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Chapter Three.  A Map-Based Surface Water Flow Simulation Model

3.1.  INTRODUCTION

Through the construction of a map-based surface water flow simulation

model (SFlowSim) for the Niger River Basin in West Africa, this chapter

demonstrates how the three elements ( maps, data sets, and programs) of a

simulation model are integrated.

The map-based surface water flow simulation model can be used for the

water resources assessment and management of a river basin.  The model can be

applied to any area where a digital elevation model (DEM) is available or to a

region whose river basin polygons and river lines are available.  Listed below are

the tasks that this model can accomplish:

•   Simulate river flow time-series based on precipitation defined on watershed

polygons or water surplus defined on soil units.  After applying the

simulation model to a river basin, the flow rates are available at the From-

Node and To-Node (termed FFlow and TFlow, respectively, in the model)

of each river line.  The From-Node and To-Node represent the starting and

ending points of a river section line (Figure 3.1).  The Post-processor of the

simulation model can also interpolate flow rates to any user defined points

along the river section.

•   Estimate the flow contribution of each subwatershed (termed PFlow in the

model).

•   Allow reservoir objects to be added to a river section and simulate their

effects.
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•   Allow diversion points to be set on a river section and simulate their effects

on downstream river flows.

•   Plot a longitudinal flow profiles along a user specified river section.

•   Plot the flow time-series (FFlow(t) and TFlow(t)) of a river section or the

flow contribution time-series of a subwatershed.

•   Allow a user to clip out part of a river basin to create a sub-model so that a

more detailed study of the selected subregion can be performed.

•   Optimize model parameters to facilitate the calibration of the simulation

model.

•   Allow a user to modify the modeling conditions directly from the model

base maps.

•   Integrate with the map-based groundwater simulation model to simulate the

flow interaction between surface and subsurface water flows.

Three classes of objects are essential for this map-based surface water flow

simulation model.  They are (1) a line class created to represent river sections, (2)

a polygon class created to represent the subwatersheds associated with the river

sections, and (3) a point class created to represent reservoirs or diversion points

within any river section.  Each river section is an instance (object) of the line

class, with its states being stored in a line value attribute table and its behavior

described by some flow routing equations.  As each record is added to the line

attribute table, a new river section object is created.  The same thing can be said

for the river basin polygon and reservoir point classes.
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(1) Assuming single-cell polygons 1, 2, 3,  all have a Grid-Code (GC) value of 1
(2) Running ARC/INFO DISSOLVE function will dissolve cell 1 with subwatershed
     GC=1, but not single-cell polygon 2, and 3, because they don’t share any common
     boundary lines with subwatershed GC=1.
(3) After running the AVENUE program SFdslv.pre, single-cell polygons 2, and 3 will
     have their Grid-Code reassigned to 2.
(4) Running ARC.INFO DISSOLVE function again will dissolve cell 2, and 3 with the
     subwatershed GC=2, because they now share at least one common boundary line.

GC=Grid-Code

Single-cell polygons

Subwatershed •

•

From-Node

To-Node

River section

Figure 3.1.  Solving the problem of one-line-to-many-polygons

3.2.  MODEL CONSTRUCTION PROCEDURE

Based on their functions, the programs in the map-based surface water

flow simulation model can be grouped to form three modules: pre-processor,

processor and post-processor.  The pre-processor is used to create the model

objects, construct model base maps, create time-series data tables and process

time-series data.  The processor is used simulate water flow on the rivers and

subwatersheds.  The post-processor is used to analyze and display model results.

The post-processor also contains utility programs that can be used to modify

model maps and modeling conditions and to perform map operation and database
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management tasks.  Figure 3.2  shows the components of the map-based surface

water flow simulation model (SFlowSim) and its construction procedure.  The

following section discusses the functions of the pre-processor and the construction

of model maps.

