Chapter 4: Methods

Any empirical or statistical gproach to groundater vulnerability
analysis proceedsom the assumption that high conceitons of contaminants
are found more often where vulneilél is high than where vulnerability is low.

If a water sipply cortains a detectable concentration of a man-made pesticide,
for example, then that ater sipply must be vulnerable to damination,
because it has become contaminated. If many water samples aré&dakéwo
supplies, and contaminants appear very frequently in the sarfiplasone
supply and much less frequently in samples from the second, one might
reasonably conclude that the first supply is more vulnerable ttarmamation

than the second. Given a large body ditev quality measurementsom
different water surces, it should be possible to gauge the vulnigsabf those
sources to contamination based on the frequency that contaminafasiradden
samples from those sources.

This studyattempts toform a geneally applicable métod for inducing
the relative vulnerability ofgroundvater sipplies from a large body of
contaminant concentration measurements. Théodeis sptial and statistical
in its approach. Measements of contaminant concentration greuped by
their location in specified regions of the sulface, statistical descriptions of the
groups ofmeasurements afermed, and the variation of these statistican
region to region is mapped. Finally, to relate the vulnerability of the regions to

indicator parameters, the variation of the statistics is compared with variations in
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hydrologic, soil, and cdaminant loading parameters mapped over the same
regions.

This chapter describes the mathematicalhoés$ used in the study and
the assumptions that untlertheir use. The chapterasganzed abng the lines
of the six-step outline presented in the last sectioRldpter 2. Section 4.1
describes the rationale behind the use of nitrate asragate for vulnerallity.
Section 4.2describes the criteria used to select thelystregions. Section 4.3
describes the use of GIS and database management sysfems tbe @ta into
groups for gatistical analysis.Section 4.4describes the calculation of statistical
descriptions of the groupeaid, and the assumptionsderlying the use of those
statistics. Section 4.5describes the use of GIS and stepwise multiple linear
regression to form a praxive modelfrom the atistical descriptions of the data
and a series of potential indicatorsSection 4.6describes the use of two
additional data sets taugport the use results based on one body of nitrate

measurements to make more general statements about groundwater vulnerability.
4.1 NTRATE AS A SURROGATE FOR VULNERABILITY

Susceptibility, vulnerabilityandprobabllity of contaminationare related,
but distinct, ideas. For the purposes of this study, a graatedwipply is said to
be susceptible to contamination if it is possifile a cortaminant to reach it,
even if no source exists for that ¢caminant. The wpply is vulnerable to a
particular contaminant if it is susceptible andaurse of the contaminant is
present. The risk of contamination is the likelbd or probaility that the

contaminant is actually present in thgroundvater.  Probaibity, unlike
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susceptibility and vulnerability can be described by a number. In othresw
proballity of contamination is quantifiable, while susceptibility and
vulnerability are not.

Although proballity of contamination is quantifiable, it is not directly
measurable. Water quality measurements describe the degree to which chemical
constituents are present in water—that is, their concemratnot risk or
proballity. How, then, is it possible toonduct anempirical investigation of
groundvater susceptibility or vulnerability, which maot be quantified, or of
probability of groundwater contamination, which cannot be measured?
Threshold Concentrations. This study esmatesprobabllities of contamination
by calculating the frequency with which threshold concentrations of constituents
are exceeded irgroups of groundater measurements. Thegeobalility
estimates serve asursogates for susceptibity and vulnerability.  Four
thresholds, in mg/I nitrate as rogen, were chosen. The lowest is 0.1 mg/l, the
detection level described iBection 3.1 The highest is 10 mg/l, the maximum
concentration permissible in public wateupplies. Another threshold was
chosen at 5 mg/l, which is one-half the MCL, and triggers increased monitoring
requirements irpublic water applies. Thefourth threshold wasetected at 1
mg/l to indicate the range at which human influences may be suspected. This
last threshold is lower than the level used by Madison andeBr(1985) as
indicative of human influence, but falls in the range they call "transitional,”
possibly indicating human influence. Since thisrkv examines groups of

samples in regions, rather than single wells, itgprapiate to use this lower
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value; consistent exceedences of this threshold are more indicative of
vulnerability than a single exceedence.
Nitrate as Surrogate Constituent. Measurements of thegroundvater
concentrations of solvents, herbicides, PCBs, and atdesiral and agricultural
chemicals are very scarce in Texas. Because of this scarcity, it is not possible to
base a Statewideusty on themeasurements of the chemical constituents, like
atrazine or tolulenefpr which monitoring waivers can be granted. tdasl, the
study is based on roughly 46,00@asurements of nitrate concentration in Texas
groundvater. Although waivers cannot be granted foratérmonitonng, nitrate
is a potential wrrogate indicator of contamination by agricultural chemicals, a
major group of regulated constituents.

Nitrogen fetilizers are very frequently applied to the santeps as
pesticides, so it is reasonable to assume that if nitrate can nfigratéhe crops
on the surface to the water in the sufsce, so can the pesticides. The presence
of elevated nitrate levels groundvater is assumedr purposes of this study, to
indicate that a viable pathway exifitsm the surdce, where most nitratewwces
are located, to thgroundvater. The regulations themselves include elevated
nitrate levels in the list of factors that can be considered in a vulnerability
assessment for pigsdes. Because nitrate has been widely measiarethany
years (the first nitrate measurement in the database on whichutheistbased
was taken in 1896) a sidfent body of measurements exists torm the basis of

an empirical study.
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Nitrate is not a perfect indicator of wvulnerability to agricultural
chemicals, however. Natural mineralusces exist, as do other anthropogenic
sources not necessarily related to chemical apphicasuch as sép systems
and cattleprodwction. Although this study assumes elationship between
vulnerability to nitrate contamination and vulnerability to contamination by
agricultural chemicals, its main task is one of identifying areas vulnerable to
nitrate contaminatin. If a swecessful methodology for identifying areas
vulnerable to nitrate, then the same hoels can be agipd to other chemicals as

monitoring results become available.
4.2 IDENTIFICATION OF ANALYSIS REGIONS

The selection of analysis regions defines the\st As following gctions
will show, the métods used in this studyett the regions as homogeneous
bodies, lumping all data and all results by their association with the regions
selected in the first step of tpeocess described fBection 2.6 Comparisons are
made between regions, but not within them.

A frequently overlooked part of the DRASTIC pollution pdtah
evaluation system (Aller et al1,987) is the authors' reconendation that the
numerical rating system be appliedhiydrogeologic settingsvhich they define
as "mappable unit[s] with common hydrogeologic eleéeristics.” In other
words, the DRASTIC ating system sould be aplped only to regions that can
properly be chacterized by a single ratg. The four studiegited by the
General Accounting OfficeGAO, 1992) asattempts to validate DRASTIC with

field data use @aunties as the mapping urfdne also usesrsaller units in some

107



cases). Three of these studies find littterelation between DRASTIC ratings
and groundwter contaminatin. The poor coelation may be due in part to the
inapproprateness of auntiesfor use as mapping units. The use of d¢mmas
mapping units may also account for tlaek of wrrelation between fertilizer
sales and the oaoence of nitate ingroundvwater shown in the example in
Chapter lof this report.

