CRWR Online Report 95-3

A GIS Procedure for Merging NEXRAD Precipitation Data and Digital Elevation Models to Determine Rainfall-Runoff Modeling Parameters

by

Seann M. Reed
Research Assistant
and
David R. Maidment, Ph.D.
Principal Investigator

September, 1995

CENTER FOR RESEARCH IN WATER RESOURCES

Bureau of Engineering Research .The University of Texas at Austin J.J.Pickle Research Campus . Austin, TX 78712-4497

This document is available online via World Wide Web at http://civil.ce.utexas.edu/centers/crwr/reports/online.html

ACKNOWLEDGEMENT

This research was supported by the United States Army Corps of Engineers Hydrologic Engineering Center in Davis, CA. Information provided by Norm Bingham and Dale Lillie at the Arkansas-Red Basin River Forecast Center (ABRFC) and DongJun Seo and Dennis A. Miller at the NWS Hydrologic Research Laboratory at Silver Springs, Maryland, is also appreciated.

Abstract

The National Weather Service (NWS) Next Generation Weather Radar (NEXRAD) radar program generates a product called StageIII which offers gridded precipitation estimates spatially averaged over grid cells of approximately $16 \mathrm{~km}^{2}$ and temporally averaged over 1 hour. Hydrologists need to consider how such distributed precipitation estimates may be translated into improved streamflow forecasts. Researchers at the U.S. Army Corps of Engineers Hydrologic Engineering Center (HEC) have proposed using a modified version of the Clark unit hydrograph method to incorporate NEXRAD rainfall data into their streamflow forecasts. The proposed method requires information about the area of each rainfall cell falling within each modeled subbasin and the average flow length from each rainfall cell to the corresponding subbasin outlet. A set of programs was written to obtain this information using Arc/Info GIS and USGS digital elevation models. Properly positioning NEXRAD rainfall cells relative to digital elevation model cells is an important issue. A fundamental problem is that NEXRAD estimates are referenced to a spherical earth datum while data sets describing the land surface (i.e. digital elevation models) are most commonly referenced to an ellipsoidal earth datum. A study of the equations required to transform NEXRAD cells and digital elevation model cells into a common ellipsoid-based map projection is presented.

TABLE OF CONTENTS

Acknowledgment 2
Table of Contents 3
List of Tables 4
List of Figures 6
1.0 Introduction 7
1.1 Executive Summary 10
1.2 Description of Data 11
1.2.1 NEXRAD Data 12
1.2.2 Digital Elevation Models 13
1.2.3 Gage Locations, HUCs, and RF1 Files 14
1.3 Selecting a Study Area 15
1.4 Scales of Analysis 15
1.5 Choosing A Map Projection and Datum for the Study 16
2.0 Methodology 19
2.1 Obtain and Process Digital Elevation Model 19
2.1.1 Create a "Hydrologic" DEM for the Region of Interest 19
2.1.1.1 Locating Study Region 19
2.1.1.2 Obtaining Digital Elevation Models 23
2.1.1.3 Projecting the Digital Elevation Model 25
2.1.2 Filling Sinks 27
2.2 Process DEM for Stream and Watershed Delineation 29
2.2.1 Creating a Point Coverage of Watershed Outlets 29
2.2.2 Selecting Grid Cells for Watershed Outlets 32
2.2.3 Delineating Watersheds 33
2.2.4 Creating a Vector Coverage of Watersheds and Streams 35
2.3 Process DEM for Travel Length or Travel Time Parameter 40
3.0 Positioning the NEXRAD StageIII Cells
Relative to the Digital Elevation Model Cells 43
3.1 Geodetic (Ellipsoidal) and Geocentric (Spherical) Coordinates 43
3.1.1 Conversions Between Geodetic and Geocentric Latitudes 45
3.2 The HRAP Coordinate System 47
3.2.1 Forward Transformation from Geocentric to HRAP Coordinates 48
3.2.1.1 From Geographic to Polar Coordinates 48
3.2.1.2 From Polar to Cartesian Coordinates 50
3.2.1.3 From Cartesian to HRAP Coordinates 50
3.2.2 Reverse Transformation from HRAP to Geocentric Coordinates 51
3.3 Using NEXRAD Data with an Ellipsoidal Datum 53
3.4 Distortions Involved with Using the HRAP Coordinate System 56
3.4.1 Scale Factor 56
3.4.1.1 The Shape of HRAP Cells 58
3.4.2 Shape Factor, C_{S} 62
3.6 Reconsidering the Mapping Problem 64
3.7 Verifying Consistency with Arkansas-Red Basin River Forecast Center HRAP Cells 66
3.8 Description of FORTRAN and AML Codes to Generate Cells and Transform to the Common Coordinate System 67
4.0 Determine the Area and Mean Travel Length for Each HRAP Cell in a Subwatershed 74
4.1 Intersect Processed Digital Elevation Model with the Coverage of HRAP Cells 74
4.2 Results 78
5.0 Conclusions 81
References 73
Appendix 86

LIST OF TABLES

1.1 Internet Addresses for Data Sources 11
1.2 Parameters of Albers Map Projection 16
2.1 Summary Script for Creating a Hydrologic DEM 29
2.2 Flow Measurement Locations 32
2.3 Summary Script for Stream and Watershed Delineation 39
3.1 Differences Between Geodetic and Geocentric Latitudes for the GRS 80 Ellipsoid 46
3.2 Approximate Scale Factor at Different Latitudes 48
3.3 Coordinate Values for Figure 3.6a 61
3.4 USGS Gaging Stations Identified from Arkansas-Red Basin River Forecast Center Snapshots 67
3.5 Sample Session for Generating a NEXRAD Mesh 68

LIST OF FIGURES

1.1 StageIII Cells Overlaid on Watersheds at Tenkiller 9
2.1 Procedure Overview 20
2.2 Identifying the Tenkiller Hydrologic Cataloging Unit 22
2.3 Buffered Tenkiller HUC with RF1 Features 24
2.4 Creating a Drainage Network 30
2.5 Delineated Tenkiller Streams and Watersheds with RF1 Streams and HUC Boundary 34
2.6 Close-up of Dam Location 36
2.7 A Few Misplaced Cells During Raster to Vector Conversion 38
2.8 Computing Flowlength for Each Sub-basin 42
3.1 Geocentric and Geodetic Coordinates 44
3.2 Elevation View of a Polar Stereographic Map Projection 49
3.3 Plan View of a Polar Stereographic Map Projection 49
3.4 Conceptual Diagram of the Correct Steps in the HRAP to Albers Transformation 54
3.5 Size and Shape of an HRAP Cell $(701,263)$
in Several Coordinate Systems 59
3.6a Four HRAP Cells Plotted in Geographic Coordinates 60
3.6b Four HRAP Cells Transformed into Albers Equal-Area Projection 60
3.7 Arkansas-Red River Basin 64
3.8 Control Points at the Corners of State Boundaries 69
3.9 USGS Gaging Stations in the HRAP Plane 71
3.10 Files Used to Create a Coverage of HRAP Cells 72
4.1 HRAP Coverage Intersected with a Subwatershed Coverage 74
4.2 Mean Flow Length from HRAP Cells to Subwatershed Outlets 78

