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The software used is R from www.r-project.org and is available for all platforms. The
lmomco package provides some functions discussed in class related to order statitics and
L-moments and can be found at www.cran.r-project.org/package=lmomco.
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1.1 Introduction

A branch of statistics known as order statistics plays a prominent role in L-moment theory. The study of order
statistics is the study of the statistics of ordered (sorted) random variables and samples. This chapter presents a very
brief introduction to order statistics to provide a foundation for later chapters. A comprehensive exposition of order
statistics is provided by David (1981), and an R-oriented approach is described in various contexts by Baclawski
(2008).

The random variable X for a sample of size n, when sorted, forms the order statistics of X : X1:n ≤ X2:n ≤ ·· · ≤ Xn:n.
The sample order statistics from a random sample are created by sorting the sample into ascending order:
x1:n ≤ x2:n ≤ ·· · ≤ xn:n. As we will see, the concept and use of order statistics take into account both the value
(magnitude) and the relative relation (order) to other observations. Barrett (2004, p. 23) reports that

. . . the effects of ordering can be impressive in terms of both what aspects of sample behavior can be usefully
employed and the effectiveness and efficiency of resulting inferences.

and that

. . . linear combinations of all ordered samples values can provide efficient estimators.

This presentation will show that the L-moments, which are based on linear combinations of order statistics, do in fact
provide efficient estimators of distributional geometry.

In general, order statistics are already a part of the basic summary statistic repertoire that most individuals—
including nonscientists or statisticians—are familiar with. The minimum and maximum are examples of extreme
order statistics and are defined by the following notation

min{Xn}= X1:n (1.1)
max{Xn}= Xn:n (1.2)

The familiar median X0.50 by convention is
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X0.50 =

{
(X[n/2]:n +X[(n/2)+1]:n)/2 if n is even
X[(n+1)/2]:n if n is odd

(1.3)

and thus clearly is defined in terms of one order statistic or a linear combination of two order statistics.
Other order statistics exist and several important interpretations towards the purpose of this presentation can be

made. Concerning L-moments, Hosking (1990, p. 109) and Hosking and Wallis (1997, p. 21) provide an “intuitive”
justification for L-moments and by association the probability-weighted moments. The justification follows:

• The order statistic X1:1 (a single observation) contains information about the location of the distribution on the
real-number line R;

• For a sample of n = 2, the order statistics are X1:2 (smallest) and X2:2 (largest). For a highly dispersed distribution,
the expected difference between X2:2−X1:2 would be large, whereas for a tightly dispersed distribution, the differ-
ence would be small. The expected differences between order statistics of an n = 2 sample hence can be used to
expression the variability or scale of a distribution; and

• For a sample of n = 3, the order statistics are X1:3 (smallest), X2:3 (median), and X3:3 (largest). For a negatively
skewed distribution, the difference X2:3−X1:3 would be larger (more data to the left) than X3:3−X2:3. The opposite
(more data to the right) would occur if a distribution where positively skewed.

These interpretations show the importance of the intra-sample differences in the expression of distribution geometry.

Expectations and Distributions of Order Statistics

A fundamental definition regarding order statistics, which will be critically important in the computation of L-moments
and probability-weighted moments, is the expectation of an order statistic. The expectation is defined in terms of the
QDF. The expectation of an order statistic for the jth largest of r values is defined (David, 1981, p. 33) in terms of the
QDF x(F) as
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E[X j:n] =
n!

( j−1)!(n− j)!

∫ 1

0
x(F)×F j−1× (1−F)n− j dF (1.4)

The expectation of an order statistic for a sample of size n = 1 is especially important because

E[X1:1] =
∫ 1

0
x(F) dF = µ = arithmetic mean (1.5)

Therefore, the familiar mean can be interpreted thus: The mean is the expected value of a single observation if one and
only one sample is drawn from the distribution.

Hosking (2006) reports from references cited therein that “the expectations of extreme order statistics characterize
a distribution.” In particular, if the expectation of a random variable X is finite, then the set {E[X1:n : n=1,2, · · · ]}
or {E[Xn:n : n=1,2, · · · ]} uniquely determine the distribution. Hosking (2006) reports that such sets of expectations
contain redundant information and that technically a subset of expectations can be dropped and the smaller set is still
sufficient to characterize the distribution.

