15.1.7

The rainfall intensity is, with return period T = 10 years,

$$i = \frac{120 \times 10^{0.175}}{T_d + 27} = \frac{179.55}{T_d + 27}$$

The ground slopes along each pipe are computed in Table 15.1.7-1.

(1) Pipe	(2) Length (ft)	(3) Upstream ground elevation (ft)	(4) Downstream ground elevation (ft)	(5) Ground slope (ft/ft)
46	500	504	499	0.0100
AC	-	500	499	0.0017
BC	600	499	485	0.0467
CD	300		481	0.008
CD	500	.485	401	• • • • • • • • • • • • • • • • • • • •

Table 15.1.7-1. Computation of the ground slopes.

col.(2)

The computations of the storm sewer system are arranged in Table 15.1.7-2. For example, for pipe AC, the drainage area is A=4.2 ac, with runoff coefficient C=0.6. The time of concentration t_C is equal to the inlet time $t_C=14$ min. The rainfall intensity is then, using Eq. (15.1.7-1) with $T_d=t_C=14$ min., i=179.55/(14+27)=4.38 in/hr as shown in Col. (9) of Table 15.1.7-2. The discharge is given by Eq. (15.1.2) of the textbook, $Q=0.6 \times 4.38 \times 4.2$ in ac/hr = 11.04 cfs. The slope of the sewer is taken equal to the ground slope $S_C=0.01$. Then, the pipe diameter is given by Eq. (15.1.6) of the textbook, with n=0.013:

D
$$(2.16Qn/\sqrt{s_0})^{3/8} = (2.16 \times 11.04 \times 0.013/\sqrt{0.01})^{3/8}$$

= 1.53 ft = 18.4 in.

as shown in Col. (12) of Table 15.1.7-2. The minimum commercial diameter acceptable is D = 21 in. We will use D = 24 in = 2 ft. The velocity in the pipe is V = $4Q/(\pi D^2)$ = 4 x $11.04/(\pi 2^2)$ = 3.51 fps which falls in the acceptable range 2 \leq v \leq 8 fps. The diameters of the remaining pipes are similarly computed.

	t) ((3) Area (acre)	(4) C	(5) CA	(6) ECA	(7) t _o (min)	(8) t _c (min)	(9) i (in/h)	(10) Q (cfs)	(11) Slope (ft/ft)	(12) D (ft)	(13) D selected (ft)	(14) V (fps)	(15 tr (min	
AC 50	00	4.2	0.6	2.52	2.52	14	14	4.38	11.04	0.01	1.53	2.0	3.51	2.3	
BC 60	00	3.0	0.7	2.10	2.10	10	10	4.85	10.19	0.0017	2.07	2.50	4.91	2.0	
CD 30	00	2.2	0.7	1.54	6.16	12	16.37	4.14	25.50	0.0467	1.57	2.50	5.19	0.96	
DE 50	00	2.2 4.5		0.5	1.1		8								
				2.7	9.96	14	17.33	4.05	40.34	0.008	2.59	3.0	5.71	1.46	
1.(3) = ti 1.(6) = E 1.(7) = ti		tchment (5) + E	areas o	orrespond	533	upstre				-					

col.(12) = $(\frac{1}{\sqrt{\text{col.(12)}}})^2$ col.(13) = round col.(13) and check $D_{\text{downstream}} \ge D_{\text{upstream}}$

col.(14) = col.(10)/[π /4 (col.(14))²] and check 2 \leq col.(15) \leq 8

col.(15) = ____col.(2) 60 x col.(15)

Table 15.1.7-2. Storm Sewer System Design