3.2.1.  Preparing Maps for a Map-Based Simulation Model

The maps (river and basin coverages) of a map-based simulation model

are constructed by applying the river basin delineation procedure (Maidment,

1994) to a digital elevation model (DEM).  As a result of running this delineation

procedure, two map coverages are produced.  One is a line coverage representing

the rivers and the other one is a polygon coverage representing the drainage areas

of the rivers.  Figure 2.2  shows the rivers and subwatersheds of the Guadalupe

River Basin created by delineating a 3’’ (with a grid cell size of 92.7x92.7 meters)

DEM of the region.  These river line and subwatershed polygon coverages are

imported into an ArcView project and processed by a set of AVENUE programs

(pre-processor).  The processed river sections form a river network whose

members have a one-to-one relation with the subwatershed polygons associated

with the river network.  The pre-processor programs and simulation model’s basic

assumptions are discussed below.
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Regional DEM lattices
(Raster based GIS)

Watershed delineation
procedure

River line and watershed
polygon coverages
(Vector based GIS)

Map-operating procedures
 * create river line object
 * create watershed object
 * construct stream network
 * establish one-to-one link
    between river lines
    and watershed polygons

Suitable for spatial analysis

Suitable for network analysis

Map-Based Surface Flow Simulation Model Processor

Pre-processor

Flow distribution display

Constructor of the river
flow diversion objects

Constructor of the dam/
reservoir objectsFlow-check point constructor

Baby-model constructor
Optimization program for
model parameter-fitting

Utility programs
Post-processor

Avenue programs
Spatially-referenced
time series data sets

Base Maps

Figure 3.2.  Components of the map-based model SFlowSim

3.2.2.  Basic Assumptions for a Map-Based Simulation Model

A map-based surface water flow simulation model is constructed based on

the following assumptions about the river network and subwatersheds:
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(1)  Each subwatershed contains one and only one river section,

(2) The simulated quantities such as water flow, chemical mass etc.,

cannot be transported between subwatershed polygons unless through

the river sections that connect them.  When the surface water

simulation model is integrated with groundwater simulation model in

Chapter Five, this condition will be modified to allow water in an

integrated model to flow from one subwatershed to another

subwatershed through the aquifer underneath them.

(3) For a given river section, the From-Node is always at the upstream end

and the To-Node, at the downstream end.

(4)  The vertices of a given line1 are indexed in such a way that a zero

index vertex is associate with the From-Node, and for a line of n+1

vertices, the vertex with index n is associated with the To-Node.

Condition (1) is imposed to ensure the one-to-one relationship between the

descriptive features of polygon and line coverages.  This condition is reasonable

because one river subwatershed can contain one and only one river section.

Condition (2) is imposed so that network routing is possible.  Because river basin

boundary lines are formed by the points where elevation potential reaches local

maximum, condition (2) is consistent with the definition of a river basin.

Condition (2) is therefore reasonable when imposed on water and substances

carried by water in a river basin.  Condition (3) is imposed to create a river

network.  Condition (4) is imposed to enable the dynamic segmentation of a line

so that any given point on the line can be identified by a fraction representing the

ratio between the distance of that point to the From-Node and the total length of

the line.

                                                          
1 .  In ARC/INFO, a line (arc) is represented as a connected set vertices.
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 3.2.3.  Construction of Basic Maps

The vector GIS coverages created by the grid-based watershed delineation

procedure (Maidment, 1994) may not meet the assumptions listed above because

the raster-to-vector conversion procedure does not always ensure a one-to-one

relationship between river lines and subwatershed polygons.  The problems to be

corrected are usually one-line-to-many-polygons and one-polygon-to-many-lines.

The problem of one-line-to-many-polygons is usually caused by the existence of

single-grid-cell (single-cell) polygons.

Figure 3.1 shows an example of the problem created by the single-cell

polygons.  To correct the problem, these single-cell polygons need to be

eliminated by dissolving them into the appropriate subwatershed polygons.

ARC/INFO provides a DISSOLVE function that will dissolve polygons that (1)

have the same value of a given field (e.g. Grid-Code) and (2) share a boundary

line.  For the single-cell polygons that have the same value of Grid-Code with a

subwatershed polygon but do not share any boundary lines with the subwatershed,

an AVENUE program is written to reassign to each of these single-cell polygons

the Grid-Code of a subwatershed that shares the same boundary line with it.  The

AVENUE program will first identify and put all single-cell polygons into a list.