USING R USING R

Using eq. (1.4) and R, the expected value of the 123rd-ordered (increasing) value of a sample of size n = 300 is
computed for an Exponential distribution in example 1–1 . The ratio of factorial functions in eq. (1.4) is difficult to
compute for large values—judicious use of the fact that n! = Γ(n+1) and use of logarithms of the complete Gamma
function Γ(a) suffices. The results of the integration using QDF of the Exponential by the qexp() function and
stochastic computation using random variates of the Exponential by the rexp() function for E[X123:300] are equivalent.

1–1
nsim <- 10000; n <- 300; j <- 123
int <- integrate(function(f,n=NULL,j=NULL) {

exp(lgamma(n+1) - lgamma(j) - lgamma(n-j+1)) *
qexp(f) * fˆ(j-1) * (1-f)ˆ(n-j)

}, lower=0, upper=1, n=n, j=j)
E_integrated <- int$value
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E_stochastic <- mean(replicate(nsim, sort(rexp(n))[j]))
cat(c("RESULTS:", round(E_integrated, digits=3),

"and", round(E_stochastic, digits=3), "\n"))
RESULTS: 0.526 and 0.527

J

Distributions of Order Statistic Extrema

The extrema X1:n and Xn:n are of special interest in many practical problems of distributional analysis. Let us consider
the sample maximum of random variable X having CDF of F(x) = Pr[Xn:n ≤ x]. If Xn:n ≤ x, then all xi ≤ x for
i = 1,2, · · · ,n, it can be shown that

Fn(x) = Pr[X ≤ x]n = {F(x)}n (1.6)

Similarly, it can be shown for the sample minimum that

F1(x) = Pr[X > x]n = {1−F(x)}n (1.7)

Using the arguments producing eqs. (1.6) and (1.7) with a focus on the QDF, Gilchrist (2000, p. 85) provides

xn:n(Fn:n) = x(F1/n
n:n ) (1.8)

x1:n(F1:n) = x(1− (1−F1:n)1/n) (1.9)

for the maximum and minimum, respectively. Gilchrist (2000, p. 85) comments that, at least for xn:n that “the quantile
function of the largest observation is thus found from the original quantile function in the simplest of calculations.”
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For the general computation of the distribution of non extrema order statistics, the computations are more difficult.
(Gilchrist, 2000, p. 86) shows that the QDF of the distribution of the jth order statistic of a sample of size n is

x j:n(Fj:n) = x[B(−1)(Fj:n, j, n− j +1)] (1.10)

where x j:n(Fj:n) is to be read as “the QDF of the jth order statistic for a sample of size n given by nonexceedance
probability Fj:n.” The function B(−1)(F,a,b) is the QDF of the Beta distribution—the (−1) notation represents the
inverse of the CDF, which is of course a QDF. It follows that the QDF of the order statistic extrema for an F are

x1:n(F) = x[B(−1)(F, 1, n)] (1.11)

xn:n(F) = x[B(−1)(F, n, 1)] (1.12)

for the minimum X1:n and maximum Xn:n, respectively.

USING R USING R

In the context of eqs. (1.6) and eq. (1.7), the expectations of extrema for the Exponential distribution are stochas-
tically computed in example 1–2 using the min() and max() functions. The random variates from the Exponential
are computed by the rexp() function. The example begins by setting the sample size n = 4, the size of a simulation
run in nsim, and finally, the scale parameter (note that R uses a rate expression for the dispersion parameter) of the
Exponential distribution is set to 1000. (A location parameter of 0 is implied.) The example reports (1000, 1500,
500) for the respective mean, maximum, and minimum values. (It is well known that the mean of this Exponential
distribution is 1000.)

1–2
n <- 4; nsim <- 200000
s <- 1/1000 # inverse of scale parameter = 1000

# Expectation of Expectation of Exponential Distribution
mean(replicate(nsim, mean(rexp(n, rate=s))))
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[1] 1000.262

# Expectation of Maximum from Exponential Distribution
mean(replicate(nsim, max(rexp(n, rate=s))))
[1] 1504.404

# Expectation of Minimum from Exponential Distribution
mean(replicate(nsim, min(rexp(n, rate=s))))
[1] 499.6178

The demonstration continues in example 1–3 with the stochastic computation of the expected values of the max-
imum and minimum through eqs. (1.6) and (1.7). One consideration that is so interesting about using eqs. (1.6) and
(1.7) is that sorting a vector of extrema distributed values as for the maximum and minimum computation is not needed.
(The quantiles of the Exponential are computed by the qexp() function; whereas, Uniform variates are computed by
the runif() function.) The output of examples 1–2 – 1–3 are consistent with each other.

