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 31 

ABSTRACT 32 

This study examines fleet profits throughout the year, considering variations in travel demand in 33 

the Dallas-Fort Worth region. Using INRIX's probe-vehicle data and the 2017 National Household 34 

Travel Survey, dynamic network-wide simulations were executed in POLARIS, an agent-based 35 

transportation simulation model, to mimic a hypothetical shared autonomous vehicle (SAV) 36 

demand year. Profits varied from $74 to $124 per SAV per day, highest on busy workdays and 37 

decreasing by 30-40% on holidays and summer weekends. Profits per mile driven varied between 38 

$0.24 on typical workdays while school was in session to $0.18 on typical holidays, suggesting 39 

notable seasonal variations in travel. A 6 percentage-point decrease in empty VMT on holidays 40 

compared to workdays/school days correlated with fewer person-trips per SAV and longer average 41 
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 2 

trip lengths of 9.6 miles. Demand per SAV was particularly high on fall and winter workdays, 1 

suggesting that fleet size optimization could cater to suburban trips.  2 

MOTIVATION 3 

Addressing seasonal variations in travel demand has long been a challenge in transportation system 4 

design (Tyrinopoulos et al., 2010). These variations are also expected to significantly affect the 5 

revenue and profitability of shared autonomous vehicle (SAV) operations and fleet performance 6 

metrics, such as wait time, empty vehicle miles traveled (eVMT), and idle time (Huang et al., 7 

2024). To ensure efficient and profitable operations, SAV operators must factor this in when 8 

procuring vehicles and pricing their services. However, travel demand forecasts and SAV 9 

simulations are usually only conducted for a single typical weekday, neglecting any variations in 10 

demand throughout the year. To our knowledge, only two studies have discussed the importance 11 

of considering day-to-day and seasonal demand variations in the evaluation of SAV fleet 12 

performance. Fagnant and Kockelman (2018) used the 2009 National Household Travel Survey 13 

(NHTS) records for the state of Texas to estimate seven different typical demand days. Travel 14 

demand varied by as much as 40% from the annual average over the course of a year. However, 15 

they faced challenges in estimating metro-specific demand variations due to the small sample size 16 

in NHTS. They note that properly assessing demand variability is crucial for fleet sizing and 17 

maintaining quality service on high-demand days. Huang et al. (2024) investigated demand 18 

variation impacts during different days and seasons on SAV services in Austin, Texas, 19 

emphasizing shared rides and realistic travel party sizes. Using the POLARIS agent-based model 20 

and National Household Travel Survey data, the study incorporated daily and seasonal variations, 21 

which significantly influenced SAV fleet performance. This resulted in 10% higher service rates 22 

(number of requests satisfied within 15 minutes), 5-minute lower journey times, 28% higher 23 

vehicle occupancy, 4-percentage points lower empty fleet VMT, and 6.4% fewer person-trips 24 

served per SAV on weekends than weekdays. This study underlines the importance of including 25 

realistic travel demand variations and travel party sizes in SAV modeling to improve vehicle 26 

occupancy and address potential operational challenges.  27 

 28 

Local demand patterns differ from national and state averages and cannot be reliably extracted 29 

from travel surveys like NHTS due to small sample size, necessitating another data source. 30 

Furthermore, dividing the year into four standard calendar seasons may not reveal all the ridership 31 

fluctuations caused by human activities (Kashfi et al., 2015). While various methods have been 32 

used to collect data on seasonal variations in travel demand, a potential limitation is the assumption 33 

that people carry out the same activities throughout the year. Failing to account for changes in 34 

daily activities across seasons could lead to overestimating the importance of primary activities in 35 

shaping travel decisions, resulting in inaccurate conclusions. Panel or longitudinal data describing 36 

variability over months of travel and activity behaviors are required to capture heterogeneous land 37 

use and travel patterns, seasonality, and weekends (Manout and Ciari, 2021). In some studies, data 38 

are collected twice a year to account for seasonal demand variation due to tourism (Zhang et al., 39 

2012). Other methods of data collection are enabled by emerging technology (e.g. web-based, 40 