In this study, the principal analysis regions are 7.5' quadrandtesh
guadrangle is characterized by descriptive statistics calculated on the results of
all measurements collectéidm wells in that quadrangle, and no distinction is
made between different parts of a single quadrangle. Maps of the analysis results
show the variation of exceedengeobalilities from one quad to another,
essentially using a single number each quad to characterize the results of the
analysis.

It follows, then, that in selecting a set of regidmsanalysis, the designer
of the study should have some reasonableeetgpion that each region is
homogeneous. At least therhosld be less vaation in water quality and
indicator parameter values within regions than between them. Because of their
spatial compactness, 7.5' quadrangles are assumed to meet this requirement.

Although the regions should be intalty homogeneous, therbauld also
be a reasonable expectation that there will be significant variations between
regions. The scope of the study should bei@efitly large that comparisons of
the descriptive statistidsom region to region W yield meaningful vaiations.

Because this stly includes the entirgdate of Texas, it is reasonable to assume
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that 7.5' quadrangles from widely dispsr parts of the state will show
significant differences in summary statistics of water quality measurements.
Certainly, differences in climate, gegly, and humaactivities are greatrmugh

that they can be detected in 7.5' quadrangles across Texas.

Since the studymethod is matistical, there mould be enough
measurements available in the regions to make mghanhi datistical
calculations possible.  This requirement must be balanced against the
requirement that regions be homogeneous. Small regions will be more
homogeneous, but will contain fewer measurements, reducingttielence in
the values of statistics calculatéwm thosemeasurements.2.5' quadrangles
were considered and rejected agigtregions after the number wleasurements
in the two sizes of quadrangles were compared.

For reasons that will be explained$ection 4.4 quadrangles with fewer than 12
measurements were not included in the maps or the regression analyses. As the
histograms inFigure 4.1show, about 1.5% of the 2.5' quadrangles (597 of
38,523) have 12 or moraeasurements. More th26% of the 7.5' quadrangles
(1,158 of 4,407) have 12 or mameasurements. Selectid' quadrangles over

2.5' quadrangles increased the numbemefisurements includddr mapping

and regression analysis, and included a much larger proportion of the area of the
state in the study.

Figure 4.2shows a 7.5' quadrangle (number 5740, which has already been
used as an example through@ltapter 3 the nine 2.5' quads it ctains, and the

locations of the wells in those quads that were included in tiny.st51 nitrate
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measurements reded in the TWDB dtabase were takdrom 37 wells located
in this quadrangle. Only one of the 2.5' quads in 5740 has as many as 12
measurements, and if the measurements were more evenly distribated,

would.
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Figure 4.1 Measurement Histograms for 2.5' and 7.5' Quadrangles
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The five aquifers selected form the second set of analysis regions are
assumed to be homogeneous because geologic characteristics vary more between
the aquifers than within them, and because the water in the aquifers mixes
internally much more than between aquifers. The internal homogeneity of the
aquifers will be discussefdrther inChapter 6where the results of the analyses
are presented. The differences in their geologic structure and the separation of
their spatial extents assure that discernible differences cdoubd between
them. The selected aquifers are classified as major aquifers by the TWDB, and
nitrate measurementom wells in each of them are plentiful. The aquifers thus
meet the same requiremenfr selection as analysis regions that thAe'

guadrangles do.
4.3 (ROUPING DATA FOR ANALYSIS

Once the data set has been chosen, and a set of analysis regions has been
selected, the data must be sorted igtoups for tatistical analysis. The
formidable task of forming thousands of records ofatgrmeasurements into
meanngful groups is made feasible byatdbase management systems and
geographic infanation systems. This section describes the principles of these
technologies that are important to this study, and thdicapion of those

principles to the tasks of organizing Texas groundwater data.
4.3.1 Database Management Systems

The database management systems used in tidy sre described in
terms of the relational model. Other modiels database management systems

exist, including entity-relationship, netwk, hierarcical, and objecbriented
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models. The relational model is the bdsisStructured Query Language (SQL),

a widely used systerfor building, maintainng, and using atabases. Atough
INFO, the dtabase management system used in thifystloes not use SQL, the
INFO opeations carried out in this study can be described in terms of the
relational model. Doing so makes this discussion more general, by eliminating
references to commands and syntax meaningful only in INFO.

A relational database isgroup of tablesgach with a unique name. Each
row in a table corresponds to arntignof interest to users of the database, and
contains a fixed number of attributes, which describe that entity. A simple table
of nitrate measurement data might consist of rows containing an ID number for
the well where a water sample was collected, the year, month, and day the
sample was collected, and the nitrate concentration measured in the sample. The
list of attributes in the rows of a database table is calleddhemeof the table.

A table called thea$ will be used as an example. The schemme@hsis
meas-scheme (well-1D, year, month, day, nitrate).

The scheme afmeasdefines the way that nitrate measurements can be described

in this database. Mathematically, the scheme describes the Capesiant of

a set ofdomains where a domain is a set of possible values. The domain of

month, for instance, might be the integer values 1 through 12. Any caticinin

of valid valuesfor all five attributes fits the scheme, whether or not the values

correspond to aractual nitrate measurement. To be included in the table

however, the combination of values must correspond toa@nal nitrate

measurement. The tabieeasis thus a subset of the Cartesian product of the
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domains well-ID, year, month, day, and nitrate. Mathematicians call a subset of
the Cartesian product of a set ofnelins arelation . This is the origin of the
name "relationalfor this catabase model. An individual element of a relation is
ann-tuple or simply atuple. See Korth and Silberschat¥991) or any number

of other database tdodoks for a more conhgte discussion of the relational
model.

Operations on relational databases can be described in many ways. This
discussion will use the tuple relational calculus. A query in the tuple relational
calculus takes the form

{r|PEO}
and returns the set of tuplesuch that the predicate P is trioe r. Predicates
are statementsbaut tuples and theimttributes, which are evaluated as true or
false. Some of the mathematical notations used in the predicates are shown in

Table 4.1.

Table 4.1 Predicate Symbols for Relational Calculus

Symbol Definition

"Is a member of"
"There exists"
"All"

"And"

"Or"

OoOoOood

Attribute values are indicated with notation of fleem r[year], meaning
"the value of the attribute year for tuplé For example, the query

{r |r O measdr[well-ID] = 5740304} (4-1)
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reads "all tuples that are members of the relattm@asand have the value
5740304 for theattribute ‘well-ID."™ In more concrete terms, itueis every
record of ameasurement collectedom well number5740304. The results of
this query, apied to datafrom the TWDB dtabase, are shown irable 4.2.

(Nitrate is given as nitrate-N.)

Table 4.2 Results of Query 4-1

Well-ID Year Month  Day Nitrate
5740304 1966 4 2 0.10
5740304 1966 12 14 0.10
5740304 1967 6 20 3.17
5740304 1968 6 7 2.71
5740304 1968 7 26 3.05
5740304 1971 6 4 1.81
5740304 1972 5 0 1.81
5740304 1974 3 11 1.33
5740304 1976 8 5 1.06
5740304 1980 3 24 0.88
5740304 1986 6 10 0.48
5740304 1991 8 26 0.10

A group of queries can be used to providg¢ador the comparison of data
selected by different criteria. The following queriés, example, show that a
greaterproportion of samples dected in1990 comained nitrate in excess of 1
mg/l than those collected ih964. This point is eamined in more detail in
following chapters.

