (without any
assumptions on either the density function or the functional forms of the covariate relationships).
By specifying a Poisson-gamma distribution for the count data and imposing monotonicity
constraints on the functional forms of the covariate relationships, we have chosen a compromise.
The monotonicity constraints incorporate a significant amount of information into the model but
stop short of specifying the functional forms of the relationships.

Nonparametric techniques allow nonlinear relationships to be observed that may not be
detected using a parametric analysis. If there is subject matter theory available to specify the
appropriate functional forms, then it should be used. However, valuable insights can often be
obtained using nonparametric methods that provide limited structure to the analysis without
allowing too much flexibility. Nonparametric estimation methods also provide a valuable tool for
exploratory data analysis. Such analysis can provide valuable information about relationships
that is not available from a parametric approach.

The Bayesian nonparametric methodology used in this paper allows monotonicity constraints
to be imposed on the unknown functions when such constraints are appropriate. Strong subject
matter arguments can be made that many of the roadway characteristic variables in the data set
will be monotonically related to crash counts. We show via simulation that imposing appropriate
monotonicity constraints increases the quality of the function estimates and thereby provides
more reliable conclusions to be drawn from the analysis. In addition, the monotone
nonparametric procedure produces smooth function estimates, without the “wiggles” that often
occur with unconstrained nonparametric procedures. The resulting function estimates make more

intuitive sense and are easier to interpret and explain to users. Finally, as discussed above,



monotonicity assumptions impose additional structure on the analysis that is particularly useful
in the presence of noisy data.

A natural question that arises for any nonparametric estimation procedure, especially when it
is used for models with a large number of functions to estimate and a substantial amount of
variability in the dependent variable, is: How good are the function estimates? In particular, does
the extra flexibility provided by a nonparametric procedure provide function estimates that are
too “noisy”? The answer to this question depends on the complexity of the model, the amount of
data, the structure of the explanatory variables and the number of functions to be estimated. It is
shown via simulation in section 5 for a Poisson-gamma model with the explanatory variables and
number of observations in our data set that the nonparametric monotone estimation procedure
does nearly as well as the standard parametric procedure when the parametric assumptions are
satisfied, and substantially better when the assumptions are violated.

A second important question is: How well does the estimated model predict future crash
counts? In many contexts, questions of this type can be answered using out-of-sample validation
procedures. However, we show theoretically and via simulation that no estimation procedure will
be able to accurately predict the number of crashes on a specific road segment given the inherent
variability in Poisson count data. This is true whether the model is estimated parametrically or
nonparametrically, and whether or not the parametric assumptions are satisfied. The lack of
forecasting power is shown to hold even in the extreme case when the “true” relationships
between crash counts and the explanatory variables are known, i.e., when there is no estimation
error in the function estimates. This finding does not invalidate the importance of accurate
function estimation because accurate estimates are critically important for developing safer
roads. To be more specific, given the rare nature of crashes on any given roadway segment,
safety engineers are typically interested in what happens over the long-run, across many road
segments with the same or similar characteristics (e.g., same curvature, amount of traffic, and
speed limit). The expected number of crashes per segment per year across segments with the

same characteristics and across several years (i.e., with random variability averaged out) depends
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crucially on the functions relating crash counts to roadway characteristics and therefore on
accurate and reliable estimates of the functions.

The empirical results obtained from our model indicate the important factors in explaining
the variability in crash rates across road segments are the amount and density of traffic, whether
or not there is a curve in the road and if so, how sharp and how long the curve is, and the type of
road. The functions associated with eight of the explanatory variables are estimated
nonparametrically. The results indicate that four are nonlinear functions and cannot be easily
modeled using a parametric functional form. The fifth estimated function is very close to linear,
and the variables associated with the other three functions do not appear to be related to crash
counts. The remaining seven variables are categorical variables and enter the model linearly. A
thorough discussion of the empirical results and their interpretation is given in section 4.

The paper is organized as follows. Section 2 outlines the nonparametric monotone function
estimation methodology used in the paper. Section 3 discusses the data used in the analysis.
Section 4 gives the empirical results and their interpretation in terms of roadway safety. It also
contains a discussion of why it is difficult to make accurate forecasts in the context of Poisson-
gamma models. Section 5 provides simulation results to show the significant advantages of using
a nonparametric monotone function estimation procedure rather than either a standard parametric
procedure or a nonparametric procedure without monotonicity constraints. The MCMC sampling

algorithm used to implement the monotone estimation procedure is outlined in the appendix.

2. The model and estimation methodology
Crash counts on each roadway segment in a one-year period are assumed to arise from a

generalized-additive Poisson-gamma model:

[4,9(X;,2;,)]"

|

Pr(Yi = yi | Xi: Zi) = exp{-¢ig(xi, Zi)} (1)

where

log[g(x;, )] = a+f,(x )+ ... +f.(X)+ 7z, + ... + %2z,
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and i indexes observations/roadway segments (1, ..., n). The dependent variable y, is the number

of crashes on the i road segment, X, = (X,;, ..., X;;) are explanatory variables that enter the model

1i°

nonlinearly and z,=(z, ..., z,) are explanatory variables (typically 0/1 indicator variables) that

o
enter the model linearly. The mean function is (X, Z, ¢) = ¢ 9(X,, Z) where ¢ are independent
I'(n,n7) random variables included to model additional heterogeneity in crash rates across
roadway segments. This model is similar to the Poisson-gamma model considered by Dunson
(2005) and Fahrmeir and Osuna (2007). The variables included in X, and z, include curvature,
traffic flow, terrain type, and other variables, as discussed in section 3. Further, f, ..., fp are
unknown functions to be estimated nonparametrically and y,, ..., 3, are unknown parameter
values. For a Bayesian model, prior distributions must be placed on the unknown parameter
values. The prior distributions on the & and y values are non-informative N(0, k) distributions
with k large, while the prior on 7 is a non-informative I'(0.01, 0.01) distribution. The priors for
the unknown function spaces are discussed below.

While the negative binomial specification has become the forerunner in crash count
modeling, covariates are entered linearly (e.g., Miaou 1994, Abdel-Aty and Radwan 2000, and
Kockelman et al. 2006). Extensions to this popular model are largely limited to panel-data
settings with random effects (e.g., Chin and Quddus 2003, Ulfarsson and Shankar 2003, and
Kweon and Kockelman 2005), zero-inflated specifications (e.g., Gurmu et al. 1999, Kumara and
Chin 2003, Lord et al. 2005a), and multivariate applications using Bayesian methods for
parameter estimation (Maher 1990, Park and Lord 2007, and Ma et al. 2008). Linearity in
parametric expressions for link functions remains the norm acrossmodeling specifications and
applications in the transportation discipline.

This remainder of this section discusses the nonparametric monotone estimation
methodology that will be used to estimate the unknown functions and parameters in (1), and in
particular, the prior distribution used on the function space to ensure monotonic function

estimates. Section 2.1 provides a brief description of Bayesian nonparametric function estimation



in a regression model with Gaussian errors. Section 2.2 then shows how the methodology can be
modified to enforce a monotonicity constraint on an estimated function through the prior
distribution on the function space. Given an MCMC sampling algorithm to make the procedure
computationally feasible (discussed in the appendix), the monotone function estimation
methodology applies to both Gaussian and non-Gaussian models, including the Poisson-gamma

model in (1).