1–3
# Expectation of Maximum from Exponential Distribution
mean(qexp(runif(nsim)ˆ(1/n), rate=s))
[1] 1497.001

# Expectation of Minimum from Exponential Distribution
mean(qexp(1 - runif(nsim)ˆ(1/n), rate=s))
[1] 501.1628

J

It was implied from the two previous examples that eqs. (1.6) and (1.7) provide a more efficient means of computing
the distribution of extrema because sorting is computationally expensive. Let us use the system.time() function in
example 1–4 to measure just how long computing the expectation of a minimum value of a sample of size n = 4. We
see that use of eq. (1.7) is more than 35 times faster.
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1–4
system.time(mean(replicate(nsim, min(qexp(runif(n), rate=s)))))

user system elapsed
3.337 0.047 3.502

system.time(mean(qexp(1 - runif(nsim)ˆ(1/n), rate=s)))
user system elapsed

0.059 0.006 0.064

J
The distributions of individual order statistics in eq. (1.10) are easily demonstrated using R. The following exam-

ple 1–5 defines a function qua.ostat() for computation of the quantiles of a given order statistics. The arguments
f and para to the function are the Fj:n and lmomco parameter list. The parameter list is a data structure specific to
the lmomco package. The other two arguments are self explanatory. The qbeta() is the built-in R function used to
compute quantiles of the Beta distribution. Finally, the par2qua() function of lmomco dispatches the para parameter
list to the appropriate distribution with F = betainv.F.

1–5
"qua.ostat" <-
function(f,j,n,para) {

betainv.F <- qbeta(f,j,n-j+1) # compute nonexceedance prob.
return(par2qua(betainv.F,para))

}
# Now demonstrate usage of the qua.ostat() function
PARgpa <- vec2par(c(100,500,0.5), type="gpa") # make parameters
n <- 20; j <- 15; F <- 0.5 # sample size, rank, and nonexceedance
ostat <- qua.ostat(F,j,n,PARgpa); print(ostat)
[1] 571.9805

After defining the qua.ostat() function using the function() “function,” the example continues by specifying
an lmomco parameter list for the Generalized Pareto distribution into variable PARgpa using vec2par() through the
type="gpa" argument. A sample size of n = 20 is set, and the median of the distribution of the 15th-order statistic for
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such a sample is computed. The code reports x15:20(0.5) = 572 or the “50th percentile of the 15th value of a sample
of size 20.” The qua.ostat() function actually is incorporated into the lmomco package. The function is shown here
because it is a good example of syntax brevity by which eq. (1.10) can be implemented using the vectorized nature of
the R language. J

1.2 Sampling Bias and Sampling Variability

The concepts of sampling bias and sampling variability (Stedinger and others, 1993, p. 18.10) involve the accuracy
and precision of statistical estimation. Because distributional analysis inherently involves finite samples, the concepts
of sampling bias and variability are important. R-oriented treatments of these and related concepts are provided by
Rizzo (2008, p. 37–38) and Ugarte and others (2008, pp. 245–255). For a given circumstance perhaps statistics such
as moments, percentiles, or distribution parameters are to be estimated. Whichever is the case, consider the estimated
statistic Θ̂ as a random variable with a true value that is simply denoted as Θ. Values for Θ̂ are dependent on the
sampled data values. The bias in the estimation of Θ̂ is defined as the difference between the expectation of the
estimate minus the true value or

Bias[Θ̂] = E[Θ̂]−Θ (1.13)

The sample-to-sample variability (or sampling variability) of a statistic is expressed by root mean square error, which
is defined as

RMSE[Θ̂] =
√

E[(Θ̂−Θ)2] (1.14)

and upon expansion the error is split into two parts

RMSE[Θ̂] =
√

Bias[Θ̂]2 +E[(Θ̂−E[Θ̂])2] (1.15)

or
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RMSE[Θ̂] =
√

Bias[Θ̂]2 +Var(Θ̂) (1.16)