{r |r O meadr[year] = 1964}

{r |r O meaddr[year] = 1964 r[nitrate] > 1.0}
{r |r O meaddr[year] = 1990}

{r |r O meaddr[year] = 1990 r[nitrate] > 1.0}
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The first query returngll records of nitate measurements taken 1864; the
second returnsll recmrds of nitate measurements taken 1964 that report
concentrations greater than 1 mg/l. The third moth queries returnimilar
records for the year 1990. By counting the number of records returnedasith
guery, it can be found that 400 of 1,32¢asurement&80%) in 1964 and 608 of
1,166 measurements (52%) in 1990 showed nitrate concentrations above 1 mg/I.

The real power of relational databases corfresn their ality to
combine information from multiple tables. If a second scheme is defined as

well-scheme= (well-1D, depth),

sets of wells can be selected on the basis of their deygthnaore importantly,
sets of measurements can be selected on the basis of the depth of tfinemvell
which they were collected, as well as the year in which they were collected. The
attribute well-ID, which is common to both tabl@spvides ameansfor linking
the two tables. Such linking attributes are called "keys." The query

{r |r OmeaddOsOwell (rfwell-ID] = gwell-ID] O gdepth] < 100)} (4-2)
reads "all tuples that are members of the relati@asfor which there exists a
tuple in the relationvell with the same valutor the attribute well-ID and with a
value less than 100 for thatribute depth.” More intuitively, the query wets
all nitrate measurement mcs for which the correspondingeil record
indicates a well depth less thaf0, where "correspondingheans "having the
same well number." More practically, it uensall records of samples dlected

from wells less than 100 feet deep.
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The earlier queriesbaut 1964 and 1990 can be modified to include only

samples collected from wells less than 100 feet deep, like this

{t |t meast[year] = 19640 Oswell (tfwell-1D] = qwell-ID]
(0 9gdepth] < 100)}

{t|t0 meast[year] = 1964 t[nitrate] > 1.000 OsOwell
(t[well-ID] = gwell-ID] O gdepth] < 100)}

{t |t meast[year] = 1990 Uswell (tfwell-1D] = qwell-ID]
O gdepth] < 100)}

{t |t O meaddt[year] = 19900 t[nitrate] > 1.00J OsOwell
(tfwell-1D] = Jwell-ID] O 9depth] < 100)}

The first two queries of this group return records showing that in 1964, 304 of
517measurement$9%) taken from wlls less tharl00 feet deep showed nitrate
concentrations greater than 1 mg/l. The last two queriasre¢cords showing
that in 1990, 210 of 27@easurementd 7%) taken from wlls less thari00 feet
deep showed nitrate concentrations greater than 1 mg/I.

Relational databases are capable ofyitag out much more contipated
gueries than the examples given here, involving more tables, and returning
values for any subset of tlatributes those tables contain. The examples here
illustrate the most important features used in this study.

Because the weliumbering syfem used by the TWDB includes in the
well ID the numbers of th& , 7.5, and 2.5' quadrangles wheach well is
located, queries of the type shown here awodficient to group nitrate
measurements by quadrangle. Similarly, since the well-description data

provided by TWDB includes theames of geologidormationsfrom which the
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wells draw water, queries of the same type will ajsoup measurements by
aquifer.

In general, however, locating wells and wajeality measurements in
regions defined by maps requires operations that cannot be performed by
database management systems aloneufiing and querying ofada by spatial

categories will usually require a geographic information system.
4.3.2 Geographic Information Systems

A geographic infamation system (GIS) stores dathoat the world in
thematic maps or data layers, called coverages, which contain different kinds of
features and infonation. A coverage of Texas, for instance, could show
political features, such a®uenties, orphyscal features such as rivers. These
features would be stored in different data layers, with differafdrmation,
although they occupy theme space on the earthisface. A GIS coverage may
incorpoiate database tables, which describes the attributes of the features mapped
in the coverage.

GISs fall into twobroadcategories, vector and raster. Arc/Info, the GIS
used in this study, has modules for representiaguies in both vector and raster
systems (EBI, 1991). The quadrangles used as analysis regions are ctattru
in the vector system. Raster systems will be discusstter inSections 4.%and
4.6.

A vector GIS represents features as points, lines, or polygons. Points are
represented by a single pair of cooatm values, lines by series of points, and

polygons by closed sets of lines. Lines and polygons can take any shape, and
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descriptive data can be linked to features of any type. A vector GIS coverage
can contain points only; points and lines; or points, lines, angigpos.
Attribute data can be stordar all types of features present in a coverage, but is
often associated only with the highester atures. Typically, a coverage is
classified by its highest-ordeedture as a point coverage, line coverage, or
polygon coverage.

Features in a coverage can be thought oflaments of a set, like the
records in a dtabase table. Subsets of objects cariob@ed on the basis of
location, attribute values, or a combinai, and set opations such as union or
intersection can be performed on these subsets.

Since attribute values are stored in database tables, subsets of features can
be formed on the basis of attribute values by database queries of the type
described in the last seati. Grouping dta by location requires special
operations unique to GIS.

Figure 4.3illustrates one such operati, the overlaying of polygons on
points. In a vector GIS, a point is a single logatiand can be used to represent
features like wells; a ppyon is a contiguous, bounded area on theaserbf the
earth, and can be used to represent quadrangles. Because the GIS can represent
the topology of points and polygons and thelative locations, it is able to
identify the polygons that pointe within. At the bp, the figure shows a point
coverage containing six points representing wells, and the data table associated
with that coverage—calledpoint attribute table Below the point coverage is a

polygon coverage céaining four quadrangles. The corresponding polygon
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attribute table is omitteftom the figure. The two coverages are combined in an
overlay operation, and the result is shown at the bottom of the figuezalke

the topology of the point coverage is unchanged, the result of the overlay is the
addition of a new attribute in the point attribute table identifying the quadrangle
in which the wells are located. Wells can nowgbeuped by quadrangle using

ordinary database queries.
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If the polygons havattributes of interest, these can be linked to the wells
by using the quadrangle number as a key to link the point attribute table of the
well coverage to the pgpdon attribute table of the quadrangle coverage. If the
guadrangle coverage has an attribute called "thick” equal to the average soil
thickness (in inches) in the quadrangle, the following query would return all
records for wlls located in quads where the average soil thickness is greater than
60 inches.

{t |t O wellsOOsOquads(tfquad] =gquad] ] gthick] < 60)}

A more complex query, incorpating a third table, could similarly
produceall rewmrds of nitate measurements collectéwm wells located in
guadrangles where the average soil thickness is greater than 60 inches. The
linkage between the topology of a coverage and #tabdse tables containing
the attributes of features in that coverage lies at the heart of GIS. The ability to
represent the results of spatial operations like poitelygon overlays in
database tables greatly increases the value of those tables to investigators trying
to understand the influence of spatially distributed processes.