Then for each member of the list, the program uses LPoly_ and RPoly_ attributes

of the polygon’s boundary lines to identify one of its adjacent subwatershed

polygons, whose Grid-Code value is then assigned to that of the single-cell

polygon.  The fields LPoly_ and RPoly_ of a line (arc) attribute table hold the

machine-assigned IDs of left polygon and right polygon, respectively.  After all

the single-cell polygons have their Grid-Code reassigned, the DISSOLVE

function of the ARC/INFO program is reapplied with Grid-Code as the dissolving
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value to eliminate the single-cell polygons.  This procedure solves the problem of

one-line-to-many-polygons.

The problem of one-polygon-to-many-lines can occur in the situations of

(1) split river line segments in a single subwatershed, (2) multiple river line

segments within one subwatershed, and (3) incorrect node indexing on the river

line coverage.  Figures 3.4 and 3.5 illustrate the examples of these situations.  One

of the tasks of the pre-processor is to eliminate the problem of one-polygon-to-

many-lines by running a series of map-processing programs to modify the

ARC/INFO coverages created by the watershed delineation procedure.  After

modification, these two coverages (river line and subwatershed polygon) will

meet the four conditions listed in section 3.2.2. and be ready for use by the map-

based flow simulation model.  The functions of each program in the pre-processor

are described below:

1.  Creating River Line and Subwatershed Polygon Objects [SFmdfld.pre]

This program adds attributes to the standard ARC/INFO arc attribute table

(AAT) and polygon attribute table (PAT) to create river line and watershed

polygon objects.  The attributes of a watershed polygon object and a river line

object are listed in Table 3.1. and Table 3.2.  Detailed explanations of these

attributes will be given when they are used.

The states of an object are used in this simulation model to describe the

physical features of the object and/or to control the processes in the simulation

programs.  These states can be used in a program as either a regular variable or

logical variable or both.  When a state of an object is used to describe a physical

parameter of the object, it is treated by the simulation program as a regular
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variable and the program is interested only in the return values of that state

(variable).

Table 3.1.  The Attributes of a Subwatershed Polygon Object

State Function (What the attribute represents)
1 Shape Pointer pointing to the map location of a polygon object
2 Area Area of a watershed polygon (m2)
3 Perimeter Perimeter of a watershed polygon (m)
4 Cover_ Polygon ID, based on which pointers to time-series vectors (PFlowVt,sprVt,

rchVt, headVt, dhVt, dvolVt, etc.) associated with the polygon are constructed.
5 Cover_id User assigned polygon id
6 Grid_Code Key field linking a subwatershed polygon with the river line section it contains
7 Pisdone 0 indicates the polygon has NOT been simulated, non-zero, otherwise, and the

value equals the number of polygons between this polygon and the outlet
8 PFlow Local flow contribution, for unsteady state, it gives the average flow rate over the

models simulation period (m3/s).
9 FlowTime Average time it takes for flow starting from an element (a grid cell) on a

subwatershed to reach the outlet point of the subwatershed (s)
10 DiffNum Diffusion number of PFlow indicating the extend of the PFlow spread-out
11 V Overland flow velocity (m/s)
12 ThmRslt For thematic plotting of a selected attribute at a given time step
13 Hasgrd 0 indicates no groundwater flow model exists underneath, 1, otherwise
14 ToGrd The percentage of flow recharging to the groundwater system
15 MFL Mean flow length of a subwatershed (m)
16 Msurp Soil moisture surplus (m3/s) (subwatershed river flow contribution)
17 ToRes The fraction of the subwatershed water surplus that goes to subsurface reservoir
18 ResK Mean residence time of water in a subsurface reservoir [T]
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Table 3.2.  The Attributes of a River Line Object