2.1 Bayesian nonparametric function estimation in Gaussian models

Consider the model
y=a+fx)+e (2)

where ¢ are independent N(0, o) random variables and f is an unknown function to be estimated
nonparametrically. Without loss of generality, we assume 0 <X, <... <X < 1. There are
numerous nonparametric methods available to estimate f, including stochastic splines (Wahba
1978 and Wong and Kohn 1996) and regression splines (Smith and Kohn 1996), among others.
Following Smith and Kohn (1996), we employ a regression spline methodology. More

specifically, the quadratic regression spline

fm(X) =ﬂ1X+ﬂ2X2 +ﬂ3(X_Yl)i ... +ﬂm+2(x_im)i (3)

is used to approximate the function f(X) in (2), where X,, ..., X, are m “knots” placed along the
domain of the independent variable X such that 0 < X, < ... < X, <1 and (), = max (0, z). The

resulting approximating model is
y=a+f(x)+e. 4)

Quadratic regression splines are used rather than cubic splines in order to ensure that the
monotonicity constraints (imposed in section 2.2) on the function f_(X) are tractable and

practically feasible.



The smoothness of the function f_depends on the number and location of the knots. To
illustrate this (and to set up the monotonicity constraints developed in section 2.2), consider the

function withm =1 knot at X = X;:
.00 = Bx+ BX+ B (x=R): (5)

If B, B, and f, are all nonzero (so the knot X, remains in the model), Figure 1a shows the change

in the function at X;. The figure is drawn assuming X, = 0.5. The corresponding first derivative

fa (0= B, + 28X+ 25,(x=X), (6)

is shown in Figure 1b and changes direction abruptly at X = X, (in other words, the second
derivative is discontinuous at X = X, ). It is in this sense that the function is “not smooth” at a
knot. Figure 1c shows the function f (X) with £, = 0. In this case, the knot X; drops out of the
model and the function is a simple quadratic with no change at X, (i.e., it is ““smoother” than the
function with X, included). Intuitively, the more knots there are, the less smooth the function will
be. Determining which knots should remain in the model, or equivalently determining which /s
are nonzero, is central to the analysis. Smith and Kohn (1996) suggested using a Bayesian
variable selection technique to determine which £’s should remain in the model. A variation of
their technique is employed in the nonparametric monotone function estimation methodology

used in this paper.
Figure 1 goes here

To briefly describe Smith and Kohn’s variable selection technique, the approximating model

in (4) (which is effectively a regression model) is re-written in matrix notation as
y=1a+Xp+e¢

wherey=(y, ...,y), t=(1, ..., 1), the i" row of X is (X, X?, ..., (X, =X.)?), B=(B, B, ...,
1 n 1 1 | m/+ 1 2

B, and £= (g, ..., &)". To construct the prior distributions for the /3 values, let J be the (m +
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2) x 1 vector of indicator variables with the | element J;suchthat ), =0if f=0and J,=11if j
# 0. Thus, if J,= 0, /3 and the corresponding regressor drop out of the model. Further, let 3,
consist of the elements /3 corresponding to those elements of J that equal one, and let X; consist
of the regressor variables in X corresponding to those elements of J that equal one. Using this
notation, Smith and Kohn (1996) suggest using the prior 5, ~ N(0, co’ (X} X,)™), where C is
typically set to the sample size n. In addition, J,, ..., J ., are independent with Pr(J, = 1) = p,,
where p, is set by the user. Finally, non-informative priors are placed on & and o’ . The estimate
of the function f (X), and therefore f(X), is the posterior mean E(f (X) | ) and can be obtained

using an MCMC sampling algorithm. Smith and Kohn show that this function estimation

technique provides excellent estimates for a wide range of “true” functions.

2.2 Monotone nonparametric function estimation

Numerous authors have addressed monotonic function estimation in Gaussian models,
including Wright and Wegman (1980), Friedman and Tibshirani (1984), Mammen (1991) and
Ramsay (1998). More recently, Neelon and Dunson (2004) and Shively, Sager and Walker
(2009) considered monotone function estimation in a Gaussian context from a Bayesian
perspective. In addition, several authors have shown how to generalize these methodologies to
allow for non-Gaussian specifications, including Dunson (2005), Schipper, Taylor and Lin
(2007) and Shively, Walker and Damien (2009).

Shively, Sager and Walker (2009) show how to impose monotonicity constraints on the
function f (X) in (3), and therefore on the function estimate E(f (X) | y), through the prior on the
P values. Their paper considered only the case of Gaussian regression. However, Shively,
Walker and Damien (2009) show how the methodology can be generalized to allow for more
computationally complex non-Gaussian models such as the Poisson-gamma. To briefly
summarize their methodology for monotonicity constraints, we again consider the case where m
=1 withf (X) and f(X) given in (5) and (6). To impose monotonicity constraints so that the

function f_(x) is non-decreasing requires that f(X)>0 for all X € (0, 1]. The key idea is that for



each combination of J = (J,, J,, J,), f.(X) is constrained to be non-negative by placing an
appropriately constrained prior on . More specifically, a multivariate normal prior is placed on
B, constrained to the region of S-values that force f(Xx) >0 forallx € (0, 1].

For example, for J=(1, 1, 1), f;(X)>0 forallx € (0, 1]if f;(X)>0atx=0,x= X, and X =
1. To see this, note that, if f_(x) is a quadratic regression spline, then f(X) is a piecewise linear
function, as in Figure 1b. This implies that, if f ' (X) is non-negative at the endpoint of each
“piece” of the derivative function, then it is nonzero for all x € (0, 1]. This corresponds to

constraining 5, ,, = (B, /,, B,) to the region defined by

B=20; B +28X 20, B +28+28(1-%)=0 (7)

Therefore, given J = (1, 1, 1), the function f (X) is constrained to be non-decreasing by placing a
N(0, c€;_,, ) prioron 3, , , = (B, B,, B, constrained to the region defined in (7), where
Q,_,.11y 18 an appropriately defined covariance matrix. The specific structure of this matrix is
discussed in more detail in the appendix.

Similarly, for J=(1, 1,0), f (X)>0 forallx € (0, 1]if f (X)>0atx=0andXx=1, as in

Figure 1d. This corresponds to constraining 3, , , = (8, 5,) to the region defined by
p,=0 and B +28>0 (8)

Note that since J, = 0, the prior assigns £, = 0 with probability one. Therefore, given J = (1, 1, 0),
the function f () is constrained to be non-decreasing by placing a N(0, cQ,_, ,, ) prior on
Briro = (By» B,) constrained to the region defined in (8). Other combinations of J = (J,, J,, J,) can
be handled similarly. Also, the methodology generalizes to allow for any number of knots.

The technique of setting the priors for g, for each J effectively puts a prior on the function
space for f_(X) that places non-zero probability only on non-decreasing functions. Given this
prior on the function space, the posterior mean E(f (X) | y), and therefore the estimate of f(x) will
be a non-decreasing function. Shively, Sager and Walker (2009) provide a technique for

handling the changing constraints as variables drop in and out of a Gaussian regression model
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that can be implemented via an MCMC sampling algorithm. And Shively, Walker and Damien
(2009) develop a new MCMC sampling algorithm so the constrained spline methodology can be
applied in the context of non-Gaussian models. They also show the substantial gain that is
achieved by incorporating appropriate monotonicity constraints in non-Gaussian models, and
show that the methodology outperforms existing nonparametric monotone function estimation
methodologies for models where such methods have been developed. The MCMC sampling
algorithm used to implement the methodology in the context of this paper’s Poisson-gamma

model is given the appendix.

3. Data

The data used in this paper were collected in Washington State in 2002 and stored through
the Highway Safety Information System. To keep the data size manageable, we examine traffic
crashes on two-lane rural roadways in the Puget Sound region, as assembled by Ma et al. (2008).
A total of 7710 rural two-way highway segments in this region are used in the analysis, with an
average segment length of 0.0665 miles for a total of 513 centerline miles. The sample contains
913 police-logged crashes, including crashes that resulted in property damage only. Table 1
shows all variables used in the analysis, along with their summary statistics.