Polygon-on-polygon overlays, and their use in describing the co-
incidence of different spatially distributed parameters will be discussed in a later
section.

Given a database consisting of two tables, one of nitrate measurements
and one of well descriptions, and a GIS coverage consistiligoofluadrangles,
the methods described in thiscsion are gfficient to extractirom the ctabase

all reacords of nitate measurementom any quadrangle in the coverage. If the
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well description table also includes the names of the aquifers that the wells tap,
the same mébds can also exct all reords of measurementérom those
aquifers. The statistical analysis used to summarize those measurements is

described in the next section.
4.4 FATISTICAL MODEL OF VULNERABILITY

In this study, it is assumed that the concaitn of a chemical
constituent in groundwater is a random function of space and time,
C=Q(x,Yy,z1) (4-3)
where C is a concentration value, x and y are coatdmparallel to theusface
of the earth, z is a verticabordinate, t is time, and the subscript R denotes a
random furtion. The randomness of the @lon means that it is impossible to
predict an exact valudor the concentation, and that a préedion of
concentration can properly be described only as a pidgabunction. This
impossibility can be int@reted as the result ofpgocess governed by chance, or
as a statement of the limits of humiamwledge. These two integiations are
not mutually exclusive, but the latter fits thisidy better because the state of
knowledge about grounaaer is very limited, and that limitation motivates the
study.

If the concentration of a constituent at a point is described bydoma
function, then the concemtion of the constituent in any finite volume of
groundwvater, such as a sample drawn from ellvior analysis, is also described
by a random fuction. At any given moment, a larger volume of the subserf

such as an aquifer or the volume unéath a7.5' quadrangle of the earth's
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surface, contains an infinite number of sample-sized volumes. The concentration
values associated with this infinite collection of potential water samples make up
apopulation which can also be described by a probability function.

If completeknowledge of the popation were somehow available, that is,
if the concentration in every possible sample-sized volume coukthde&n, the

probablity function could be calculated directly. If RfGs the probaitity that

the concentration in a single sample-sized volume selectedch@mafrom the

population is less than or equal to a threshold concentratidheh

Ne
P(G) =N+ Ne (4-4)

where N is the number of sample-sized volumes of water in which the

concentration is less than or equal to the threshold, and the number of such

volumes in which the concentration exceeds the threshold. More simply, this is
the number of exceedences in thepdation divided by the totapopuation.

Since the pogation is infinite in number, both dNand N are infinite, but their

ratio is finite. Rewriting equation 4-4 as
Ne/N|
P& =1+ Ne/N|

(4-5)
avoids the difficulty of expressions involving infi@ numbers. For any water-
bearing volume of the subsurface, Equatdbh maps any conceation value
(any number greater than or equal tooze¢o a monotoically increasing number
between zero and one, defining a cumulatprebablity function. If the
function is differentiable, its derivative is tipgoballity density function (pdf)

for the concentration values in the population.
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Although the discussion above describes a [admn as abody of
concentration values determined over a finite region of space at an instant, the
same ggument would apply as well to a finite region of space over a finite
period of time. As time passes, water moves in and out of the regigfinga
different levels of the constituent with it and changing the concentrations inside
the region. From amathematical stadpoint, this is no different from the
variationfrom point to point over the region at a fixéiche, the concentration
simply varies in four mnensions instead of three. Tpepuation is enlarged by
the addition of a dimensn, but the defition of the probaliity functions is
unchanged.

Parameters and Statistics. Propeties of the cumulativgrobalility function

and the pdf argparameters of the poplation. For the purposes of this study,
parameters include not only the usual measures of central tendency (mean,
median, etc.), spread (standardidé&wn, interquatile range, etg, and so on, but

also the probdbhties associated with concentrations values that are of particular
interest (detection limit, maximum contaminant level, etc.).

In ideal version of this atly, Texas would be divided into analysis
regions at an instant, and the parameters optipelations associated with those
regions would be mapped and analyzed. This idealysthowever, requires
completeknowledge of the popations in the analysis regiongjowledge that is

plainly unavailable.
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Instead, the studyedls with statistics or estimates of the parameters
calculatedfrom a finte (and small) number of actual measurements in the
sectors. The actual measurements fosarapleof the population.

Two Probability Estimation Methods. Two sets of statistics, representing two
models of exceedengmobalbilities, are calculatefor the 7.5' quadrangles. The
first set are non-pametric estimates of thprobalilities that a the nitrate
concentration at a point selected atdem beeath the quadrangle will exceed a
selected threshold value. The ced set are the two paneters (mean and
standard deviabn) of the lognamal distribution that best fits the distribution of

nitrate concentrations measured in wells in the quadrangle.
4.4.1 Discrete Probability Estimates

To calculate a discretprobabhlity, the quadrangle is imagined to be an urn
containing a very large number of red and green balls. For example, if 5 mg/I
nitrate-N is selected as the threshold, any potential water sample in the
popdation beneath the quad with a nitrate concentration greater than 5 mg/I
would be represented as a red ball, and any potential water sample with a nitrate
concentration less than or equal to 5 mg/l would be represented as a green ball.

A red ball might represent a concentratiorb& mg/l or 300 mfl; no distinction

would be made between these two values. If the number of red baln@Nthe
number of green balls @) in the urn are known, the probaty of drawing a red

(Pr) ball is given by

~ Nr/Ng
=1+ N INg’ (4-6)
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which is the same as Equatidfb. If balls are drawrirom an urn cotaining an
infinite number of balls, or drawinom a finte upply and refaced, the ratio of

red balls drawn to total balls drawn will be described by the binomial

distribution. If n lalls are drawrfrom the urn, the most likely value fog,rthe

number of red balls drawn is the integer nearegt nP

The probability of drawing s red balls in n trials is equal to
e(n, s, P) = [{Py) 1 - RS (4-7)
nQd

where &0 is the number of combinations of n trials that contain s successes

(Snedecor and Cochran, 1980). The clative probablity of s or more

successes in n trials is given by the sum of @] s, i) with m greater than or

equal to s.
n

E(n,s, P) = Z e(n, m, P (4-8)

m=s
Water Sampling as a Bernoulli Process. If it were possible to test all the
analyzable volumes of water in a sample pantitithe atio of measurements
exceeding to measurements not exceeding the threshold could be determined in
the same way as the ratio of red to green balls iaran The probabty that a
single sampling event would exceed the threshold could be calcutarad
Equation 4-6 and the bingal distribution would describe the outcomes of a
series of measurement events in the same way that it describes ballg§rdrawn
an urn.

If we know that an urn caains a mixture of red and green balls but we

do not know the atio of red to green, we can estimate the ratio by repeatedly

128



drawing a ballfrom the urn and keeping track of the numbers of red and green
balls drawn. Again, if the drawn ball is replaced after each trial or if the urn
contains an infinite number of balls, the ratio of red to green is unchanged, and
the outcome of the trials will take tfierm of a binaenial distributon. The best
estimate of the ratio of red to green balls indheis simply theatio of red balls
drawn to green balls drawn. The expected accuracy of this estimate increases as
more balls are drawn. Similarly, when water is drdvam a region, the best
estimate of thainderlying probaitity that a constituent's concentration exceeds

a threshold is the number of exceedences divided by the number of
measurements.