GPS, License Plate, cell/Smartphone, Bluetooth, social media) which can overcome several 41 

limitations of the traditional household-based survey method but may not provide all required 42 
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information (e.g. trip purpose and traveler characteristics). Using mobile positioning data of 1 

foreign tourists, Raun et al. (2016) analyzed the distribution of call activities, temporal variation 2 

of visits, and the composition of tourists in Estonia. However, most existing research only focuses 3 

on mining macro-level aggregated movement patterns and cannot achieve the identification of 4 

fine-grained travel on a large scale. Elango et al., (2007) conducted a study of intra-household 5 

travel variability in Atlanta, Georgia using a GPS-based monitoring system installed in 6 

approximately 500 vehicles from 260 representative households. In this study, this approach is 7 

expanded to a larger scale using hundreds of thousands of INRIX probe vehicles (INRIX 2024).  8 

 9 

Many studies have demonstrated how demand for different modes of transportation react to 10 

weather conditions. Faghih et al. (2020) used linear regression and time series models to analyze 11 

taxi demand in Manhattan. They found that that low temperatures and precipitation were 12 

significant factors contributing to increases in taxi trips. Lepage and Morency (2021) used 13 

generalized additive models to study short-term fluctuations in demand for bike-sharing, taxi, 14 

subway, and transit in Montreal, Canada. Results showed that rain increases taxi demand while 15 

decreasing demand for the other three modes studied. Shokoohyar et al. (2020) investigated how 16 

weather conditions impacted wait times, trip durations, and ride fares for Uber and Lyft in 17 

Philadelphia during the summer of 2018. They found that extreme weather conditions significantly 18 

affected ride-sourcing platforms, particularly through average pickup times and trip durations. 19 

However, it had contrasting effects between weekdays and weekends, with both metrics increasing 20 

on weekdays but decreasing on weekends. By extension, it can be expected that seasonal climate 21 

patterns will impact travel behavior and demand for SAVs. 22 

 23 

This study examines these issues by dividing the year into smaller, more consistent blocks and 24 

examining factors that impact the fluctuation of SAV ridership. INRIX probe vehicle trip records 25 

are obtained from the Regional Integrated Transportation Information System (RITIS) Nextgen 26 

Trip Analytics interface (CATT Lab, 2024) and scaled using NHTS data to generate trip tables for 27 

10 different days of the year, reflecting spatiotemporal differences in regional travel across 28 

seasons. The trip tables are then used in POLARIS, an agent-based simulation software, to study 29 

fleet operator performance and profitability.  30 

 31 

POLARIS SIMULATION 32 

The POLARIS agent-based activity-based travel demand simulator (Auld et al., 2016) was used to 33 

simulate SAV fleet operations in the Dallas-Fort Worth (DFW) region. The framework employs 34 

agents to model individual passengers and vehicles, allowing for the modeling of complex 35 

interactions of travel behavior in transportation systems (Zhao and Malikopoulos, 2022). While 36 

POLARIS typically uses activity-based travel demand models to simulate the typical daily 37 

weekday activities of synthetic populations generated during model initialization, this study uses 38 

exogenous demand, namely LDV trips from RITIS and external commercial trips from the North 39 

Central Texas Council of Governments (NCTCOG), in order to simulate travel demand on specific 40 

days rather than a typical weekday. POLARIS features a central fleet operator module to manage 41 

SAVs (Gurumurthy et al., 2020). Dynamic ridesharing allows multiple requests to concurrently be 42 
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served by a single vehicle within a detour threshold (Gurumurthy and Kockelman, 2022). This 1 

module was modified to incorporate and implement party-size constraints for shared trips. Given 2 

the concentration on party-size constraints and the influence of seasonal shifts, the default dynamic 3 

ridesharing algorithm was utilized and adapted to ensure that the aggregation of number of parties 4 

on a shared trip does not exceed the vehicle's seating capacity (Huang et al., 2024). Vehicles are 5 

routed through the network by the time-dependent A* algorithm, while a mesoscopic traffic flow 6 

model based on the link transmission model captures link-level congestion (Auld et al., 2019; 7 

Verbas et al., 2018). 8 

 9 

RITIS Trips 10 

The RITIS platform generates origin-destination (OD) matrices using the INRIX trip path dataset, 11 

which include vehicle trajectories collected from connected vehicles and location-based services 12 