Table 1’s first variable, Number of crashes, is our model’s dependent variable. The next eight
variables are continuous explanatory variables that enter the model via unknown functional
forms (i.e., the X-variables in equation (1)), while the remaining seven variables are categorical

variables that enter the model linearly (the z-variables in (1)).
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Table 1: Summary statistics

Variable name Mean Std. Dev. Min Max
y;: Number of crashes 0.118 0.426 0 5
X,;: Vehicle miles traveled in 2002 8,8671 143,134 21 267,965
X,,: Average annualized daily traffic (# of vehicles) 3,752.7 | 2,727.3 254 28,624
X,;: Horizontal curve length (feet) 1 666.8 575.6 20 4715
X,;: Degree of horizontal curvature (degrees/100 feet) ' 6.268 7.433 0.17 100.52
X,;: Vertical curve length (feet) ? 484.1 373.1 20 3,200
X;: Vertical grade (percentage) ? 1.992 2.004 0.01 16.13
X..: Average shoulder width on each side (feet) 2.087 1.297 0 16.5
X,: Posted speed limit (miles/hour) 49.620 8.152 25 60
z,;: Surface width (feet) 23.979 4.387 16 70
z,;: Indicator for horizontal curve: 1=yes; 0=no 0.372 0.483 0 1
Z;: Indicator for vertical curve: 1=yes; 0=no 0.627 0.484 0 1
z,;: Indicator for minor arterial: 1=yes; 0=no 0.285 0.451 0 1
z;: Indicator for collector: 1=yes; 0=no 0.246 0.430 0 1
z;: Indicator for rolling terrain: 1=yes; 0=no 0.596 0.491 0 1
z;: Indicator for mountainous terrain: 1=yes; 0=no 0.039 0.195 0 1

' Summary statistics for horizontal curve length and degree of curvature are only for the
2868 road segments that include a horizontal curve.

? Summary statistics for vertical curve length and vertical grade are only for the 4834 road
segments that include a vertical curve (i.e., only segments that are on a hill).

The variables average shoulder width, posted speed limit and surface width are fairly self-
explanatory. Surface width is treated as a linear z-variable because over 90% of the values are
22,23 or 24 feet, rendering it a nearly categorical variable.

Average annualized daily traffic (AADT) is defined as the average number of vehicles per
day on the road segment in 2002. Since all highway segments in the data set are two lane
facilities, it serves as a measure of traffic intensity here. And since segment speeds are likely in
the 50 and 60 mph range (but variable and not reported/known, as is typical in such data sets),
AADT is nearly proportional to — and thus serves as a measure of — traffic density. Moreover,

since capacity values across these segments are nearly constant, AADT also serves as a volume-

to-capacity variable (as discussed by Lord et al. [2005b], in their study of crash rate model
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specifications). Vehicle miles traveled (VMT) in 2002 is simply AADT times the length of the
roadway segment times 365 days.

The indicator variable for horizontal curve (z,) is zero if the road segment is straight and one
if the segment has a curve. Horizontal curve length is the distance along a segment’s centerline
from the start of horizontal curvature (either rightward or leftward) to the end of such curvature.
In other words, it is the distance in centerline stationing between the point of curvature to the
point of tangency. Degree of horizontal curvature is the number of degrees of curvature per 100
feet of curve. Essentially, higher degree-of-curve turns are “tighter” (of lower radius) and result
in greater centrifugal forces acting on vehicles, if speeds are not reduced.

Similarly, the indicator for vertical curve (z,) is zero if the road segment is flat and one if it is
on a hill. Vertical curve length is the stationing distance from the start of a section that departs
one gradeline and leads to another — via curvature in the vertical sense (e.g., a hilltop or valley
bottom). Vertical grade is the rise or fall in elevation for every 100 feet of horizontal distance.
For example, a road segment that rises or falls two feet for every 100 feet of horizontal distance
has a two percent grade and is denoted as 2.00 in the data set. Since traffic travels in both
directions on the two-lane road segments in our sample, all grades are shown in the positive
sense.

For the remaining indicator variables, a minor arterial road is a relatively high-speed
highway, but not as important as or at the design standards and flow volumes of an interstate
highway or freeway. Collector roads are the lowest class of highway, providing more access (via

driveways and local street connections) than arterials and interstate highways.

4. Empirical results and their interpretation

Given the variety of factors at play, infrequency of crashes, and high noise-to-signal ratio in
Poisson, negative binomial and related specifications, proper modeling of crash data is
challenging. However, thoughtful nonparametric designs that allow for adequate behavioral

flexibility can open a variety of new doors for covariate effects and uncover previously
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unobserved relationships. Further, incorporating appropriate monotonicity constraints into the
model increases the quality of the estimated relationships and leads to more reliable and
conclusive results. As discussed below, intuition, subject matter knowledge and the empirical
results support monotonicity assumptions on many of the relationships between roadway
characteristics and crash counts.

Section 4.1 discusses the subject matter reasons for imposing monotonicity constraints on the
relationships and gives the empirical results of our analysis. Section 4.2 interprets the results
while Section 4.3 gives out-of-sample validation results and discusses the difficulty in obtaining

accurate forecasts for a Poisson-gamma model.

4.1 Empirical results

The natural logarithms of the continuous X-variables are used as the explanatory variables in
the model rather than the untransformed variables (i.e., log(x) values are used rather than X).
Histograms (not shown here) for many of the continuous variables exhibit strong right skew.
Using a logarithmic transformation puts all the variables on a similar scale and provides
numerical stability in the nonparametric estimation procedure. The transformation does not affect
the final inference since the function estimates adjust appropriately to the natural log
transformation and can be easily back-transformed to the original X-scale.

log(VMT) was originally included in the model as a variable with an unknown function to be
estimated nonparametrically. However, the resulting function estimate was nearly linear. So, for
ease of interpretation, as discussed in section 4.2, log(VMT) is included in the model as a linear

z-variable. The final model we estimate is given in (1) with
log[g(x, z)] = a + y, 1og(VMT,) + y,log(SurfaceWidth,)
+ y,MinorArterial, + y, Collector, + y,RollingTerrain, + y, Mountainous,
+ HorizCurve, x [¢, + f (log(HorizontalCurveLength,)) + f,(log(HorizontalCurveDegree,))]

+ VerticalCurve, x [, + f,(log(VerticalCurveLength,)) + f,(log(VerticalCurveGrade))]
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+ f,(log(AADT))) + f (log(SpeedLimit)) + f (log(AverageShoulderWidth))). 9)

The indicator variable HorizCurve, (as defined in section 3) effectively removes the variables
HorizontalCurveLength. and HorizontalCurveDegree, from the model when the i" road segment
does not contain a horizontal curve. The indicator variable VerticalCurve, has a similar effect for
road segments without vertical curves (i.e., without hills or valleys).

The fully linear version of the model in (9), where the functions f, through f, are all assumed
to be linear, was estimated initially. The linear coefficients were then used (along with subject
matter reasoning) to set the monotonicity constraints in the nonparametric version of the model.

The linear coefficients are given in column 2 of Table 2.