Estimating Probability from Trials. In general, if a series of n trials results in s
successes—drawing a redllp detecting a constituent in a concentration that
exceeds a threshold, etc.—the best estimate ofutiterlying probaitity of
success, P, for a single trial is

P = (4-9)

Sl

Although this is the best ®#wate, it is more ppropiate to epress the
probalility estimate as a range of possible values and a degremfiflence that
the true probabty falls in that range. This takes therm of a satement like
"The proballity of success in a single trial lies betwe4d% and 60% with a
confidence level of 95%," or "There is a 5% chance that the pipabf

success in a single trial lies outside of the range between 40% and 60%."
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To estimate thepper and lower bounds on anieste of theprobalility
of success in a tridrom the results of severalidfs, the following steps are

followed.

1. Select a two-sidedaofidence level, Ir, for the range. This is the &khood
the true probabty will lie between the upper and lower bounds
calculated. Theorobalility that the true value lies outside the range is

equal toa.

2. Calculate the lower bound}, Fon the estimate by the following method.

For s =0, i.e. no successes,

P(0)=0 (4-10)
For s = n, i.e. all successes,
AM ="a (4-11)
Fors=1, 2, ..., n-1, find the value gf$) such that
1-E(n,s, Rs) =1 (4-12)

where E(n, s, P) is the cumulative binomial probability function, eq. 4-8.
3. Calculate the upper boundy, Bhrough symmetry, using the relation
Pu(s)=1-Rn-s). (4-13)
Steps 2 and 3 require inversion of the binomial distrdwuti Thismethod
of finding confidence intervals on bimoal probalility estimates is described by
the Harvard University Computation Laboratory (1955).
If, for example, 2 out of 1éheasurements exceed a 5 mg/l threshold, the

best estimate of the exceedepcebahlity p e(5 mg/l) is 0.2, and the 90% (two-

sided) confidencdimits on the exceedengaobalility are goproxmately 0.037
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and 0.507. If twenty out of 10measurements exceed the same threshold, the
best estimate of dremains unchanged, but t®€% confidence interval now
falls between 0.137 and 0.277.

Binomial Estimates of Exeedence Probabilities. Using Equations 4-10
through 4-13, it is possible toalculate the best estimate of the exceedence
proballity for any threshold, and upper and lower confidehogts on that
estimate from a sample composed of any numbemnufasured concentrations.
For exampleTable 4.3ists the 51 nitrate concentration values listed in the study
databasefor measurements taken in wells located in quadrabgi0. 35
measurements exceed concentration®.tf mg/l. 20measurements exceed 1
mg/l. 2 measurements exceed 5 mg/l and 10 nmigible 4.4shows the results of
estimating exceedenpeobalilities from thesemeasurements using the binomial

distribution as a basis for calculation.

Table 4.3 Nitrate Concentrations in Quadrangle 5740

Nitrate Concentration (mg/l as Nitrogen)

20.10 20.10 0.34 0.79 1.33 3.17
20.10 20.10 0.34 0.81 1.58 3.17
20.10 20.10 0.41 0.88 1.70 4.52
20.10 20.10 0.45 0.90 1.81 4.75
20.10 20.10 0.48 1.06 1.81 12.67
20.10 20.10 0.68 1.13 2.15 15.61
20.10 20.10 0.79 1.24 2.26

20.10 0.20 0.79 1.24 2.71

20.10 0.34 0.79 1.24 3.05
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Table 4.4 Estimated Exceedence Probabilities for Quadrangle 5740

Threshold =) e P| Ph

(mg/I nit.-N) 90% two-sided 90% two-sided
0.1 69% 56% 79%

1 39% 28% 52%

5 4% 0.7% 12%

10 4% 0.7% 12%

Minimum Levels of Confidence. As more measurements are takieom a
popuation, the degree of confidence in théireate of an exceedenpeobalility
increases—that is, the gap between the upper and lower bounds otintfatees
decreases. If the sample of the gagpion consists of a single measurement, and
that measurement falls below the threshold, then the estimated exceedence
probablity is zero (also the lowebound for any confidence interval), but the
upper bound of the 90% confidence interval is 0.9. In other words, for nine cases
out of ten a single measurement below the threshold cnomsa poplation

with an exceedenceproballity less than 0.9. This is a very weak
characterization of thpopuation. If an exeedencerobalility estimate is to be
included in a map or a regression analysis we would like it to make a more
definitive statement.

Two possible criteriafor including a measurement in the maps and
regressions were considered. The first was that an exceegeoicablity
estimate would be included only if it was based on at least a minimum number of
measurements. The sad was that an eeedencerobablity estimate would
be included if the difference between the upper and lower bounds of the 90%

confidence interval was less thanedested valug¢33%, for example). The two
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criteria produce different sets of includedtiesates because the difference
between the upper and lower bounds Bsager when th@robalility estimate is
close to 0.5 than when it is close to one or zero.

Figure 4.4shows the 90% confidence intervals on pralitgbestimates
calculatedrom a sample of twelveitls. If six trials are successful, then we can
say with 90% confidence that the probidyp of success in a single trial lies
somewhere between 25% and 75%. If naldrare successful, we can say with
the same anfidence that the probdity of success in a single trial is less than
17.5%.

This figure reeals a dilemma in the choice of a m&d for ®lecting
exceedenceroballity estimatesfor inclusion in the maps and regressions. |If
the selection criterion is a maximurardidence interval, then very fewtasates
close to 0.5 vl pass the test and the maps and regressions will be biased toward
the extreme values of exceedenmeballities. If a minimum number of
measurements is required, then many estimates with soraidence intervals
will be excludedfrom the maps and regressionkigure 4.4illustrates this

problem
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Figure 4.4 Estimating Probability of Success from a Sample of Twelve Trials
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b) Confidence interval restriction

a) All Quads with Measurements
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Figure 4.5 Effects of Different Inclusion Criteria

with a series of histograms showing the number of quads falling into bins based

on the estimated 1 mg/l exceedence probability for the quads.

In Figure 4.5aall quadrangles with any measurements at all are included,

even those with only one measurement. The inclusion of single-measurement

quads leads to highoants at the high and low ends of the proligbscale.
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Figure 4.5bshows the results of restricting theuats tocells with a 90%
confidence interval width of 0.33 or less. Again, the counts at themegtvalues

are high, and most of the quads in the middle range have dropped out.
Figure 4.5cshows the results of restricting theunts tocells with 12 or more
measurements. This decreases the number of included quads at the extreme
values and increases the number in the middle range, producing aewti@s-s

of probalility estimates that more closely follows tharesticted set, but allows
middle-value quads to be included when their confidence intervals eategr

than those of extreme-value quads that were excluded.

The minimum-number-ofreasurements criterion was chosen because it
better reflects thenresticted data set. The minimum number of measurements
for a quad to be included in the maps and regression was set at tvezlaasd
the worst case uncertainty (widesbnfidence interval) was + 0.25 for an
exceedenceprobalility estimate of 0.5. This was judged to be the widest
tolerable confidence interval for inclusion.