(INRIX, 2024; Mori and Kockelman, 2024). The trips provided by the RITIS platform represent 13 

approximately 7% of light-duty vehicle (LDV) trips made daily within the Dallas-Fort Worth 14 

(DFW) region (Figure 1) during 2019 and 2020. Trip tables were downloaded for Sunday, April 15 

28, 2019; Thursday, October 12, 2019; Saturday, October 12, 2019; Friday, November 22, 2019; 16 

Tuesday, November 26, 2019; Thursday, November 28, 2019; Wednesday, November 6, 2019; 17 

Saturday, February 8, 2020; Monday, February 17, 2020; and Sunday, March 1, 2020. These dates 18 

were selected to create a variety of days of weeks and months in the 6 months of TxDOT-purchased 19 

INRIX data (which were solely fall and spring months, with no summer or winter months): March 20 

to May and September to November in 2019, February to April and September to November in 21 

2020, and February to April and September to November in 2021. 22 

 23 

Figure 2 shows the share of light-duty vehicle trips sampled from RITIS by distance. November 6 24 

showed the highest share of shorter trips (less than 5 miles), which could be attributed to several 25 

factors, such as weather conditions that encourage short-distance vehicle usage or a typical 26 

workday with usual commuting patterns. November 26 (two days before Thanksgiving Day) had 27 

the highest share of long-distance trips (greater than 25 miles) and the lowest share of short-28 

distance trips, showing that people often travel long distances for holidays. A higher share of mid-29 

range distance trips (10 to 25 miles) is seen in late winter and early spring (February and March), 30 

which could coincide with relatively mild weather conditions, possibly encouraging longer trips, 31 

such as out-of-town visits or recreational trips. The distribution of light-duty vehicle trips 32 

generated from the RITIS platform across different time periods on sampled days of the year in 33 

2019 and 2020 is shown in Figure 3. It can be seen that the temporal distribution of trips varies 34 

greatly from day to day. For example, weekends and holidays are characterized by a high share of 35 

midday and afternoon trips, while high shares of AM peak trips are only observed on weekdays. 36 
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 1 
Figure 1: Study Area Spatial Filter of NCTCOG Jurisdiction from the RITIS Platform. 2 

 3 

 4 

Figure 2. Share of Light-Duty Vehicle Trips by Distance 5 



 6 

 1 

Figure 3: Vehicle Trips Generated Across Ten Different Days of the Year. 2 

Ordinary Least Squares Analysis to Study Travel Demand Variation Across the Year 3 

The Federal Highway Administration (FHWA) of the U.S. Department of Transportation conducts 4 

the National Household Travel Survey (NHTS) to collect information on Americans’ travels. The 5 

resulting database provides a sample of actual trips taken by Americans during the year. NHTS 6 

2017 (FHWA, 2017) data, filtered for light-duty vehicle trips in the DFW region, were analyzed 7 

using ordinary least squares (OLS) regression to determine the impact of several factors on the 8 

passenger miles traveled (PMT), vehicle miles traveled (VMT), and person-trips per capita, 9 

clarifying dates from which to sample light-duty vehicle trips on the RITIS platform. Table 1 10 

presents the results of OLS regression analyses, examining day-of-week, month, and holiday 11 

effects on VMT, PMT, and person-trips per capita. The analysis shows that VMT and PMT per 12 

capita are highest on Saturdays, while person-trips per capita per day are highest on Fridays. 13 

Regarding monthly variations, VMT and PMT per capita per day are highest in June, whereas 14 

person-trips per capita per day reach their maximum in May.  15 

 16 

Travel patterns vary across days of the week and months, which have different work schedules, 17 

school calendars, seasonal weather, and daylight hours. Notably, findings reveal a significant 18 

reduction in VMT, PMT, and person-trips per capita per day on holidays and the two days 19 

preceding a holiday. This finding underscores the impact of holiday schedules on travel behavior, 20 

potentially indicating a decrease in work- and school-related travel and overall person-trips during 21 

these periods. It suggests that people may be inclined to stay home, engage in leisure activities, or 22 

travel shorter distances during holidays and surrounding days. However, the effect can vary for 23 

specific holidays and the day of the week, as most federal holidays in the U.S. fall on Mondays. A 24 

more detailed analysis of travel demand variations, including specific holidays, for the state of 25 