Table 2: Estimated coefficients

. Estimated coefficients

Variable - -
Fully linear model Nonparametric model

Intercept -13.14 (1.41) -15.30 (1.97)
log(VMT) 0.69 (0.04) 0.69 (0.04)
log(SurfaceWidth) -0.16 (0.10) -0.16 (0.35)
MinorArterial -0.05 (0.10) -0.03 (0.10)
Collector 0.15 (0.11) 0.20 (0.11)
RollingTerrain -0.08 (0.09) -0.07 (0.09)
Mountainous -0.03 (0.34) 0.03 (0.35)
HorizCurve (¢, coefficient) -1.35 (0.83) -1.65 (1.65)
VerticalCurve (¢, coefficient) 0.93 (0.43) 0.16 (0.44)
log(HorizontalCurvelLength) 0.12 (0.12)
log(HorizontalCurveDegree) 0.37 (0.10)
log(VerticalCurvelLength) -0.18 (0.07)
log(VerticalCurveGrade) -0.00 (0.07)
log(AADT) 0.45 (0.07)
log(SpeedLimit) 0.03 (0.21)
log(AverageShoulderWidth) -0.08 (0.10)
n 0.67 (0.10) 0.71 (0.10)

Standard errors are in parentheses. Bolded coefficients lie more than two
standard errors from zero. The dashed lines (---) indicate the relationship for
this variable is estimated nonparametrically, as shown in Figure 2.
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The coefficients in column 2 associated with HorizontalCurveLength,
HorizontalCurveDegree, AADT and SpeedLimit are positive, so the functions f,, f, f, and f_ were
constrained to be monotonically increasing functions. The coefficients associated with
VerticalCurvelLength, VerticalCurveGrade and AverageShoulderWidth are negative, so the
functions f,, f, and f, were constrained to be monotonically decreasing.

Strong subject matter reasons also justify the monotonicity constraints on
HorizontalCurveLength, HorizontalCurveDegree, AADT and SpeedLimit. For example, a road
segment’s degree of curvature is inversely proportional to the horizontal curve’s radius, and thus
directly proportional to the centrifugal force experienced by the vehicle and its occupants.
Further, roadway banking and side friction can be exceeded by natural forces occurring on high-
degree curves, particularly on slick roadways (e.g., on rainy days) at the start and end of curves
where banking is generally not fully developed. These factors should lead to an increase in crash
rates and imply a monotonically increasing relationship between HorizontalCurveDegree and the
expected number of crashes. In addition, the longer the curve is, the greater the opportunity for a
driver to lose control and be involved in a crash. This should imply a monotonically increasing
relationship between HorizontalCurvelLength and the expected number of crashes.

Since all road segments in the data set are rural two-lane highways, and speed and flow
values are not given by time of day or day of year (and certainly are not constant), AADT serves
as a measure of traffic intensity or congestion. The reason is that, if vehicle miles travelled are
held constant, higher AADT values imply more traffic on the road segment and a tighter spacing
between the vehicles. Shorter spacings should increase crash counts, suggesting a monotonically
increasing relationship between AADT and the expected number of crashes.

Finally, higher posted speed limits are expected to be associated with higher crash rates
because drivers traveling at higher speeds have less time to react to avoid danger. This suggests a
monotonically increasing relationship between SpeedLimit and the expected number of crashes.

The coefficients associated with VerticalCurveGrade and AverageShoulderWidth are

negative, but both lie less than one standard error from zero. This indicates that neither variable
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is statistically significant in the linear model, in terms of explaining variability in crash counts
across roadway sections. This is confirmed by the flat function estimates that are obtained from
the nonparametric model. The coefficient associated with VerticalCurveLength is negative and
more than two standard errors from zero. It is not clear from a subject matter perspective what
the direction of the relationship should be between VerticalCurveLength and crash counts,
because vertical curves include both uphill and downhill road segments. However, for the same
change in grade longer curves will allow for longer sight distances and ostensibly safer driving
conditions. Given the strong evidence in results from the linear model, the function f, for
VerticalCurvelLength was constrained to be monotone decreasing.

The estimates of the j~coefficients in (9), when f, through f, are estimated nonparametrically,
are given in the third column of Table 2, along with their standard errors (in parentheses).
Figures 2 and 3 plot the estimated functions f, through f, for the continuous explanatory
variables. In both Figures 2 and 3 all variables (other than the specific X; being plotted against)
are set to their median values. To interpret these figures, note that g(x, z) is the mean function if
¢=1. The solid curves in Figures 2a-g represent estimates of the function log[g(X, z)] plotted
against log(x;) for each of the seven X-variables. Similarly, the solid curves in Figures 3a-g
represent estimates of g(X, z) plotted against X; (not log(x))). The two sets of figures represent
similar information, although on different scales (in Figure 2 on a log-log scale and in Figure 3
on the original scale of the data), and are useful for different purposes, as discussed below.
Finally, the dashed lines in Figures 2 and 3 are 50% confidence bands and provide a measure of
uncertainty regarding the estimated function. One of the general advantages of Bayesian methods
is the ready availability of confidence bands that provide meaningful measures of uncertainty.
The coefficient and function estimates were obtained by combining the results from four
independent runs of the MCMC sampling algorithm, each with warm-up and sampling periods of
5,000 and 20,000 iterations.

It is useful to note that Figure 2’s shapes of the estimated functions for log[g(X, z)] do not

depend on the median values of the non-x;-variables used to create the plots. These values affect
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only the vertical placement of the estimated functions. (This is not true for the estimated mean
functions in Figure 3 due to the exponentiation required to obtain g(X, z) rather than log[g(X, 2)].)
This means the inferences drawn from Figure 2 regarding shape and nonlinearity do not depend
on the values of the non-X -variables used to represent typical values. The invariance property in
Figure 2 to the choice of “typical” values is important when determining whether the f, functions

can be modeled using linear functions, as discussed below.
Figures 2 and 3 go here

A comparison of column 2 and column 3 results, alongside Figures 2a-g, illustrates the
similarity regarding which variables contribute explanatory power in the linear and
nonparametric models. In particular, the variables log(VMT), log(AADT),
log(HorizontalCurveDegree) and log(VerticalCurveLength) contribute substantially to
explaining crash count variability in both model specifications. The only substantial difference
between the two models is in the coefficient associated with the indicator variable for the
presence of a VerticalCurve. In the fully linear model, the associated coefficient is more than two
standard errors above zero, while in the nonparametric model it is effectively zero.

For the variables HorizontalCurveLength, HorizontalCurveDegree, AADT,
VerticalCurveGrade and AverageShoulderWidth, the estimated functions are plotted for X-values
through their 98" percentile values. The highly skewed nature of these x-variables and the
sparcity of very large values mean that the function estimates for large X-values are unreliable
and add little to our understanding of the core (and most common) relationships. Compounding
the estimation problem for large x-values is the “endpoint” effect that typically occurs with
nonparametric function estimation. For an X-value in the “middle” of the data, there are data on
either side to provide information about the function estimate (because the estimation
methodology provides smooth function estimates which borrow strength from nearby points).
However, for large values there are no data on the right to help estimate the function value with

the result that function estimates for large values are often poor. In our data set the endpoint
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effect for small values of X is tempered for many of the X-variables because there are so many
small values. In most data sets, however, there is typically an endpoint problem at both ends of
the x-range.

We now consider which functions f(log(x,)) in (9) can be reasonably assumed to be linear in
log(x) and which should be estimated nonparametrically. The closer an estimated function in
Figure 2 is to a straight line, the stronger the evidence that it is a linear function. More
specifically, if a straight line “fits inside” the 50% confidence bands this provides evidence that
the true relationship is linear. Conversely, if a straight line does not fit inside the confidence
bands there is evidence the relationship is nonlinear and should be estimated nonparametrically.
As an example, for the variable HorizontalCurveDegree in Figure 2b, a straight line does not fit
into the confidence bands so this provides evidence that the true relationship is nonlinear.
Further, the estimated function for HorizontalCurveDegree does not have an obvious nonlinear
parametric functional form such as quadratic or logarithmic. This illustrates the importance of
using nonparametric estimation procedures to uncover nonlinear relationships that may not be
apparent from a parametric analysis. From Figure 2, there is strong evidence that the functions
associated with AADT and HorizontalCurveDegree are nonlinear and moderately strong
evidence that the function associated with VerticalCurvelLength is nonlinear. Also, neither of the
estimated functions for AADT or HorizontalCurveDegree has an obvious nonlinear parametric
functional form.