The square of the RMSE is known as the mean square error (MSE). Rizzo (2008, p. 155) reports for MSE, but shown
here as RMSE, that

RMSE[Θ̂] =

√
1
m

m

∑
j=1

(Θ̂( j)−Θ)2 (1.17)

where Θ( j) is the estimator for the jth sample of size n.
Bias, Var(Θ̂), and RMSE are useful measures of statistical performance. They are performance measures because

the sampling bias and sampling variability describe the accuracy and precision, respectively, of the given estimator.
If Bias[Θ̂] = 0, then the estimator is said to be unbiased. For an unbiased estimator, the sampling variability will be

equal to the variance Var(Θ̂) of the statistic. These two measures of statistical performance can exhibit considerable
dependency on sample size n.

Amongst an ensemble of estimators, the estimator with the smallest RMSE[Θ̂] or MSE[Θ̂] is said to be the most
efficient. If an estimator is resistant to large changes because of the presence of outliers or otherwise influential data
values, then the estimator is said to be robust. The relative efficiency of two estimators is

RE(Θ̂1,Θ̂2) =
MSE(Θ̂2)
MSE(Θ̂1)

(1.18)

and when two estimators are unbiased, then the relative efficiency can be defined as

RE(Θ̂1,Θ̂2) =
Var(Θ̂2)
Var(Θ̂1)

(1.19)

Relative efficiency is important in assessing or otherwise comparing the performance of two estimators.
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USING R USING R

Sampling bias and sampling variability are used herein as metrics to evaluate and compare the properties of product
moments, L-moments, and other statistics. For the sake of brevity, the R functions mean(), sd(), and occasionally
summary() generally will be used to compute statistics of the difference Θ̂−Θ. However, let us take an opportunity
to delve into statistics of Θ̂−Θ in more detail.

In example 1–6 , the function afunc() is defined as a high-level interface to the distribution of choice. For the
example, the random variates for the standard Normal distribution are accessed through the rnorm() function. This
style of programming is shown in order to make extension to non-standard R distibutions easier. Such a programming
practice is known as abstraction. Next, the function sam.biasvar() is defined to compute eqs. (1.13) and (1.16) as
well as Var(Θ̂).

1–6
MN <- 0; SD <- 1 # parameters of standard normal
# Define a separate function to implement a distribution
"afunc" <- function(n,mean,sd) {

return(rnorm(n, mean=mean, sd=sd))
}
nsim <- 100000; n <- 10 # no. simulations and sample size to sim.

# Define function to compute sampling statistics
"sam.biasvar" <- function(h,s, verbose=TRUE, digits=5) {

b <- mean(h) - s # solve for the bias

mse <- mean((h - s)ˆ2) # mean square error
rmse <- sqrt(mse) # root MSE

vh <- sqrt(mean((h - mean(h))ˆ2)) # sqrt(variance
# of the statistic), which lacks a n-1 division

nv <- sqrt(rmseˆ2 - bˆ2) # alternative estimation



12 1 Order Statistics

if(verbose) {
cat(c("Bias (B) = ",round(b,digits=digits), "\n",

"MSE(h,s) = ",round(mse,digits=digits), "\n",
"RMSE(h,s) = ",round(rmse,digits=digits),"\n",
"sqrt(Var(h)) = ",round(vh,digits=digits), "\n",
"sqrt(RMSEˆ2-Bˆ2) = ",round(nv,digits=digits), "\n"),

sep="")
}
return(list(bias=b, mse=mse, rmse=rmse, sd=vh))

}

The sam.biasvar() is demonstrated in example 1–7 for a sample of size n = 10 for a large simulation size
nsim=100000. First, the Rmean list is generated to hold the sampling statistics of the mean() function, and second,
the Rmedn list is generated to hold the sampling statistics of the median function. The reported biases are near zero
because the mean and median are both unbiased estimators.