Texas using loop detector counts and RITIS trips are presented in Mori and Kockelman (2024). 26 

Sundays in February, March, and July through January are the least busy days for person-trips per 27 

day, and Mondays and Sundays have the lowest VMT and PMT per day. Saturdays in June are the 28 
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busiest days for PMT and VMT, while Fridays in May have the highest number of trips per person. 1 

This regression gives insight into the types of days that should be sampled to capture demand 2 

variations throughout the year. 3 

Table 1: OLS Model Results (N=365) 4 

  PMT/Capita/Day VMT/Capita/Day 
Person 

Trips/Capita/Day 

  Coef. t-stat Coef. t-stat Coef. t-stat 

Constant 55.33 15.35 11.73 8.52 3.76 10.75 

# Households sampled 0.01 4.62 0.00 4.40 0.00 2.57 

# Persons sampled (log) -6.97 -10.47 -1.25 -4.90 -0.23 -3.56 

Federal holiday -2.87 -2.47 -1.23 -2.77 -0.55 -4.95 

Within 2 days of fed. 

holiday 
-1.50 -2.43   -0.21 -3.65 

Monday     0.29 4.15 

Tuesday     0.37 5.22 

Wednesday     0.44 6.36 

Thursday 2.18 3.51   0.40 5.65 

Friday 2.03 3.29   0.47 6.63 

Saturday 3.14 5.12 0.70 3.19 0.27 4.20 

April 2.27 2.99 0.89 3.03 0.15 2.16 

May 3.75 4.82 2.20 7.30 0.39 5.31 

June 3.97 4.96 2.28 7.42 0.31 4.10 

July   0.46 1.67 0.00 0.00 

August 1.39 2.00 0.57 2.06 0.00 0.00 

September   0.65 2.34 0.00 0.00 

October 1.14 1.62 0.95 3.41 0.00 0.00 

Adj R-sq 0.4321 0.2614 0.3785 

 5 

Scaling of RITIS Trips Using NHTS Data 6 

The demand inputs for the simulation were LDV trips from RITIS and external trips (medium and 7 

heavy-duty trips) from North Central Texas Council of Governments (NCTCOG). POLARIS uses 8 

discrete location points as ODs instead of zone centroids. Trip OD matrices from these two sources 9 

were disaggregated via a parallelized procedure for selecting random locations within the specified 10 

zone. For commercial trips from NCTCOG, nonresidential locations were prioritized for matching.  11 

Compared to NHTS, RITIS data comprises a much larger sample size of trips, with more than 14 12 

million vehicle-trips per day starting and ending in the DFW region across the 10-day sample. To 13 

further investigate the variations in travel demand between the 10 selected days, a distance skim 14 

for the DFW region was generated in TransCAD and used to determine VMT between OD pairs 15 

in the sampled RITIS trip tables. An assumed population of 434,000 in 2019 was determined based 16 
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on the 6-8% vehicle penetration rates and used to calculate values depicting average VMT and 1 

light-duty vehicle (LDV) trips per resident, as shown in Table 2. Despite our best efforts to select 2 

different types of days from the available days in the dataset, this analysis showed that the VMT 3 

values of the 10 selected days were too clustered around the mean. In order to address this issue, 4 

the NHTS dataset was used to scale the clustered RITIS values to obtain relatively evenly spaced 5 

values, creating more meaningful variations for analysis.  6 

Table 2: RITIS Sample VMT Values 7 

RITIS Dates 

Sampled 

Total trips 

sampled from 

RITIS after 

(6-8% of trips 

sampled) 