We use 50% confidence bands rather than a higher percentage (such as 90% bands) because,
from a statistical point of view, it is a more serious error to assume a function is linear when it is
not than the converse. If the function is linear, the nonparametric monotone estimation procedure
will still provide a good estimate, assuming sample size is adequate. This is confirmed by section
5’s simulation results. Conversely, if a function is actually nonlinear, the parametric procedure
assuming linearity will result in a mis-specified model and give poor function estimates relative
to the nonparametric monotone procedure. This is also confirmed by section 5’s simulation

results. This implies that given sufficient data an analyst is often better off using the
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nonparametric monotone procedure unless there is strong evidence the parametric assumptions
of the model are satisfied.

We can also use the confidence bands to provide evidence regarding whether or not a
specific x-variable is related to crash counts. If a flat (horizontal) line falls inside the 50%
confidence bands for a specific X-variable then it is reasonable to conclude X is not related to
crash rates. It is fairly clear from observing Figures 2 and 3 that the variables
HorizontalCurveDegree, AADT and VerticalCurveLength are related to crash counts while
VerticalCurveGrade, SpeedLimit and AverageShoulderWidth are not. There is some evidence,
though not overwhelming, that HorizontalCurveLength is related to crash counts. As with
determining whether a relationship is linear, we use 50% confidence bands to be conservative
and therefore reduce the probability of incorrectly concluding there is no relationship when there
is one. Incorrectly removing a variable when it is related to crash counts creates a mis-specified
model with potentially serious consequences. For example, in a standard Gaussian regression
model, incorrectly omitting variables can result in estimated coefficients with the wrong sign
(see Maddala, 1977, pp. 155-156).

The three variables that do not appear to be related to crash counts (VerticalCurveGrade,
SpeedLimit and AverageShoulderWidth) were removed from the model, and the remaining
functions were re-estimated. The function estimates for the modified model are similar to the
original model with all variables included. They are not shown here, to conserve space.

We also note the lack of “wiggle” in the estimated functions. One of the advantages of
imposing appropriate monotonicity constraints in the estimation procedure is the smooth
functions that result. Unconstrained nonparametric procedures often produce function estimates
that are “noisy,” particularly if the noise-to-signal ratio in the data is high and the sample size is
not sufficiently large. Unsmooth and noisy function estimates can be difficult to interpret and

explain to end users.
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4.2 Interpretation of the empirical results

This section provides an interpretation of the empirical results obtained from the model in (9)
when the unknown functions and coefficients are estimated using the nonparametric monotone
estimation procedure. We begin with a discussion of the estimates of the j~coefficients and then
discuss the estimated functions. First, in theory, crash counts should be directly proportional to
VMT which means the coefficient y, should be one. However, in practice this is often not the
case, including in our model where the estimate is 0.69. The most likely reason y, is less than one
is that longer segments tend to be more homogenous in design, offering fewer surprises to
drivers and therefore resulting in lower crash counts. This means that if AADT remains the same
but segment length (and thus VMT) doubles, the crash counts may fall, thanks to more
consistency in design features.

Second, the coefficient associated with the indicator variable for Collector is positive and 1.8
standard errors from zero. The positive coefficient indicates a higher number of crashes on
collector roads than on arterials (both primary and secondary), which implies two-lane rural
collector roads in the Seattle area are less safe than arterials. This makes good sense if speed
limits and other attributes are held constant, because arterials are typically built to a higher safety
standard and collectors provide more access to local land use, resulting in a higher share of
vehicles entering (and leaving) the facility via driveways and cross streets, which increases the
likelihood of vehicle interactions. The remaining j~coefficients in column 3 are less than one
standard error from zero. These results are consistent with the coefficients given in column 2 for
the fully linear model, with the previously discussed exception of VerticalCurve.

The assumption of monotonicity for AADT is strongly supported by the estimated function
shown in Figures 2c and 3c. There is an interesting non-linearity in this relationship, with a
dampening of effect (change in slope) around 2,000 vehicles per day. Such a function cannot be
easily modeled using the parametric functions typically employed in practice. Keeping in mind
that AADT is a good proxy for (the inverse of) inter-vehicle spacing (if VMT is held constant), or

equivalently, for the density of vehicles on the road segment, the estimated function in Figure 3¢
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implies that the expected number of crashes increases much faster for low vehicle density
segments than for high density segments.

The relationship between the expected number of crashes and HorizontalCurveDegree shown
in Figure 3b appears somewhat sinusoidal, with an inflection point very near the average value of
6.27 degrees, where the average is computed for segments containing horizontal curves. In
increasing the degree of curvature from 4 to 12 degrees (and holding the other variables constant
at their median values), the expected number of crashes is expected to increase by 0.06 crashes (a
substantial increase, in practical terms).

The third variable that is related nonlinearly to the expected number of crashes is
HorizontalCurvelLength, although its relationship appears to be weaker than either AADT or
HorizontalCurveDegree. Figure 3a indicates the expected number of crashes increases
approximately 50% from 0.041 to 0.06, as the length of the curve increases from 0 to 2,000 feet.
The rate of increase is greatest near zero, although this is the portion of the estimated function
where the uncertainty in the estimate is greatest.

The fact that ShoulderWidth does not show up as an important variable in the fully linear and
the nonlinear model is a bit surprising given the empirical results in some previous analyses.
There are several possible reasons for this, including an incorrectly specified model, missing
explanatory variables, estimation error due to the natural random variability in the data, or the
possibility that for our data set ShoulderWidth does not contribute any explanatory power to the
model. Most likely, it is simply reflecting the fact that wider lanes and shoulders can encourage
driver inattention and higher speeds, resulting in more and more severe collisions, especially on
two-lane roads, where driveways and crossings lead to interactions of vehicles at very different
speeds. In other words, a more “forgiving roadside” can actually reduce safety (as described in
Dumbaugh [2005]).

From a statistical perspective, it seems reasonable to rule out an incorrectly specified model
because the Poisson-gamma model with a heterogeneity term included is a very flexible model

(and is often used in these types of studies). The flexible functional forms used to model the
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covariate relationships significantly reduces the possibility that incorrect parametric assumptions
are made regarding these relationships. Also, various alternative specifications for incorporating
VMT and AADT into the model were considered (although not shown here for brevity); but the
estimated coefficients are similar, and the same coefficients are more than two standard errors
from zero in each specification. The possibility of missing variables cannot be ruled out, but the
variables included in our model are similar to those used in analogous studies. Also, the
heterogeneity term ¢, is included to account for variability in the crash counts due to

unobservable factors, such as travel speeds, impaired driving and weather conditions.

4.3 Out-of-sample forecasting

This section discusses forecasting and out-of-sample validation in a Poisson-gamma model.
Out-of-sample validation is the “gold standard” in model fitting diagnostics, so we focus on this
measure of fit. However, the same discussion applies to in-sample measures of fit. We begin
with a brief discussion of forecasting in a Bayesian context. We then discuss the difficulty in
obtaining accurate predictions in a Poisson-gamma model due to the substantial amount of
unexplainable variability inherent to such models. The section concludes with the out-of-sample
validation results obtained when the parametric and nonparametric procedures are applied to the
crash data.