State Function (What the attribute represents)
1 Shape Pointer pointing to the map location of an object
2 FNode_ Node ID of the starting point of a river line section
3 TNode_ Node ID of the ending point of a river line section
4 Lpoly_ Left polygon machine-assigned ID (ID of the polygon to the left of the line)
5 Rpoly_ Right polygon machine-assigned ID (ID of the polygon to the right of the line)
6 Length The length of a river line section (m)
7 Cover_ Machine assigned river line ID
8 Cover_id User assigned river line ID
9 Grid_code Key code linking subwatershed polygon with the river line section it contains

10 LIsDone 0 indicates a river line has NOT been simulated, non-zero value indicates
otherwise, and the value equals the number of joints between this river line and the
basin outlet

11 IsHead 1 indicates a river line is a head section (section with no upstream river lines)
12 IsOutlet 1 indicates a river line is a  outlet section (last section on a stream network)
13 FFLOW The flow rate at the FNode of a river line (m3/s)
14 TFLOW The flow rate at the TNode of a river line  (m3/s)
15 DFlow The water withdraw on a river line (diversion flow rate) (m3/s)
16 Velocity Flow velocity on a river line (m/s)
17 LossC Loss coefficient related to a river line (1/m)
18 Timelag Flow time to the TNode of a river line along its longest upstream flow path (s)
19 MELE Mean elevation (definition to be decided) of a river line (m)
20 HasDam 0 indicates there is no dam in the river line, non-zero indicates otherwise, and the

value is the dam-id of the first dam on the river line
21 Hasresp 0 indicates no response function is available, non-zero value indicates otherwise,

and the value equals the number of the elements in the response function
22 Hasgrd 0 indicates no groundwater flow model exists underneath, 1 indicates otherwise
23 togrd The percentage of river flow that goes to groundwater recharge

When a state of an object is used by a program for procedure-control

purpose, the state is treated by a program as both a logical variable and a regular

variable.  In this case, the program is interested in both the return values of the

state (variable) and the ranges which these values fall into.  When a state is used

by a program for the purpose of procedure control, a zero-value usually indicates

FALSE/NO, a non-zero value usually indicates TRUE/YES.  In addition, the non-

zero value is also used as a pointer to either a new function, another object, or
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values of the physical characteristic of the object.  For example, when the state,

HasDam of a river line object returns a value zero, it indicates that there is no dam

on the river line.  When HasDam returns a non-zero value, it indicates there is at

least one dam located on the river line and the value is also the identification

number (ID) of the first dam on that river line.

Formulating such a design minimizes the number of states of an object so

that the number of fields of the database table can be minimize to save the

computer memory space and improve program efficiency.  

2.  Sorting Nodes and Vertices of River Lines [SFsortr.pre]

This program sorts the nodes of river line sections so that the From-Node

(FNode) of a river line section is always on the upstream end and To-Node

(TNode) is always on the downstream end.  The program also sorts the vertices of

a river line so that the vertex with zero-index is located at the FNode of the line.

This program first identifies all the river outlet segments and puts the IDs

of these river segments into a list.  Then, for each member (outlet river line

segment) of the list, the program performs the following procedure.  Starting with

a member on the list, the program traces first in the upstream and then in the

downstream direction on the river network with the member as its outlet segment.

When moving in the upstream direction, the program travels from arc to arc

according to the connectivity established by the FNode and TNode of the arcs

(river line sections), corrects the incorrectly indexed nodes, and identifies the river

junction sections until a head river section is reached.  A head river section is

defined as the first river section in a river network, i.e., the river section with no

upstream river sections.  A junction section is defined as a river section with more

than one immediate river sections.  The program then starts to move downstream
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and stops at each junction section to see if all its upstream river section nodes

have been sorted.  If not, the program stops moving downstream and starts to

move upstream again along another branch of the network that has not yet been

checked by the program.  The program repeats these upstream and downstream

movements until the outlet section is reached.

Figure 3.3 illustrates the program logic and Figure 3.4. shows an example

result of applying the SFsortr.pre program to a stream reach network.

Start @ outlet section
rvst=stack.make

Is the direction
correct ?

Yes

TheSect.IsHead ?