In summary, the disete exceedengerobalility estimates are calculated

by the following method.

1. The total number of nitrate measurements are counted.

2. The number of measurements exceeding the selected threshold are
counted.

3. An exceedenceprobabhlity is estimated by dividing the number of

exceedences by the number of measurements.
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4. If the number of measurements in the quadrangle is greater than twelve,

the exceedence probability is included in maps and regression analysis.
4.4.2 Lognormal Probability Estimates

If the probaldity distribution of a popdation follows a particular
function, such as the lognmoal distributon, the probaillity that a measurement
will exceed a threshold can be calculatesin that furction's definition and a
small number of parameters. Estimates of the distribution parameters are, like
the discreteprobalilities in the preceding secotn, gatistics calculatedrom
sample data.

In the case of exceedenpeobabllities for chemicals ingroundvater,
there is no reason to believa priori that the true probaliy density of the
popuation in a sample partition will match therm of an analtical function
exactly, so any assumednction is an appramation. The chixe of an
analyticalfunction is based on three factors: the suitability offtren of the
function to the sample data, the number of parameters, and the calculability of
the parameters. The iddainction would fit the sample data and have a small
number of easily calculated parameters.

In this study, the lognamal distribution is used as apm@oxmate form
for the continuous probdlty distribution of constituent concentrations. This
choice is based on botlparoprateness tgroundvaterprocesses, and pragmatic
concerns. In general, processes such as infiltration and pesoohahich follow
multiplicative rules, tend toproduce lognanally distributed results, so

lognomal distributions are fairly common igroundvater systems. As a
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practical matter, fitting more than two parameters is often difficult and tends to
produce inconsistent results. Of the commonly used one- and taowpiar
distribution forms (exponeial, normal, bgnomal) the bgnomal distribution
appears to fit the data in thisudy the best. The exporteal probablity density
function is monotoitally decreasig, and the naonal proballity density
function is symmetricaltzout themean; neither of thes@wditions is true for the
distribution of nitrate concentrations.

Estimates of parametefsr some distributions, including the lognormal
distribution, can becalculatedfrom the moments of theata. However, this
method of esmation caanot be apled when the data areensored as are the
water quality data used in this study.

Censoring occurs when some of the data are identified as "less than" or
"greater than" some limiting value, rather than as exact valuesbalitity
distribution parameters can only be calculatexin the moments of censored
data if specific values are assumfed data falling in the censored range (i.e.
below the detection limit).

Instead of calculating parametémsm moments, it is possible to evaluate
the parameters by calculating a "best fit" to the data over the uncensored range.
For any value of constituent concentration actuallpmed formeasurements in
a sampling region, the number ofceedences can beounted, yielding an
estimate of the value of the cumulatipeobalility function at each rexded
value. Values of the parameters of the selected distribtdrom are chosen to

minimize or maximize a fitting score, such as the sum of squares of deviations or
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the likelihood fumrtion. This paamete-fitting method is a numeécal analog to

graphical fitting by plotting the values on probability paper.

The following method was used totiesate the parameters of the

lognomal distribution of agroup ofmeasurements. The rhed isillustrated

with data from Quadrangle 5740, which is mmarized inTable 4.5 and

Figures 4.6.

1.

The measurements were ranked by concentr&tiom high to low (as in
Table 4.4)

The common (base 10) logarithmezfch unique concentration value was
calculated.

An estimated cumulativerobalility for each unique concentration value
Blom's formula,

m - 3/8
P(X 2 Xm) = n+ 1/4 (4-14)

was used to estimate thmobablity, with X = log10(C), the log of a
concentration value, n is the total number of measurements@nd ke
mth-ranked concerdtion value. Blom's formula produces nearly
unbiased estimates pfobalility for nomally distributed dat§Chow, et
al., 1988).

The normal variate zocresponding t@ach cumulativerobalility value
was calculated by inversion of the gaussmnmal probalility function
(z(0.16) = -1, z(0.5) = 0, z(0.84) = atc.). This wasalculatedfrom the

Blom's formula p using (for 0 < p < 0.5)
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W= @nﬁ%@l 2 (4-15)

. 2.515517 + 0.802853w + 0.010323w
1+ 1.432788w + 0.18926%w 0.001308W

(4-16)

When p = 0.5, z=0. When p > 0.5, 1-p is sib=d for p in eq. 4-15,
and the z value calculateilom eq. 4-16 is given a native sign

(Abramowitz and Stegun, 1965).
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Table 4.5 Data for Lognormal Fit to Quadrangle 5740

Rank C (mg/l-N) log (C) Blom's P z(P)
16 0.10 -1.00 0.30 -0.51
17 0.20 -0.70 0.32 -0.46
20 0.34 -0.47 0.38 -0.30
21 0.41 -0.39 0.40 -0.25
22 0.45 -0.34 0.42 -0.20
23 0.48 -0.32 0.44 -0.15
24 0.68 -0.17 0.46 -0.10
28 0.79 -0.10 0.54 0.10
29 0.81 -0.09 0.56 0.15
30 0.88 -0.05 0.58 0.20
31 0.90 -0.04 0.60 0.25
32 1.06 0.03 0.62 0.30
33 1.13 0.05 0.64 0.35
36 1.24 0.09 0.70 0.51
37 1.33 0.13 0.71 0.57
38 1.58 0.20 0.73 0.63
39 1.70 0.23 0.75 0.69
41 1.81 0.26 0.79 0.82
42 2.15 0.33 0.81 0.89
43 2.26 0.35 0.83 0.96
44 2.71 0.43 0.85 1.04
45 3.05 0.48 0.87 1.13
47 3.17 0.50 0.91 1.34
48 4.52 0.66 0.93 1.47
49 4.75 0.68 0.95 1.63
50 12.67 1.10 0.97 1.86
51 15.61 1.19 0.99 2.25
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5. The best fit for the function
z[P(X 2 Xm)] =a+ bxXm (4-17)

was calculated by least squares regression. (See Figure 4.6)

Nitrate Concentration (mg/l)

0.1 1.0 10.0
25 I 1 I 1 I

Z (normal variate)

-1.5 -1 -0.5 0 0.5 1 1.5
log(C)

Figure 4.6 Fitting a Probability Distribution by Regression for Quadrangle 5740

6. The lognormal parameters were calculated from aand b as
nx = -alb (4-18)
sx =1/b. (4-19)

Where nx is the mean and sx is the standard deviation of the log-transformed

concentrations.
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7. An exceedencprobalility of a threshold concentration C is calculated by

finding the corresponding normal variate
lo C) -
. 910(C) - Bx | (4-20)
Ox
The exceedencgrobalility is equal to one minus the cumulatinermal

probability of the variate Z.
4.4.3 Discussion

The two probatlity models represent two differentpproaches to
statistical estimatin. The disate or binomial estimation nfeid is a non-
parametric pproach, in that it does not rely on an assumed pilityab
distribution function. The lognaoral estimation méiod, kecause it depends on a
particular analyticafunction to form its predtions, is a parametricpgroach.
Each approach has advantages and disadvantages.