Total VMT 

by LDVs 

/day 

Average 

VMT by 

LDVs/day/

Trip 

Estimated 

VMT per 

day/Resident 

RITIS 

LDV 

Trips/Day 

/Resident 

4/28/2019 1,645,800 10,206,851 9.34 23.52 3.79 

10/03/2019 908,775 14,708,369 8.94 33.89 2.09 

10/12/2019 1,486,986 14,779,127 9.96 34.05 3.43 

11/06/2019 1,512,502 13,381,590 8.69 30.83 3.49 

11/22/2019 1,484,170 15,728,693 9.37 36.24 3.42 

11/26/2019 1,443,444 14,451,363 9.72 33.3 3.33 

11/28/2019 1,092,988 11,013,024 12.12 25.38 2.52 

2/17/2020 1,679,208 14,277,163 9.44 32.9 3.87 

02/08/2020 1,607,490 15,315,363 9.39 35.29 3.7 

03/01/2020 1,539,812 13,439,015 9.31 30.97 3.55 

Average and St Dev of VMT/Day/Person 31.64 4.16 

  8 

The NHTS dataset has more detailed variation in VMT across the year at the expense of a relatively 9 

small sample size of over 200 vehicle trips occurring on any given day. The 2017 NHTS dataset 10 

for DFW person-trips was filtered to retain days on which at least 30 respondents were surveyed, 11 

yielding 190 days. The filtered dataset was sorted by VMT per capita, forming 10 clustered deciles, 12 

each containing 19 days, guided the selection of 10 middle days and VMT values. Table 3 shows 13 

the 10 days with the median value in each decile set (with some flexibility in the selection to obtain 14 

a good mix of days of the year and week) and the corresponding VMT values. These dates were 15 

mapped to the most similar day sampled from RITIS. Caution was taken to separate weekdays, 16 

weekends/holidays, school days, and summer days to accurately compare days with similar travel 17 

patterns from both datasets. For instance, due to the absence of summer trips sampled from RITIS, 18 

high VMT NHTS days (like 8/12/2016) were used to scale RITIS VMT values sampled on 19 

workdays during the school season (11/22/2019). Conversely, a low VMT NHTS day, like the 20 

Thanksgiving holiday from NHTS, was used to scale the VMT from RITIS' Thanksgiving Day.   21 
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For each of the 10 days in NHTS, the Z-score of the VMT per capita was calculated and used to 1 

derive the scaling factor of the VMT values in RITIS. The factors were applied to trip counts 2 

between OD pairs, and stochastic rounding was used to prevent errors for low count entries in 3 

the OD matrix. The 10 decile days from this process were used to create 10 POLARIS scenarios 4 

representing variations in demand and profit for a "typical year" of SAV fleet operations. The 5 

total scaled RITIS trips simulated in POLARIS with SAVs are shown in Table 4. The average 6 

scaled VMT per Resident across the 10 days of the year was 31.8 miles, while the standard 7 

deviation was 2.91.  8 

 9 

Table 3: NHTS Average VMT per Person/Day and Corresponding Z-score 10 

NHTS date 

Number 

of 

Persons 

Sampled 

VMT 

per  

person 

/day 

Deciles 

Number 

of SD 

from 

mean 

(Z-

score) 

Thursday, November 24, 2016 36 15.17 1st -1.00 

Monday, August 1, 2016 63 17.68 2nd -0.68 

Tuesday, January 3, 2017 48 19.07 3rd -0.50 

Friday, April 7, 2017 49 20.93 4th -0.27 

Wednesday, November 16, 2016 49 22.54 5th -0.06 

Saturday, September 3, 2016 33 23.84 6th 0.10 

Friday, August 12, 2016 67 25.31 7th 0.29 

Monday, February 13, 2017 40 26.93 8th 0.49 

Thursday, October 20, 2016 43 29.67 9th 0.84 

Thursday, May 26, 2016 32 32.98 10th 1.26 
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Table 4: Scaled RITIS VMT Values 12 

NHTS 

Decile 

Date 

RITIS 

Date 

Total 

Trips 

Sampled 

from 

RITIS 

Total 

Trips 

After 

Scaling 

RITIS  

VMT/day 

/Person 

Scaled  

VMT 

/Day 

/Resident 

Scaling 

Factor 

11/24/2016 11/28/2019 908,775 983,942 25.4 27.5 1.083 

08/01/2016 11/26/2019 1,486,986 1,286,171 33.3 28.8 0.865 

01/03/2017 11/26/2019 1,486,986 1,319,097 33.3 29.5 0.887 

04/07/2017 11/22/2019 1,679,208 1,414,079 36.2 30.5 0.842 

11/16/2016 11/06/2023 1,092,988 1,111,724 30.8 31.4 1.017 

09/03/2016 02/08/2023 1,607,490 1,460,871 35.3 32.1 0.909 

08/12/2016 11/22/2019 1,679,208 1,521,765 36.2 32.8 0.906 
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2/13/2017 2/17/2023 1,512,502 1,549,767 32.9 33.7 1.025 