For the model in (1), the prediction of a future value y_, is E(y_,, | ). Likewise, Var(y_, | y)

n+1
is a measure of predictive uncertainty. Analytically, based on standard Bayesian predictive
inference (Bernardo and Smith, 1994), we have

E(yn+1 | y) = z J‘”'J.ynJrlhl(ynH |¢n+1’a97/7 fn+1977)h2(¢n+1 |77)h3 (a,}/, fn+1977| y)d¢n+ldad7dfn+ldn

Yns1=0

where y= (7, ..., ;) and = [f(log(x, . )), ..., f(log(X;,,,,))]. The values of E(y,., | y) and
Var(y, ., | y) cannot be computed analytically but they are straightforward to obtain from the
MCMC sampling algorithm used for estimation. The reason is that both quantities are functions

of the random parameters a, y f | and 7. Since samples from the posterior distributions of these
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parameters are available from the MCMC algorithm, we can use them to estimate E(y ., | y) and
var(y,,, 1Y)

To discuss issues related to the difficulty in obtaining accurate predictions, the density
function h, in the integral represents the uncertainty iny_, given ¢, ., o,  f . and 7. This
uncertainty is due to the variability iny_, generated from a Poisson-gamma distribution when the
mean parameter is known, i.e., when z(X ., Z ) = ¢,. 9(X..,» Z,.,) is known. The density functions
h, and h, taken together represent the uncertainty in the mean parameter /(X ., Z,.,) given the

data y in the estimation sample (because (X ,,, Z,,,) is a function of ¢, @, yand f ). More

1
specifically, the density function h, represents the variability in the future observation ¢, ~I'(7,
n) given 7. The density function h, represents the uncertainty regarding ¢, 5, f ., and 7 given the
data in the estimation sample (i.e., h, represents the uncertainty due to the imperfect information
about a, y, f _ and 7 captured by the estimation methodology). We note that the variability
captured by h, and h, cannot be controlled by the analyst. On the other hand, the uncertainty
captured by h, can be reduced using a good estimation methodology.

If the total variation in a data set is dominated by unexplained variability (i.e., the variability
captured by h, and h,), then, regardless of whether one employs a parametric or nonparametric
model, the out-of-sample forecasts will be poor. For the model and data set considered in this
paper, the unexplained variability is very high given the inherent variability in Poisson-gamma
data and the substantial variability in ¢, ~I'(7, 77) when 7 is less than one. These two sources of
variability dominate the uncertainty due to the estimation methodology. This unfortunately
means the model will provide poor forecasts no matter how good the estimation methodology is.
This is supported by the simulation results discussed in section 5. In fact, we can show via
simulation that even if the true values of «, , f  and 7 are known (i.e., there is no estimation
error), the out-of-sample predictions for individual segments will still be very poor.

To obtain out-of-sample validation results for the crash data, the sample of 7710 observations

is divided into an estimation sample with 5140 observations (two-thirds of the full sample) and a
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validation sample of 2570 observations. The quality of the out-of-sample forecasts is measured

using

RMSE = \/Z[yi _Q(Xiazi)]2

where §(X;,z;) depends on the estimated values of ¢, yand f obtained from the estimation
sample and the sum is over the 2570 observations in the validation sample. Note that the
expected value of future observations given the data is ¢, §(X;,z;). However, forecasts of future
values of ¢ are one, since ¢ ~ I'(7, i7) with E(¢) = 1 and there is no information in the y-values
in the estimation sample about the ¢-values in the validation sample. For the nonparametric
model the RMSE is 0.507, while for the fully linear model the RMSE is 0.489. As expected, the

out-of-sample results for both models are very poor and nearly the same because the unexplained

variability in the validation sample dominates the controllable estimation error.

5. Quality of the estimation procedures and out-of-sample forecasts

This section reports the results of three simulation experiments that show for three different
sets of functions (linear, nonlinear and flat): (1) the relative performance of the three estimation
procedures (parametric, nonparametric with monotonicity constraints and nonparametric without
monotonicity constraints), and (2) the out-of-sample forecasting performance for the three
estimation procedures. The results show the quality of the function estimates depends crucially
on the estimation methodology that is used. They also show that the inherent variability in count
data obtained from a Poisson-gamma model makes accurate out-of-sample forecasting very
difficult — no matter how well the unknown functions are estimated.

The three simulations use the model in equation (1) to generate the y-data with
log[g(x, z)] = e+ y, Collector, + f (log(VMT)) + f,(log(AADT))

+ HorizCurve, x [f (log(HorizontalCurveLength,)) + f,(log(HorizontalCurveDegree,))]. (10)
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For each simulation, n = 7710 observations (as in the actual data set) are generated to form an
estimation sample, and a second independent set of 7710 observations are generated to form a
forecasting (validation) sample. The estimated coefficients and functions from the estimation
sample are used to forecast the y-values in the forecasting sample. Both samples are generated
using the same X, Z, &, y,, 77 and function values.

Our goal is to create estimation and forecasting samples with properties similar to those of
the actual crash data under various scenarios for the “true” coefficients and functions in (10). To
accomplish this, the z-variable included in the model is the indicator variable for Collector. This
is the significant z-variable from the actual data. Also,  is set to the estimated value reported in
section 4.

The four x-variables included in the model are VMT, AADT, HorizontalCurvelLength and
HorizontalCurveDegree. These are X-variables that have estimated functions with a range greater
than 0.5 (see Figure 2) and therefore contribute to the variability in the actual crash count data.
The functions associated with the x-variables vary across the three simulations. For the first two
simulations, the range of the functions associated with each variable are set to give
approximately the same function ranges as the corresponding estimated functions obtained using
the actual crash data (the third simulation sets f(log(x))) = 0 for all four functions). For example,
for the variable HorizontalCurveDegree, the range for f, is set to 0.89, which is the range of the
estimated function for HorizontalCurveDegree shown in Figure 2b. The functions are discussed
in more detail below.

The value of 77 used to generate the ¢, values is set to 0.65. The value of « in each simulation
is set so that the sample mean and standard deviation of the simulated y-data are similar to the
sample mean and standard deviation of the y-data in the actual crash data. 10 runs are done for
each simulation.

The first simulation sets the four functions in (10) to the linear functions:

flogo) =rlog(x),  j=1,....4,
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where 1 is specified to give the function the appropriate range, as discussed above. The second

simulation sets the four functions in (10) to the nonlinear functions:
f(log(x)) =r, exp{llog(x,)~a,1/b, '},  j=1,...4

where a, is the minimum of the log(X;) values across the 7710 observations, bj is the maximum of
the log(x,) — @, values (so 0 < [log(x,) —a] / bj <1 for all X)), and r; is set as in the first simulation.
The third simulation sets the four functions to be flat functions fj(log(xj)) = 0. This represents the
case where there is no relationship between y and any of the X-variables.

The numerical measure we use to measure the quality of the three estimation procedures is

the root-mean-squared-error (RMSE):

RMSE = \/Z[g(xiazi)_ gA(XiaZi)]2

i=1

where g(x;, z)) is defined in (10) and §(X;, Z;) represents the estimate of g(X, z,). The quantity g(X,
z)) in the above expression is the portion of the mean function that depends on the unknown
functions fj and the unknown regression coefficients . The RMSE values for three simulation

scenarios are reported in Table 3.

The RMSE used to measure the quality of the out-of-sample forecasts is:

RMSE = \/Z[Yi _gA(XiaZi)]2

where the sum is over the 7710 observations in the forecasting sample and the coefficients and
function values used to compute §(X;,Zz,) are from the estimation sample. As in section 4.3 the

forecasts of ¢ are one. The forecasting sample is large, in order to remove the effects of random

variability across observations on the forecasting RMSE values.