1–7
# Sampling statistics of the mean()
Rmean <- sam.biasvar(replicate(nsim,mean(afunc(n,MN,SD))),MN)
Bias (B) = -0.00158
MSE(h,s) = 0.10058
RMSE(h,s) = 0.31714
sqrt(Var(h)) = 0.31713
sqrt(RMSEˆ2-Bˆ2) = 0.31713
# Report the theoretical to show equivalence
cat(c("Theoretical = ",

round(SD/sqrt(n), digits=3), "\n"), sep="")
Theoretical = 0.316

# Sampling statistics of the median()
Rmedn <- sam.biasvar(replicate(nsim,median(afunc(n,MN,SD))),MN)
Bias (B) = 0.00132
MSE(h,s) = 0.13717
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RMSE(h,s) = 0.37036
sqrt(Var(h)) = 0.37036
sqrt(RMSEˆ2-Bˆ2) = 0.37036

RE <- (Rmean$sd/Rmedn$sd)ˆ2 # REˆ{mean}_{median} in LaTeX
cat(c("Relative efficiency = ",

round(RE,digits=3), "\n"), sep="")
Relative efficiency = 0.733

A natural followup question is asked of the mean and the median. Which has the smaller variance? The end of
example 1–7 reports that RE(mean,median)≈ 0.73, which is less than unity so the conclusion is that the arithmetic
mean has a smaller sampling variance than the median. J

A previous demonstration of MSE computation is made for a trimmed mean and the median using sam.biasvar()

in example 1–8 . J
An informative example in the context of the trimmed mean is provided. We compute in example 1–8 the mean

square errors (MSE) of the sen.mean(), trim.mean() (Rizzo, 2008, p. 156), and median() estimators and compare
the three errors to those reported by (Rizzo, 2008, pp. 156–157). The example begins by defining a trim.mean()

function and using the same sample size n = 20 as used by Rizzo. For this particular example, the set.seed() function
is used to set a seed for the random number generator in current use by R. By setting the seed, users for this example
should precisely reproduce the output shown.1

1–8
"trim.mean" <- function(x) { # mimicking Rizzo (2008)

x <- sort(x); n <- length(x); return(sum(x[2:(n-1)])/(n-2))
}
n <- 20; nsim <- 75000
set.seed(1000) # set the seed for the random number generator

1 Note that the general practice in this presentation is to be independent of specific seeds so users should expect numerically different, but
stochastically similar results for other examples herein.
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S1 <- replicate(nsim, sen.mean(rnorm(n))$sen)
sam.biasvar(S1,0, verbose=FALSE)$mse
[1] 0.04990509

# Sampling statistics of the trim.mean()
# Rizzo (2008) p.156 reports mse=0.0518
S2 <- replicate(nsim, trim.mean(rnorm(n)))
sam.biasvar(S2,0, verbose=FALSE)$mse
[1] 0.05124172

# Rizzo (2008) p.157 reports mse=0.0748
S3 <- replicate(nsim, median(rnorm(n)))
sam.biasvar(S3,0, verbose=FALSE)$mse
[1] 0.07363024

The example continues using the sam.biasvar() function that is created in example 1–6 and also used in exam-
ple 1–7 to perform nsim simulations of the sen.mean(), trim.mean(), and median() estimates of the standard
Normal distribution. The results here show numerical equivalency between the values reported by Rizzo. Further, the
results show that the equivalent algorithms for sen.mean() and trim.mean() have smaller mean square errors than
the familiar median. This is a natural consequence of the median using far less numerical information contained in the
sample than the trimmed mean uses. J

1.3 L-estimators—Special Statistics Related to L-moments

Jurečková and Picek (2006, pp. 63–70) summarize statistical estimators known as L-estimators. L-estimators Tn for
sample of size n are based on the order statistics and are expressed in a general form as
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Tn =
n

∑
i=1

ci:nh(Xi:n)+
n

∑
i=1

d jh?(X[np j+1]:n) (1.20)

where Xi:n are the order statistics, c1:n, · · · ,cn:n and a1, · · · ,an are given coefficients or weight factors, 0 < p1 < · · ·<
pk < 1, and h(a) and h?(a) are given functions for argument a. The coefficients ci:n for 1 ≤ i ≤ n are generated by a
bounded weight function J(a) with a domain [0,1] with a range of the real-number line R by either

ci:n =
∫ i/n

(i−1)/n
J(s) ds (1.21)

or approximately

ci:n =
J(i/[n+1])

n
(1.22)

The quantity to the left of the + in eq. (1.20) uses all of the order statistics whereas the quantity to the right of the +
is a linear combination of a finite number of order statistics (quantiles). L-estimators generally have the form of either
quantity, but not both. Estimators defined by the left quantity are known and type I and those of the right are known as
type II.