10/20/2016 10/03/2023 1,645,800 1,706,713 33.9 35.1 1.037 

5/26/2016 11/22/2019 1,679,208 1,708,793 36.2 36.9 1.018 

 1 

RESULTS AND DISCUSSION 2 

A fleet size of 1 SAV for every 40 persons and 20% SAV mode splits was used to serve a 7% 3 

fixed demand, while external trips (medium and heavy-duty trips) from NCTCOG added 4 

congestion to the network. Various fleet performance metrics were analyzed, as shown in Table 5, 5 

including total VMT, empty VMT (eVMT), revenue, and profit margins of the SAV fleet. For 6 

calculating revenue and profit, a fixed fare of $1, $0.25 per minute, and $0.5 per mile were 7 

assumed, while operational costs consist of $0.50 per mile and $25 per day ownership costs. These 8 

values are in line with the range of values proposed in literature (Becker et al., 2020; Bösch et al., 9 

2018; Litman, 2023). Daily profits range from a low of $1.03 M to a high of $1.66 M, while profits 10 

per SAV per day span from $74 to $124 (Figure 4). Revenue person-miles and daily revenue 11 

generated reveal a peak on May 26, a standard work and school day. Fleet utilization rates remain 12 

relatively consistent across all days, irrespective of demand. During the holiday season or the days 13 

leading up to it (like November 24, 2016), demand dips by 42% compared to regular business 14 

working days due to reduced movement as people take time off (Figure 4).  15 

 16 

  17 
Figure 4: Profit per SAV per day 18 

Daily revenue generated and costs incurred demonstrate considerable variations, directly 19 

impacting profits. Profit per mile, the financial efficiency of each mile driven, ranges from $0.18 20 

on a typical holiday to $0.24 on a workday in the winter and fall. Average peak hour wait time 21 

demonstrates considerable stability, between 4.1 to 4.5 minutes across all scenarios. This 22 

consistency points towards an effective operation that maintains a high service quality concerning 23 
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wait times, irrespective of changes in fleet utilized and corresponding variations in demand. Figure 1 

5 presents a bar chart showcasing the relationship between person-trips/SAV/day and eVMT, 2 

which denotes the extent of deadheading. The observed decrease by 6 percentage-points in 3 

%eVMT from 26.2 to 20.9% on typical holidays relative to the busier workdays/weekdays (or 4 

school semester days) correlates with the reduced person-trips per SAV, as well as with the longest 5 

average trip length of 9.6 miles/trip, typically within the holiday or two-day interval. Furthermore, 6 

a lower percentage of idle times on typical workdays in the spring and fall seasons indicates the 7 

potential exhaustive utilization of the fleet, while a 2 to 5% increase in idle times on typical 8 

holidays or summer weekends suggests otherwise. The study also noted a higher-than-usual 9 

average SAV VMT per day, potentially owing to a significant increase in demand per SAV, during 10 

regular workdays in fall and winter. Therefore, appropriately sizing the fleet to accommodate trips 11 

within the suburban region seems promising, given the volume of trips served within a relatively 12 

confined area. The SAV fleet served up to 48.2 person-trips per SAV per day on average for the 13 

busier weekdays/workdays, while person-trips dwindled by 40% on holidays or summer weekends 14 

to 27.9 person-trips per SAV. Shares in demand served remained comparable at 97-99% from the 15 

assumption of a fixed fleet across all days. Higher demand densities should allow smaller fleets to 16 

serve trips, albeit with some loss in percent demand served. Increased fleet utilization does not 17 

automatically translate to augmented profits. A delicate equilibrium emerges where a larger fleet 18 

may escalate operation costs yet simultaneously present the opportunity to serve a higher demand, 19 

thus potentially generating more revenue. Conversely, a smaller fleet may curtail capital costs but 20 

limit revenues if it falls short of meeting all demand. These results indicate that a fleet of 1 SAV 21 

for 40 people – assuming market shares, fleet sizing, and cost decisions used – may be very realistic 22 

long-term but are too optimistic for near-term applications since AV technologies are currently 23 

expensive and only in pilot operation. 24 

 25 

  26 
Figure 5: Person-trips per SAV and Empty VMT 27 
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Table 5: Operator Profit and Fleet Performance Metrics 1 