Yes

Correct the nodes
and vertexes

No

rvst.isEmpty ?

STOP

rvst.push(rvid)
move upstream
by one section No

rvst.pop
move downstream

by one section

TheSect.IsJoint ?

Yes

No

No

Have all its
upstream sections

checked ? YesNo

Search/Select an
unchecked upstream

river section

Yes

Note:
TheSect = the river section

Figure 3.3.  Program flow chart for Pre-processor Sfsortr.pre
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(a) Line presentation of a river
section created by delineation
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5

6 7
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(b) After correcting node ordering

(c) After merging the segments

Figure 3.4.  Merging multiple river segments into one river section

3.  Cleaning the River Line Splits [SFsplit.pre]

The purpose of the river split cleaning program is to remove any river

splits that are contained in one subwatershed polygon so that each subwatershed

polygon contains only the river segments that can form one single line.  A split is

defined as three river segments forming an “Y” shape that are contained by a

single subwatershed (Figure 3.5).  Without correction, the polygon that contains
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split river lines will have a one-to-many relation with the river lines.  The splits

are caused by the conversion procedure used transform a grid coverage to a vector

line coverage.  When using the GRIDLINE or STREAMLINE functions to

convert a delineated grid lattice to a line coverage, the cells (referred to as joint-

cells) at the locations where three subwatersheds joint can assume any ID of these

three subwatersheds.  If the ID-values assigned to the river line segments at the

joint cell are inconsistent with those assigned to the subwatersheds, the problem

of line split will occur.  Although the lengths of these split lines are typically

small (1 to 1.414 times the grid cell size), each one of them still forms a record in

the spatial database file.  Because of their small sizes, it is difficult to detect and

correct them manually.

The split-cleaning program works in the following way.  For each polygon

in the river basin coverage, the program searches through features on the river line

coverage to select all the line segments that are contained within the polygon and

sends the selected lines to a list.  If the number of line segments selected is greater

than one, then for each line segment in the list, the program saves its FNode

number.  This FNode number is then used to select all the line segments in the list

that have that FNode as their TNode.  If the number of selected lines is greater

than one, then an upstream split is found.  To correct the problem, for each one of

the split segments, its FNode number is used to trace upstream to find its

upstream segment.  Once an upstream segment is found, its stream ID is used to

reset the stream ID of the split river segment.  Figure 3.5  illustrates the correction

of a split.
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Polygon IPolygon II

Polygon III

ArcID=5

ArcID=5

ArcID=5ArcID=11

ArcID=13

(a) Before cleaning the splits

Polygon IPolygon II

Polygon III

ArcID=5

ArcID=13

ArcID=11ArcID=11

ArcID=13

(b) After cleaning the splits

RiverSections

BasinBoundaries

Figure 3.5.  Rearranging river sections

3.  Merging Multiple River Segments into one River Section [SFmg1ln.pre]

The purpose of the segment merging program is to merge any multiple

line segments contained by a single subwatershed polygon into one single line

object so that each subwatershed contains only one line section.  To do this, the

program first creates a new line coverage (NewCov) from the old river line

coverage (OldCov).  This NewCov is used to hold the river line objects that will

be merged.  Then, for each polygon in the subwatershed coverage, the program
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searches through the river line coverage (OldCov) to select the line segments that

are contained by the polygon.  If the number of selected records equals one, the

program simply copies the river line object to the NewCov database.  If the

number of lines selected is greater than one, the program will first check through

these lines to make sure they are connected to each other in a correct order from

upstream to downstream.  If they are not, the program will correct the problem

based on the TNode and FNode indexes of each line segment.  These line

segments are then merged and copied to NewCov.  To merge these line segments,

the nodes and vertices of each line segment are extracted and put into a list based

on the order of the line segment.  The merged line is then created from this point

list.