The simplest examples suggested by Jurečková and Picek (2006, p. 64) of an L-estimator of distribution location
are the sample median and the midrange, in which the later is defined as

Tn =
X1:n +Xn:n

2
(1.23)

A simple L-estimator of distribution scale is the sample range or

Rn = Xn:n−X1:n = largest− smallest (1.24)

Two particularly interesting L-estimators that have immediate connection to the L-moments are Sen weighted mean
and Gini mean difference statistics. These two statistics are described in the following two sections.
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Sen Weighted Mean

A special location statistic, which is based on the order statistics, is the Sen weighted mean (Sen, 1964) or the quantity
Sn,k. The Sn,k is a robust estimator (Jurečková and Picek, 2006, p. 69) of the mean of a distribution and is defined as

Sn,k =
(

n
2k +1

)−1 n

∑
i=1

(
i−1

k

)(
n− i

k

)
Xi:n (1.25)

where Xi:n are the order statistics and k is a weighting or trimming parameter. A sample version ˆSn,k results when Xi:n
are replaced by their sample counterparts xi:n. Readers should note that Sn,0 = µ = Xn or the arithmetic mean(), and
Sn,k is the sample median() if either n is even and k = (n/2)−1 or n is odd and k = (n−1)/2.

USING R USING R

The lmomco package provides support for ˆSn,k through the sen.mean() function, which is demonstrated in exam-
ple 1–9 . In the example, a fake data set is set into fake.dat, and a “Sen” object sen is created. A list sen is returned
by the sen.mean() function.

1–9
fake.dat <- c(123, 34, 4, 654, 37, 78)
# PART 1
sen <- sen.mean(fake.dat)
print(sen); mean(fake.dat) # These should be the same values
$sen
[1] 155
$source
[1] "sen.mean"

[1] 155
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# PART 2
sen.mean(fake.dat, k=(length(fake.dat)/2) - 1); median(fake.dat)
# Again, these are the same values.
$sen
[1] 57.5
$source
[1] "sen.mean"

[1] 57.5

The first part of the example shows that by default ˆSn,0 = µ (155 for the example), but the second part shows that k
can be chosen to yield the median (57.5 for the example). J

Finally, Sn,k is equivalent to the first symmetrically trimmed TL-moment (not yet introduced, λ
(k)
1 ). Let us demon-

strate the numerical equivalency Sn,k = λ
(k)
1 in example 1–10 by computing a two sample (two data point) trimming

from each tail (side) of a Normal distribution having a µ = 100 and σ = 1 or in moment-order listing: NOR(100,1).
The magnitude of the difference between Sn,k and the first TL-moment for symmetrical trimming k is zero.

1–10
fake.dat <- rnorm(20, mean=100) # generate a random sample
lmr <- TLmoms(fake.dat, trim=2) # compute trimmed L-moments
sen <- sen.mean(fake.dat, k=2) # compute Sen mean
print(abs(lmr$lambdas[1] - sen$sen)) # should be zero
[1] 0

J
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Gini Mean Difference

Another special statistic that also is based on order statistics, which is closely related to the second L-moment λ2, is
the Gini mean difference (Gini, 1912). The Gini mean difference G is a robust estimator (Jurečková and Picek, 2006,
p. 64) of distribution scale or spread and is defined as respective population G and sample Ĝ statistics as

G = E[X2:2−X1:2] (1.26)

Ĝ =
2

n(n−1)

n

∑
i=1

(2i−n−1)xi:n (1.27)

where Xi:n are the order statistics, xi:n are the sample order statistics, and n ≥ 2. The statistic G is a measure of the
expected difference between two randomly drawn values from a distribution. Hence, the statistic is a measure of
distribution scale or spread.

USING R USING R

The lmomco package provides support for Ĝ through the gini.mean.diff() function, which is demonstrated in
example 1–11 . In the example, a fake data set is set into fake.dat, a “Gini” object is created, and assigned to variable
gini. A list gini is returned. The Ĝ statistic is listed in gini$gini and the second sample L-moment (λ̂2) is listed in
gini$L2. Thus, Ĝ = 237.