NHTS 

DATE 
05/26/201

6 
10/20/2016 02/13/2017 

08/12/201

6 

09/03/201

6 
11/16/2016 04/07/2017 

01/03/201

7 
08/01/2016 11/24/2016 

RITIS 

DATE 
11/22/201

9 
10/3/2019 02/17/2020 

11/22/201

9 
02/8/2020 11/6/2019 11/22/2019 

11/26/201

9 
11/26/2019 11/28/2019 

Average 

Peak Hour 

Wait Time 

(min) 

4.4 min 4.2 min 4.1 min 4.2 min 4.1 min 4.0 min 4.2 min 4.0 min 3.9 min 3.9 min 

Revenue 

Person 

Miles (in 

millions) 

7213 M mi 6881 M mi 6568 M mi 6428 M mi 
6280 M 

mi 
6115 M  mi 5997 M mi 

5794 M 

mi 
5625 M mi 5371 M mi 

Avg. Daily 

Trip Length 

(miles/trip/d

ay) 

6.9 

mi/trip/d 

6.5 

mi/trip/d 

6.9 

mi/trip/d 

6.8 

mi/trip/d 

7.0 

mi/trip/d 

6.2 

mi/trip/d 

6.9 

mi/trip/d 

7.2 

mi/trip/d 
7.2 mi/trip/d 

9.6 

mi/trip/d 

Avg. Daily 

VMT/SAV 

(miles/SAV/

day) 

528.8 

mi/SAV/d 

502.8 

mi/SAV/d 

479.4 

mi/SAV/d 

469.2 

mi/SAV/d 

458.4 

mi/SAV/d 

445.0 

mi/SAV/d 

440.6 

mi/SAV/d 

427.9 

mi/SAV/d 

410.2 

mi/SAV/d 

398.3 

mi/SAV/d 

Avg. Daily 

Person 

Trips per 

SAV 

48.2 

person 

trips/SAV/

day 

48.1 person 

trips/SAV/d

ay 

43.8 person 

trips/SAV/

day 

43.0 

person 

trips/SAV/

day 

41.4 

person 

trips/SAV

/day 

44.1 person 

trips/SAV/

day 

39.9 person 

trips/SAV/d

ay 

37.4 

person 

trips/SAV/

day 

36.4 person 

trips/SAV/d

ay 

27.9 person 

trips/SAV/d

ay 

Avg. % 

Daily Idle 

Time per 

SAV 

46.6% idle 48.4% idle 51.8% idle 53.0% idle 
54.2% 

idle 
54.4% idle 56.3% idle 58.4% idle 59.8% idle 64.0% idle 

%eVMT 
26.3% 

eVMT 

26.4% 

eVMT 

25.3% 

eVMT 

25.4% 

eVMT 

24.9% 

eVMT 

26.0% 

eVMT 

25.0% 

eVMT 

24.2% 

eVMT 

23.7% 

eVMT 

20.9% 

eVMT 

Demand* 
489K trips 

served/day 

486K trips 

served/day 

443K trips 

served/day 

435K trips 

served/day 

419K trips 

served/da

y 

445K trips 

served/day 

403K trips 

served/day 

378K trips 

served/day 

368K trips 

served/day 

283K trips 

served/day 

Daily 

Revenue 

$2,58M/da

y 
$2.49M/day 

$2.36M/da

y 

$2.30M/da

y 

$2.25M/d

ay 

$2,22M/da

y 
$2.14M/day 

$2.06M/da

y 
$1.95M/day $1.85/day 
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Generated 