Upon the completion of the program, SFmg1ln.pre, the NewCov line

coverage, and the subwatershed polygon coverage have the following properties:

(1) each subwatershed polygon in the basin polygon coverage contains one and

only one river line section, (2) each river line section is contained by one and only

one subwatershed polygon, (3) the line sections are all connected in the order with

FNode on the upstream end and TNode on the downstream end, and (4) all the

vertices of a line are correctly indexed with the zero indexed node at the FNode.

Figure 3.4 shows an example result of applying SFsortr.pre and SFmg1ln.pre to a

river line coverage.

3.3.  DATABASE DESIGN FOR SPATIALLY-REFERENCED TIME-SERIES DATA

Because the simulation model is constructed to simulate surface water

flow over both space and time, a database with a data structure that allows

efficient storage and retrieval of spatially-referenced time-series data needs to be

developed before the simulation model construction can start.  This section
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discusses the design of such a database and how spatially-referenced time-series

data are managed in this map-based surface water flow simulation model.

3.3.1.  Two Types of Spatially-Referenced Data

Based on the number of values a physical parameter can have for one

location, spatially referenced physical data for a surface and ground water

simulation model can be divided into two categories, one value per location (or

one-to-one), and many values per location (or one-to-many).  The examples of

one-to-one data type are: the area of a polygon, the latitude and longitude of a

point, or the length of a river section.  Time-series data are of the one-to-many

data type.  Examples include: precipitation records, runoff records, and water

level records.

During a modeling process, in order to store and retrieve these two types

of data efficiently, different data structures and retrieval methods need to be used.

In designing these data structures and data management systems, it is assumed

that a location feature, whether it is a polygon region, a line river, or a point

runoff station, can be uniquely identified by a location ID (COVER-ID).

  3.3.2.  Data Structure for Data of One-to-One Type

Data of the one-to-one type can be stored as location attributes attached to

a conventional GIS coverage.  In this type of database, location ID is used as a

key field for data storage and it is also the only information needed to retrieve a

data value of a given physical parameter.  The data structure of a one-to-one data

type is illustrated below in Figure 3.6.
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COVER-ID AREA Kx Ky .....

L01

L02

L03

L04

.....

Number of records = number of polygons, points, or number of line segments

Number of fields = number of physical parameters

Figure 3.6.  Database structure for the one-to-one data type

3.3.3.  Data Structure for Data of the One-to-Many Type

Data of the one-to-many type can be stored in separate databases with one

database file for each parameter at each location.  The file structure of the one-to-

many data type is illustrated in Figure 3.7.  In this type of databases, a file name

should reflect the location ID and the name of the physical parameter that it

stores.  The number of files for a given parameter will be equal to the number of

spatial features where the time-series data are available.  However, because the

number of spatial features is usually large causing large number of files to be

created, this type of data structure is inefficient for data storage and retrieval.

To avoid creating and managing a large number of files, another type data

structure is designed and used in this study to manage the spatially-referenced

time-series data.  According the this design, a single data file is created for each

spatially-referenced, time-varying attribute.  In the file, the time-series data

defined on a map is stored in a rectangular table data structure (i.e. the data

structure of a relational-database), in which, the columns (fields) corresponds to
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the spatial features on a map and rows (records) corresponds to the time steps.

Figure 3.8 illustrates this type of data structure.  The data structure is designed in

such a way that a one-to-one relationship exists between the fields of a time-series

database and the spatial features of the map on which the time-series data are

defined.  The header (field name) is constructed by concatenating some letters

related to the name of the location with a unique location ID.  The letters can be

the abbreviation of either the name of the attribute or the field name of the

location ID in the spatial database table.

The key field for this type of database is TIME for time-series data, and

STAGE-ID for multiple-stage data.  To retrieve a data value for a given physical

parameter, one can first get the Location-ID from an appropriate map coverage,

then use the parameter name together with the location ID to open the appropriate

file and select the field associated with the location, and finally, use the STAGE-

ID or TIME value to locate the correct record for data retrieval.
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(1) Number of files = Numbers of locations where
      time series records are available
(2) FileName=Physical parameter name + location ID

Figure 3.7.  The database files for the one-to-many data type

Number Of Fields = Number Of Records In (AAT/PAT)
Field Names="GC"+ValuesOfCover_ID in  (AAT/PAT)

Time/Stage GC1 GC2 GC3 ..........
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Figure 3.8.  The database structure for one-to-many data type
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3.3.4.  Connections between Databases and the GIS Feature Attribute Tables

In ARC/INFO, feature attribute tables (FTAB) are INFO files associated

with each feature type.  For a given coverage, a FTAB is created from a template

of standard items based on the feature types of the coverage.  Figure 3.9 shows the

data structures for FTABs associated with each type of coverage.