Binomial Model. The chief advantage of the binomialproach is that itatains
the same validity no matter whahderlying probaitity distribution describes
the data. In both distributions shownfiure 4.7 the totalprobalility mass to
the right of the vertical line—the exceedengmbalility for the threshold
represented by the line—is equal to 0.25. Since thenbalamehod is based
only on the totalproballity of exceeding the threshold, the difference in the
shape of the two distributions makes no difference in the estimatougdure.
The lognomal model would fit the left distribudn, which is lognanal, well ,
but not the one on the right, which is the sum of a normal agdoimal

distribution.
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Figure 4.7 Discrete Probabilities from Continuous Distributions

The fit of the datdrom quadrangle 5740, shown figure 4.6is typical
of those examined individually in thisusly; the lognamal model fits well
through the middle of the range of concatitins, but deviatekom the dta at
the ends of the data. In the case of q6&d0, the model underpriets the
number of measurements with low nitrate concentrations.

The discrete model also gives meaagful confidence intervals on its
estimates. More measuremept®duce less uncerinty in a predictable and
understandable way. Although it is possible tdineste erors from the
regression fitting theognomal distributon, these describe the goodness-of-fit of
the regression, and not unta@nties in the estimatgarobalilities. A lognormal
model based on two data points will show a perfect fit, and no standargtbis

has no meaning for predicting the accuracy of the model's predictions.
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Lognormal Model. The lognomal model doesffer some advantages, however.
Once the parameters have been fit, it is not necessary to revisit the original data
to estimate therobalility of exceeding a new threshold value, as ifds the
discrete model. Theognomal parameters, indicating the central tendency and
spread of the data, are mordarmative dout the range of conceations seen
in the region than the single probabilities produced by the discrete model.

The datdrom quad 5740 also point to a d@éncy in the discrete model.
The estimated exceedenmmbalilities for the 5 mg/l and 10 mg/l thresholds are
identical, because the two measurements greater than 5 mg/l were also greater
than 10 mg/l. Intuitively, we would expect a higher exceed@nakallity for
the lower threshold. The logmoal model would fit this expectation better than
the discrete model.
Caveats. Some limitations and warnings apply to both models. Defining
exceedencerobalilities on regions implies that the behavior of the whole region
can be adequately characterized by that number. This would be true only if the
probalility of detecting an excess of the constituent were the same at every point
in the region. Bcause the regions amhbmogeneous, this is not true. The 37
wells located in qua&740 and included in the study dravaterfrom the Glen
Rose Limestondrom the Hosston Famation, and from the Trinity Group. The
wells have depths rangirfpom 80 to 500 éet. Over this range obnditions,
there must be significant variation in exceedence probabilities.

The exceedenc@robabhlity would still characterize the region as a

whole, if not every point in it, if the samples were truly randomly selected, or
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chosen as representative of the oegi Since themeasurements are collected
from existing vells, and some wells are more frequently sampled than others,
even this claim is weakened. Most of the wells in ¢bizdD were sampled only
once. One was sampled twelve times. All of the measurenfromisthese
samples were treated as equally representative of the quad.

This can be justified in part by the fact that water moveeugh the
region, and that severaieasurementom a well taken at different times can
represent a region around thellv However, twelve measurements at a single
location are not the same as twelve measurements at twelve locations. No
attempt was made toorect for biases introduced by the TWDB sampling
schedule.

The exceedencerobalility estimates Bould not be taken as absolute
predictions of exceedence rates, bubidd ingead be viewed relative to each
other. A region with a high estimated exceedegmudalility is different from
one with a low estimated exceedenqueballity, and more measurements lead
to greater onfidence that the difference isal. The onfidence intervals on the
exceedenceprobalility estimates canot account for bias in the sampling
scheme, bubffer a set of "best case" bounds. The trueeexencerobalility
for the regionlies between thosboundsif the sample is representative of the
region. The dta used in the wtly provide no basis for judging howeil the
regions are represented by the samples. It is assumed that the samples are

sufficiently representative that the differendemm one quadrangle to another
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(particularly when the quads are widely separated) are more significant than the
inhomogeneities within the quadrangles.

Preferred Method. On balance, the binomial pproach to dsmating
exceedenceprobalilities seems more suited to thodem of characterizing
groundvater vulnerability. Therobalility distribution of nitrate concentrations
cannot reasonably be eeqied to follow the samfinctional form everywhere.
In some cases, the logmaal distribution will fit well, in others it will fit over a
limited range of concentrations. Since water quality regulationsrpocate
threshold concentrations in the form of maximum taamnant levels and
monitoring trigger levels, it makes sense to use a method thiataéss the
probalility of exceeding those thresholds regardless ofah@ of the underlying
proballity distribution. In the preseation of results inChapter ¢ the

lognormal model is used in only one map.
4.5 MAPPING OF INDICATOR PARAMETERS

The soil property, @cipitaton, and fetilizer sales data, which are tested
as indicators of vulnerability to nitrate contamioati are cotained in poygon
coverages in the vector GIS system of Arfd. The polygons—STAIGO map
units, counties, and Thiessen ygdns—are irregularly shaped and, with the
exception of the two soil parameters deriVeain the STATSGO soil @ta set,
the extents of polygons assated with one parameter do not coincide with the
extents of polygons assated with any other parameter, or with the quadrangles
for which exceedencerobablities have been calculated. The map£imapter 3

clearly illustrate this.
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In order to compare the vation of the indicator parameters with the
variation of the exceedenpeobalilities, all the indicator parameter values were
re-mapped onto the quadrangles. The discussion that follows examines the

meaning of this re-mapping.
4.5.1 Polygons and Their Attributes

In a vector GIS, a polygon is a contiguous, bounded area on theewff
the earth. Within a coverage or thematic layer,ldbendaries of a polygon are
determined by differences in the values of the attributes #paess the thme.
Examples of attributes that define pgbns are: pdical affiliations, like
counties; geological or oth@hyscal characteristics, like the soil associations in
the STATSGO soil dta; or arbitrary divisions ahg made-up boundaries, like
7.5' quadrangles.

Locating a point inside a pgjon can be compared to identifying a
member of a set. If a location lies inside a giverygaoh, it meets the criteria
that define the polygon. Consider a Theissen network catstiwaound rain
gauges. For gauge number 123 there is a polygon defined as "thelbgtonfits
that are closer to gauge 123 than to any other gauge." Attribute values may be
assigned to a point (such as the location of a well) based on the attributes of the
polygon in which it is leated, and all points lying within theoundaries of a
polygon would ecessarily have the same valdes the attributes assigned to
them from the polygon. If the average annual &dirdt gaugel23 is 28 inches,
then the statement "The averagm@al rainfall at the nearest gauge is 28 inches"

is true for all points in the Theissen polygon surrounding gauge 123.
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A GIS polygon with arattribute value is something like a bin or a bucket
with a label on it. The label applies to all the contents of the bucket, and no
distinction can be made between one part of the contents and another, or one part
of a polygon and another. This does not imply that such diiiims do not exist,
only that they cannot be represented by the GIS without sub-dividing the
polygon.