($) 
Profit/Day 

($) 
$775K/day $761K/day $703K/day $676K/day 

$658K/da

y 
$669K/day $611K/day 

$567K/da

y 
$508K/day $445K/day 

Profit per 

SAV/Day ($) 
$124.0 per 

SAV/d 

$121.7 per 

SAV/d 

$112.5 per 

SAV/d 

$108.2 per 

SAV/d 

$105.2 per 

SAV/d 

$107.0 per 

SAV/d 

$97.8 per 

SAV/d 

$90.7 per 

SAV/d 

$81.2 per 

SAV/d 

$71.3 per 

SAV/d 

Profit per 

SAV/mile 

($) 
$0.23/mile $0.24/mile $0.23/mile $0.23/mile $0.23/mile $0.24/mile $0.22/mile $0.21/mile $0.20/mile $0.18/mile 

 1 

7% demand* 2 

Note: 98.2% to 99.5% of SAVs were used each day (6136 to 6219 SAVs). 3 
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CONCLUSIONS 1 

By effectively pooling multiple-person trips within the same vehicle to increase party sizing, % 2 

eVMT can potentially be maintained within 20.9% to 26.4% across different fleet sizes and 3 

operational scenarios. Based on the results, assuming the average revenue per SAV at $1 per trip-4 

mile (considerably lower than traditional taxi fares) and no competition, profits range from $74 to 5 

$124 per SAV per day. These estimates suggest the potential for operators to achieve significant 6 

returns on their investments, assuming low fixed and variable costs. There could be potential for 7 

losses by the operator if the fleet operated within small geofences or had limited origins and 8 

destinations. A 6 percentage-point decrease in % eVMT on holidays compared to workdays/school 9 

days correlates with fewer person-trips per SAV and longer average trip lengths. Seasonal 10 

variations also emerge, with lower idle times indicating fleet saturation on typical workdays and 11 

increased idle times on holidays or summer weekends. Demand per SAV is particularly high on 12 

workdays during fall and winter, suggesting that fleet size optimization to cater to suburban trips 13 

could be advantageous. On average, each SAV served up to 48.2 person-trips on busy workdays, 14 

which decreased by 40% on holidays or weekends. Demand served remained relatively stable, 15 

regardless of fleet size. However, increased utilization does not necessarily boost profits. An 16 

optimal balance must be found between larger fleets, which may raise operational costs but can 17 

also meet higher demands, and smaller fleets, which might reduce capital costs but limit potential 18 

revenues. 19 

Nonetheless, it is essential to remember that outcomes like VMT impacts and profits heavily 20 

depend on specific implementation details. Factors such as market penetration, fleet relocation 21 

strategies, trip pricing decisions, geofenced service areas, and maximum SAV occupancies will 22 

substantially impact these outcomes. Larger fleets, while capable of reducing unoccupied vehicle 23 

relocations and trimming operation costs, require higher capital investment. Smaller fleets might 24 

mitigate capital expenditure but could result in higher wait times and costs (Fagnant and 25 

Kockelman, 2018). Consequently, balancing fleet size, operational costs, and wait times becomes 26 

crucial to ensure efficient operations and service delivery. The assumptions in this study might 27 

accurately reflect long-term scenarios but could be too optimistic for near-term applications, given 28 

the high cost and current pilot status of autonomous vehicle technologies. 29 

In the SAV scale system envisioned here, one could anticipate reduced household vehicle 30 

ownership rates, decreased parking requirements, traveler cost savings, and substantial 31 

opportunities for operator profits. However, to avoid excess VMT scenarios inherent to SAV 32 

operations, it is vital to incentivize demand-responsive service opportunities appropriately. This 33 

study contributes case study applications, simulation techniques, and evaluation methods that can 34 

be used to understand and anticipate the potential impacts of SAV operations under varying 35 

demand on profitability. SAV operations provide an intricate interplay between various elements, 36 

each significantly influencing the overall profitability and efficiency of the fleet. Balancing these 37 

factors to maintain service quality while maximizing profit is complex and relies on strategic 38 

planning and adaptive management. Further research in this field will continue to unravel these 39 

complexities, helping operators refine their strategies and better meet the challenges of this 40 

burgeoning field.  41 
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