Assignment 4 Inlets and Storm Sewers

The solution to this homework should be posted in pdf format to the Canvas web site for this class under Assignment 4 by Thursday Feb 25.

- 1. Solve problem 1 on p.128 of Haested. For Part 1(a) use a hand computation to determine the maximum allowable discharge. For the remaining parts, use FlowMaster.
- 2. Solve problem 2 (a) on p.128 of Haested using FlowMaster.
- 3. Solve Problems 1 and 2 at the end of the StormCAD handout prepared by Dr Burgin http://www.caee.utexas.edu/prof/maidment/CE365KSpr16/StormCAD/StormCAD.pdf

For Problem 1, I have prepared a StormCAD model and here is the solution that I got. Set up your model to see if you can replicate this solution. I recommend using the CAEE Virtual Desktop, which you can access at https://appd.engr.utexas.edu/ If you try and cannot build the model in StormCAD, here is the model I created to solve Problem 1:

http://www.caee.utexas.edu/prof/maidment/CE365KSpr16/Assignment4/Assignment4.zip

	Slope (Calculated) (ft/ft)	Section Type	Diameter (in)	Manning's n	Flow (cfs)	Velocity (ft/s)	Depth (Out) (ft)	Capacity (Full Flow) (cfs)	Flow / Capacity (Design) (%)	Depth (Normal) / Rise (%)
F	0.009	Circle	19.0	0.013	11.14	6.66	1.69	11.50	96.8	79.2
F	0.006	Circle	26.0	0.013	20.31	6.59	2.05	21.36	95.1	77.9
	0.005	Circle	32.0	0.013	31.11	6.74	2.14	33.12	93.9	77.0
!	0.013	Circle	32.0	0.013	41.17	10.99	1.70	56.19	73.3	63.6
П										

For Problem 2, you need the EBDLKUP spreadsheet to access values for Hays County. You can obtain that at: http://www.caee.utexas.edu/prof/maidment/CE365KSpr16/Docs/EBDLKUP.xlsx

For the Problem 2 solution, you can pick up a complete StormCAD file with all elements sized to their maximum level at:

http://www.caee.utexas.edu/prof/maidment/CE365KSpr16/Assignment4/Prob2Initial.zip