Although sometatements, like the descriptions of the Theisseggmuis
above, are true for every point within a polygon, others apply only to the polygon
as a whole. For example, polygon 123 might have an area of 25 sgilese
but the statement "the area of every point irygoh 123 is 25 squamiles” is
meaningless.

Still other statements, while applying in agorous sense only to the
polygon as a wholetil have some meaninfpr points within the polygon. This
is true for average or tal values calculated over a gpgbn. The wtements
"this point lies in a pglgon where atzine is applied at an average rate of 0.5
kg per square kilometer" and "atrazine is applied at an average fatelaf per
square kilometer at this point" are not equivalent. A great deal of GIS-based data
is collected and ported as averages or totals overygohs. In such cases, it is
necessary to approrate values at poinfsom averages or tals over pofgons,
because no other data is available. This is true of most of thgopebased data
used in this study, including the a@edenceprobalilities calculatedfrom the

TWDB data.
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4.5.2 Overlaying Polygons

In order to study the préedive power of more than one parameter on the
behavior of groundater quality, it is necessary to combine dixtan several
thematic layers. Thiprocess, called overlayy, is smilar to constructing the
intersection of sets. Overlaying two pgbn coverages—for example soil
polygons and Theissen polygons, as shownFigure 4.8—preserves the
boundaries of both sets of original polygons arehtgs a more complex set of
polygons.

Combining thematic layersitough polygon overlay preservaB of the
information present in the original coverages, but frequently results in small,
oddly shaped polygons. It would be possible to oved#lythe polgons
associated with the indicator parametgreup vells and nitrate measurements
according to loation in the resulting ppjons, anctalculate statistics on those
groups, as was done in the 7.5' quadrangles. The irregularity and highly variable
size of the resulting pgyons, however, makes comparisons between them
difficult. An alternative mdtod patitions the location space into doim peces

and interpolates attribute data onto the resulting partitions.
4.5.3 Raster Cells and Attributes

Like a polygon, a raster or grickll is a conyuous bounded area with
associated data. Unlike a pgbn, its boundaries areetérmined by a regular
patten, like a checkerboard, not by changes in thi&a dalues associated with it.
Rasters are frequently used to express continuously varyindittggen Rasters

approximate continuous variation as a series of discrete steps.
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The single value associated with a raster cell can be an average value or a
dominant (maximum, maximum area, maximum weight) value over the cell's
area For continuously varyingata this is plainly an gproxmation, but a
tolerable one if the area of an individual cell is smabggh that the véaations
within an individual cell are small compared to the range of variation over the
area mapped by the whole grid.

The great advantage of rasters ovelgohs is that when &matic layers
are combined, the spatial structure remains unchanged, because the grid of cell
boundaries is theasne in each layer. No irregular fragments farened when
raster layers are combined.

If the surface data and the exceedepecebalility estimates are all
represented on a common grid, then linking prdbigtyvalues to indicator values
becomes a matter of extracting several attribute vdirea single gridcell,
which is a trivial GIS operatn. Thelimitations of raster GIS, however, make
resolving the probabilities and the surface data to a common grid difficult.

The most serious limitation of the raster system is its limited
representation obpology. All cata in a raster GIS consists of cells. A point can
be represented appliaxately by a single cell, a line by a series of adjacent cells,
and a polygon by a cluster o€lls, but spatial concepts like the location of a
point in a polygon cannot be represented in a raster GIS. Selteand nitrate
measurements weigrouped by loation within7.5" quadrangles for this study,
this limitation needs to be overcomefdre all the data can be represented in a

common grid.
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4.5.4 Rasterized Polygons: A Compromise

In order to preserve the point-and-polygon topologgassary to group
the nitrate datafor datistical analysis, and to allonurdace data (rainfall
amounts, soil pameters, and fertilizer applicati) to be compared consistently
with the variation of the exceedenpeobalility estimates, a copromise was
developed.

The polygon coverage used to group thalsvand nitrate readings was
overlaid on each of the indicator parameter coverages, resulting in a highly
fragmented polygon coverageézach fragment, however, was associated with the
original polygons that formed the overlay through the coverageibute table.

It was possible to calculate an area-weighted avei@gthe paameter values

for each quadrangle byrouping the fragmentaccording to the quadrangle IDs

in their attribute tables. The averages could then be linked to the quadrangle
coverage, along with the egedencerobabllity estimates. The steps required to
carry out this averaging and linking are describedséantion5.7. Figure 4.9
illustrates theprocess of resolving the exceedepeebalilities and the indicator
parameters to a common grid. By using the quadrangle numbers as a key to link
the tables containing the parameter averages and the excepddaradities, it

is possible to form a single table ¢aming exceedencerobabhlities and
indicator parameter values for each quadrangle.

The contents of this table can then be linked to the quadrangle coverage
and used to map the variation of the exceedenalealilities or the values of the

indicator parameters over the quadrangles. The values of the exceedence
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probalilities and the indicator parameters can also be written to an external file,

and used as input to a regression analysis.

4.6 REGRESSION ONINDICATORS

Once the indicators and the exceedemwdablities have been linked to
a common grid, values faill these data can be tabulated and used independently
of their spatial relationships. The values of exceedegmobalility, average
precipitaton, soil thickness,etc. can be treated as a dependent variable
(exceedenceprobalility) and a series of independent variablgsecipitation,
etc.) in a multiple linear regression to produce a model of the form

P=[p+ X1+ X2+ BX3+ ...

where each is a found by fitting the values of P and the variogs.X

The regression method used in this study to quantify éhetionship
between the indicators and the exceedepabhlities is stepwise multiple
regression. In this procedure, variables are added teletedfrom the model
one at a time aoerding to the signi€ance of their coefficients, as measured by
the partial and sequential F statistics (Draper and Sa8@1). In this work, an
F statistic of 4, indicating 85% probabity that the coefficient differsdrom

zero, was used as the inclusion criterion.
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4.7 Confirming Assumptions

To generalize the presentudy, two assumptions must be confirmed.
The first is that the historic database usedoron the exeedenceprobabllity
estimates isudficiently typical ofgroundvater in Texas that those estimates can
predict where nitrate contamination is likely to occ The second is that
vulnerability to nitrate contamination is related to contamination by other
constituents, specifically agricultural chemicals.

To test these assumptions, two additional data sets were included in the
study.

Nitrate measurements collected by the Water Utilities Division of the
Texas Natural Resource Consatien Commission from puie water sipplies
over a period of just under two years (in 1993 and 1994) are compared to results
of the analysis of the TWDB databdese the years 1962—-1993. This comparison
tests whether water ipublic supplies differs significantlyfrom the general
sampling condcted by TWDB, and whether changes in theunnce of nitrate
in groundvater over time make the more recent WUD data diffefeamh the
thirty years of TWDB data.

A completely independent data set, collected by the U.S. Geological
Survey in the midwestern U.S. (samples from North Dakota, South Dakota,
Nebraska, Kansas, Minnesota, lowa, Missouri, Michigan, Wisconkinpis,
Indiana, and Ohio), is used to test the assumption thatatime sonditions

leading to high vulnerability to nitrate also lead to vulnerability to other
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contaminants. The metds used to analyze thesedadsets are described in the

discussion of procedures and result€rapters and6.
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