- 26 -



Table 3: Root-mean-squared-errors (RMSE)
for the three simulation experiments and three estimation procedures

Estimation method
Ty I'\Ionparamet'ri(‘: Nonparametr.ic' Linear

with monotonicity | w/out monotonicity

Part 1: True functions are linear functions
RMSE for the function estimates - 0.019 0.023 0.014
RMSE for out-of-sample forecasts 0.374 0.374 0.375 0.374

Part 2: True functions are nonlinear functions
RMSE for the function estimates - 0.025 0.028 0.053
RMSE for out-of-sample forecasts 0.387 0.389 0.390 0.392

Part 3: True functions are flat functions
RMSE for the function estimates - 0.011 0.018 0.011
RMSE for out-of-sample forecasts 0.394 0.394 0.394 0.394

5.1 Quality of the estimation procedures

The simulation results reported in Part 1 of the table, where the true functions are linear,
show just a 0.005 increase in the RMSE value when the nonparametric monotone procedure is
used rather than the linear (parametric) procedure. This increase is expected given the
information in the linearity assumption. However, the increase is small and the nonparametric
procedure does nearly as well as the linear procedure — even when the linearity assumption is
satisfied. The results in Part 2 of the table, where the true functions are nonlinear, show an
RMSE increase of 0.028 when the linear procedure is used rather than the nonparametric
monotone procedure (a 112% increase). This is substantially larger than the difference reported
in Part 1. Finally, the results in Part 3 show there is no difference between the linear and
nonparametric monotone procedure when the true functions are flat functions. The three sets of
simulation results imply that little is lost using the nonparametric monotone procedure when the
linearity assumptions are satisfied but there is a substantial gain if the linearity assumptions are
violated.

Comparing the RMSE values for the two nonparametric procedures in columns 3 and 4

shows the gain from incorporating the monotonicity constraint into the nonparametric procedure.
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The biggest percentage gains are for the linear and flat functions, 21% and 64%, respectively.
The exponential functions in Part 2 are rapidly increasing functions, which dissipates some of the
impact of imposing monotonicity conditions on the function estimates in this case. Even so, there
is a 12% increase in the quality of the function estimate. Monotonicity information is the most
valuable when the function is slowly increasing or flat. Also, the importance and impact of the
monotonicity information is greater in smaller sample sizes and/or when there are a large number
of functions to be estimated. In other words, the less “information per function” there is in the

data, the more important the monotonicity information becomes.

5.2 Quality of the out-of-sample forecasts

The simulation results in Table 2 show that, even if the estimate of g(X, z) is very good, this is
not reflected in significantly smaller forecast errors. For example, the results from the first
simulation shown in Part 1 of the table (when the true functions are linear) indicate essentially no
difference in the RMSE for the forecasted values obtained using the three estimation procedures.
In fact, even if the true function values are known (i.e., the best possible scenario), the RMSE
remains unchanged — as per the second column in the table, labeled “True”. Similar results hold
for the other two simulations as well. In other words, in a forecasting context the gain from better

function estimates is dominated by the uncontrollable variability.

6. Conclusion

This paper uses a Bayesian semi-parametric estimation procedure for monotonic function
estimation in a Poisson-gamma model of crash counts. The methodology uses quadratic
regression splines with a Bayesian variable selection technique for choosing the knot points. In
addition, monotonicity constraints are imposed on function estimates through prior distributions
for unknown parameters. The model is a compromise between a fully parametric analysis and a
fully nonparametric analysis. The monotonicity constraints, if appropriate, incorporate valuable
information and structure into the model that often results in better estimates while still allowing

for functional flexibility of the relationships. Using a semi-parametric procedure is particularly
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important if the standard parametric assumptions in a Poisson-gamma model (typically linearity
assumptions) are violated.

An important benefit of such procedures is that nonlinear relationships can be detected that
are not observable when parametric functions are forced onto the model. These nonlinear
relationships often have important subject matter implications. In terms of roadway safety, we
find strong nonlinear relationships between the number of crashes and the degree of horizontal
curvature and traffic intensity (AADT), ceteris paribus. When horizontal curvature is present, we
find only a weak relationship to crash rates until curvature reaches approximately four degrees
(of subtended angle) per 100 feet of curve (or a radius of roughly 1,400 feet), at which point the
expected number of crashes begins to increase substantially. Similarly, for low levels of
congestion there is a strong increase in the expected number of crashes as traffic levels rise
(while holding VMT constant, by reducing segment length) but with an eventual reduction in the
rate of increase, as congestion worsens. Neither of these relationships can be modeled using
typical functions and are likely to be overlooked using a standard parametric analysis.

The monotonicity constraint incorporates important information into the model. The
additional information provides better function estimates, as indicated by section 5’s simulation
results, as well as smoother estimates without hard-to-interpret “wiggles” that unconstrained
nonparametric procedures often produce. The Bayesian methodology also gives meaningful
confidence bands that provide important measures of uncertainty regarding function estimates. In
addition, the confidence bands can be used to determine if standard parametric assumptions are
satisfied (in which case they can be safely incorporated into the model) and to determine which

specific explanatory variables are actually related to crash counts.

6.1 Future research
Total crashes (i.e., the sum of fatal, disabling injury, non-disabling injury, possible injury and
no injury crashes) were analyzed here — rather than only fatal crashes, or fatal and disabling

injury crashes. This is because the roadway sections are very short, on average, resulting in very
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low (and often zero) crash counts. In general, higher crash counts provide more information, and
thus more reliable function estimates. Nevertheless, the issue of distinguishing the five crash
types is an important one. Modeling the different types of crashes will make for more valuable
inferences regarding the impact and import of various covariates. Given the sparseness present in
most crash data sets that allow for control of site-specific design attributes, one meaningful way
of “borrowing strength” across crash types is to pursue a nonparametric multivariate analysis,
where the five types of crash counts are treated as a vector and the “Poisson count vector” is
analyzed nonparametrically. Park and Lord (2007) and Ma et al. (2008) have used parametric
multivariate analysis with linear relationships to model multiple categories of crash data.
Nonparametric function estimation in non-Gaussian (e.g., Poisson-gamma) multivariate models
is an interesting direction for future research in both the statistics and transportation literature. At
this point in time, such methods are not available, but extension of the current modeling methods
to these more complex contexts is quite feasible.

It also would be helpful to incorporate the effects of weather conditions, other design features
(such as sight distances, driveway frequency, population density, and clear zone width), and
other factors (e.g., distance to the nearest hospital) into the analysis. Such data are not readily
available in most settings, but they may be quite meaningful in terms of crash frequencies and
outcomes. In general, the Bayesian approach employed here enables substantial specification

flexibility for more appropriate modeling — and interpretation — of count-based relationships.
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Appendix

This appendix outlines the MCMC sampling algorithm used to implement the
nonpamametric monotone estimation procedure employed in the paper. Full details of the
algorithm as it applies to estimating monotonic functions in the class of models that have log-
concave likelihood functions, of which the Poisson-gamma is a member, can be found in
Shively, Walker and Damien (2009). The algorithm discussed below is for the Poisson-gamma
model in equation (1) with a single continuous explanatory variable X with unknown function f(x)
and a single linear regressor Z with coefficient ybut it is straightforward to generalize to multiple
functions and multiple linear regressors.

Let zrepresent the likelihood function

{@. expla + f(X)+7z, 1} |

e, f(X), 7 1Y) = exp{-4 expla + f(x) + yz]} v (Al)
GivenJ=(J,, ..., J ), the quadratic regression spline function f_in (3) that approximates f(x)
can be written in matrix notation as f =X, B where f = (f (x)), ..., f (X))’, and X, and S, are

defined as in section 2.1. The constraints on the /3 values to ensure that the resulting function is
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non-decreasing depend on the J, values. For example, if J, = 1 for all j then the constraints are /3,
>0, 4+2%4,>0,and B+ 2%, B+2.) (X ~%)Bes 20,i=1, .om(with X, =1). In
general, the linear restrictions on the elements of £, required to ensure the function is non-
decreasing can be written as &, = L, £, where L, is a lower triangular matrix that depends on J
and the X; values, and each element of 6, must be greater than or equal to zero. The portion of
the o,-parameter space that guarantees a non-decreasing function is the multi-dimensional
generalization of the first quadrant. Setting the variance matrix in the prior for £ discussed in
section 2.2 to Q, = L' (L) gives a distribution for &, that is a N(0, cl) distribution constrained
to the multi-dimensional generalization of the first quadrant, where | is the identity matrix with
appropriate dimensions.