1–11
fake.dat <- c(123,34,4,654,37,78) # fake data
gini <- gini.mean.diff(fake.dat) # from lmomco
str(gini) # ouput the list structure
List of 3
$ gini : num 237
$ L2 : num 119
$ source: chr "gini.mean.diff"
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J

By definition G = 2λ2 where λ2 is the second L-moment. Example 1–12 computes the sample L-moments using
the lmoms() function of lmomco and demonstrates the numerical equivalency of G = 2λ2 by the print() function
outputting zero.

1–12
lmr <- lmoms(fake.dat) # compute L-moments from lmomco
print(abs(gini$gini/2 - lmr$lambdas[2])) # should be zero
[1] 0

J
After reporting within discussion of order-based inference that “linear functions of the ordered sample values can

form not only useful estimators but even optimal ones,” Barrett (2004, p. 27) goes on to report that the quantity

V =
1.7725

n(n−1)

n

∑
i=1

(2i−n−1)X[i:n] (1.28)

is “more easily calculated than the unbiased sample variance [σ̂2], and for normal X it is about 98 [percent] efficient
relative to [σ̂2] for all sample sizes.” Barrett apparently has made a mistake on the units—the units of V are not squared
like those of variance. Therefore, a conclusion is made that V 2 ≈ σ̂2 is what is meant. Emphasis is needed that these
two statistics are both variance estimators.

There are many specific connections of eq. (1.28) to this presentation that are particularly interesting to document
because Barrett (2004) makes no reference to L-moments, no reference to the Gini mean difference, and a single
reference to L-estimators (Barrett, 2004, p. 122). The connections are:

• Eq. (1.28) is very similar to eq. (1.27): 1.7725× Ĝ /2 = V ;
• The Gini mean difference is related to the second L-moment λ2 by G = 2λ2. Thus, λ2 is related to V ;

• The sample standard deviation is σ̂ =
√

σ̂2;
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• In terms of L-moments, the standard deviation of the Normal distribution is σ =
√

πλ2 by eq. (??); and
• The value

√
π = 1.772454 . . ., which has an obvious connection to eq. (1.28).

Barrett (2004) indicates that the “efficiency” of V is “about 98 percent” for all sample sizes. Assuming that relative
efficiency RE by eq. (1.19) is meant, let us use R to test this claim. In example 1–13 , the variance of V and the familiar
definition σ̂2 by the var() function are computed for a large sample size of n = 2000 for a very large number of
simulations.

1–13
n <- 2000; nsim <- 200000
"Barrett" <- function(n) {

gini <- gini.mean.diff(rnorm(n))$gini
return((sqrt(pi)*gini/2)ˆ2)

}
GiniVar <- var(replicate(nsim, Barrett(n) ))
ClassicVar <- var(replicate(nsim, var(rnorm(n)) ))
RE <- ClassicVar/GiniVar # relative efficiency
print(RE)
[1] 0.9738433
# Barrett (2004, p. 27) reports 98 percent.

The example estimates RE ≈ 0.97, which is acceptably close to the value reported by Barrett. Therefore, the
computed value is consistent with Barrett’s value. Barrett also states that this RE holds for all sample sizes. This
conclusion is tested in example 1–14 for a sample size of n = 10.

1–14
n <- 10
GiniVar <- var(replicate(nsim, Barrett(n) ))
ClassicVar <- var(replicate(nsim, var(rnorm(n)) ))
RE <- ClassicVar/GiniVar # relative efficiency
print(RE)
[1] 0.8752343
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Example 1–14 estimates REn=10 ≈ 0.88, which is clearly at odds with Barrett’s statement—RE is in fact a function
of sample size. Another experiment shows that REn=20 ≈ 0.93. J

1.4 Summary

In this chapter, a special class of statistics based on order samples or the order statistics is formally introduced, and
14 code examples are provided. The primary results are an expression for the expectation of an order statistic, the Sen
weighted mean, and Gini mean difference. Foreshadowing, the L-moments and TL-moments, the connections between
these and the Sen weighted mean and Gini mean difference are shown using R.
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