To make the model analytically tractable we re-parameterize to give f =W, &, where W, =
X, L,'. Using this parameterization with the likelihood function in (A1) gives

Yy ad, 5,7 @)=y 1a.3,6,,7.0)

i=l

=exp{—s(y, &, J, 3, , #)}

where

n

S(Y, &, J, 6, 1, 9) = Z[¢| expi{a + W0, +72;} — ¥ {log(¢) + & + Wy, +ﬂi}]

i=1

and W, represents the i-th row of W,. The corresponding posterior distribution is

e, J, 0, 1, § 111Y) o expi=S(y, &, J, 6y, 7, ) M)A, )N (| m)A(77)

where (@), #(J, 0,), n(y), (@ | ) and n(77) represent prior distributions.

The key idea in the sampling algorithm is to introduce a latent variable v such that
mV, &, 3,0, 7, ¢ n|y) e 1(v>s(Y,a,3,5,,7,9))

x Me)a(d, o) (P (| m) (1)
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where | is the indicator function with (v >s(y,a,J,0,,7,¢)) =1 if v>s(y,a,J,0,,7,¢) and
=0 otherwise.

For notational purposes, let J ;, = J without the j-th element, & ; = 6 without the j-th element,
and ¢ = ¢ without the i-th element. Using this notation, the MCMC sampling algorithm

described below is used to carry out function estimation. For excellent discussions of Bayesian

inference using MCMC methods, see Gelfand and Smith (1990) and Casella and George (1992).

(0) Start with some initial values VAL L Sl ;)O], ¢[0] and 77[0];

(1) Generate v conditional on &, J, 8, , &, 17, Y;

(2) Generate (Jj, é}) conditional on v, ¢, J(_J.), 5(_j), %o, ny,j=1,...,m+2; (Jj, é}) will be
generated as a block;

(3) Generate a conditional on Vv, J, 8, 7, &, 17, Y;

(4) Generate yconditional onv, ., J, 0, ¢, 17, ¥;

(5) Generate ¢ conditional on Vv, o, J, ,, 7, ¢(_i), ny,i=1,..,n;

(6) Generate 77 conditionalonv, ., J, 6, 7, 4, Y;

Let 8" and J" be the iterates of Sand J in the sampling period. Then an estimate of the

. . . N R
posterior mean of the i-th element of f | and therefore an estimate of f (X)is — ) W, & -
m m\"% L = JMGT

We briefly outline the generation of v and (J, 6) in steps 1 and 2. As shown below, & | J, =1
is generated in step 2 from a constrained normal distribution that depends on the roots of the

function

§(5J): S(é;’ y, a) ‘]j = 1: ‘](7]) 55(71') 5 % ¢) - V
in the & -space, where §(J,) is a convex function in &, and &, J_;,,6_;), % #and v are held
constant at their previously generated values. ¢, yand ¢, i =1, ..., n, are generated similarly to 2

| J;= 1 in that they reduce to generating random variates from a constrained normal distribution

for arand y, and from a constrained gamma distribution for ¢, with the constraints in each case
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depending on the roots of s(y,a,J,d;,7,4)—V inthe o, yand ¢, spaces, respectively. The
parameter 7 is straightforward to generate (although tedious) using a Metropolis-Hasting step.

Details of the entire algorithm and its implementation are available from the authors on request.

1. Generate V:

Generate v* from an Exp(1) distribution and compute v =Vv* +s(y, a, J, 9, 7, ¢).

2. Generate (‘]r é}); i=1,....m+2:

(J;, 9) are generated as a block. To generate these values, we have
3, | ) o V>S(Y, @ d, 8, 7 A8 | 3)a(d) (A2)
where ... ” represents (Y, V, a, JH), 5(1.), 7, @, n7). For Jj = 0, this yields
A3 =0] ) o lv>s(y,a,d; =0,3_;.5_,.7.4)r(3,; =0)

To find #(J;=1--), we integrate o out of the density function in (A2) with J; set to one. To

accomplish this, note that

=1, 5] ) c I[5(6;) <0124 | ;= D= 1)

where 7(6 | J, = 1) is the prior distribution for & given J,= 1 and §(J;) is defined above. If

§(J;) is greater than zero for all § >0, then #(J,=1|---) = 0. Otherwise, let a . and a..

represent the roots of this function. Noting that the monotonicity restriction is 6 > 0, leta

*

min{0, a_. }. Then

'min

<8 <a, 18,13, =z, =1). (A3)

min

A =1,8].-) < l(a

o, can now be integrated out analytically to give z(J; =1 ---). Given 2(J; =0 ---) and 7(J, =

1] ---), J; is generated from a Bernoulli distribution.
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If J;= 0, & does not need to be generated. If J, = 1, then § | J, = 1 has a N(0, c) distribution

constrained to the interval (a ). Well-known algorithms exist for generating from

min® Anax
univariate constrained normal distributions.

Shively, Walker and Damien (2009) give a rejection sampling algorithm with a high
acceptance rate for generating (J;, §) that avoids the direct calculation of the roots @, and a,_,.
The rejection algorithm finds tight bounds b, and b__ such thatb  <a_ anda_ <b__.Using

min — ~'min max — - max

these bounds, 7(J; =1, & | ---) in (A3) is approximated by

J=1,6}\...)oc|(b

ﬂ.Approx( j

<8, <b, (5,13, =Dz, =1).

min

The approximation is exact for all & values exceptb,, <d<a  anda < <b . Thus, if the
bounds b__and b__ are tight (which they almost always are given the well-behaved function
§(J;)) the rejection sampling algorithm will have a high acceptance rate. This significantly
increases the computationally efficiency of the MCMC algorithm and improves its numerical
stability (numerical problems arise in the exact method if the roots @ , and a__ are not computed
with sufficient accuracy — however, computing them with sufficient accuracy makes the
sampling algorithm too computationally intensive to use in practice with large data sets). The
rejection sampling algorithm can also be modified to apply to the generation of ¢, yand ¢, i =1,

N
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Figure 1: Quadratic regression splines and derivatives

Figure 1a: Quadratic regression spline with 1 = (1,1,1)

Figure 1b: Derivative of quadratic regression spline with I = (1,1,1)
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Figure 1c: Quadratic regression spline with I = (1,1,0) Figure 1d: Derivative of quadratic regression spline with I = (1,1,0)
7 12
64
5
g 5
b=
34 S
24
14
0 T T T T 0] T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
X X




In both sets of figures, the solid curve is the function estimate and the dashed lines are 50% confidence

Figure 2: Estimated functions
on the log-log scale

bands.

Figure 2a: Function for log(HorizontalCurvelLength)

Figure 3: Estimated mean functions
on the original x-scale

Figure 3a: Mean Function for HorizontalCurvelLength
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Figure 2 (continued)

Figure 3 (continued)

Figure 2d: Function for log(VerticalCurvelLength)

Figure 3d: Mean Function for VerticalCurvelLength
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Figure 2e: Function for log(VerticalCurveGrade) Figure 3e: Mean Function for VerticalCurveGrade
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Figure 2g: Function for log(SpeedLimit) Figure 3g: Mean Function for SpeedLimit
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