As stated above, a single database with the template shown in Figure 3.6

can be created to store all the physical data of one-to-one type.  The table is then

joined through a linking field (usually the COVER-ID) to the FTAB.  Once this

table merge procedure is completed, the value of a given parameter at any location

can be retrieved using the value of the key field (COVER-ID).  Because the data

items are merged with the value attribute table of a GIS coverage, data retrieval

and modification procedures are straightforward.

For the data of one-to-many type, a separate database table with the

template shown in Figure 3.8  is created.  As this type of database is not

physically joined with the FTAB of a map, its data retrieval and modification at a

given location need are done through the linkage created by AVENUE programs.

To retrieve a time-series record, information about the parameter name, location

ID, and the TIME or STAGE-ID are needed.  The parameter name and location

ID jointly tell the program which database file to open and which field to select,

and TIME allows the program to select the correct record number for data

retrieval.  Figure 3.10  illustrates the data flow path for spatially-referenced time-

series data.
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FND#  TND#  LPLY#  RPLY#  LENGTH  COV#  COVER-ID

Line coverage data attribute table structure (AAT)

Polygon/Point coverage data attribute table structure (PAT)

UserDefinedKeyField

UserDefinedKeyField

AREA PERIMETER COVER-# COVER-ID

Figure 3.9.  Feature attribute tables in ARC/INFO

Shape Cover_ Cover_ID

** 1

2

3

4

Time GC1 GC2 GC3 GC4

Spatial Features (Map) Feature Attribute Table (PAT/AAT)

Table of Time-Series Data Sets

1

2

***

4

3
2

1

SomeFields

Figure 3.10.  Connection between maps and spatially-referenced time-series data

3.4.  CONSTRUCTION OF THE SURFACE FLOW SIMULATION PROGRAM

The map-based surface water flow simulation model simulates flow on the

river network based on the flow-routing equations introduced in Chapter Two and
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the equations to be introduced in the following sections.  In the model, water

movement in a river network is simulated at three levels: (a) watershed-to-river

water movement defined on a subwatershed polygon, which transfers either the

precipitation or the soil-moisture surplus into the local stream flow contribution,

PFlow(t), (b) water movement on a river section contained in a subwatershed

polygon, and (c) water movement between river sections on the river network

(inter-section water movements).  The algorithm that simulates the water

movements between river sections also performs network analysis on the river

network to determine an appropriate sequence for simulating each subwatershed.

The algorithms that simulate water movements (a) and (b) are problem dependent

and are flexible.  For this reason, this map-based surface water flow simulation

model can easily be modified to simulate other water flow related phenomena,

such as non-point source pollution analysis so long as the simulation module for

PFlow(t) is properly modified.  The following sections show how water

movement is simulated in this map-based surface water flow simulation model.

3.4.1.  Simulating Water Movement between River Sections

The following facts and concepts are used to construct the object-oriented

algorithm that simulates water movement on the river networks.

(1)  A line coverage has been constructed using the method described in

Section 3.2.3. to represent the river network.

(2)  A polygon coverage has been constructed using the method described

in Section 3.2.3. to represent subwatershed polygons.

(3)  The features in the river line and subwatershed polygon coverages

have a one-to-one relationship so that the features of these two

coverages are connected through a common key field.
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(4)  Corresponding to each feature on the line and polygon coverages there

is a record in the river line attribute table (RFTAB) and polygon

feature attribute table (PFTAB) associated with their respective

coverages.  Routing through the river network and subwatersheds

corresponds to processing though the records in the RFTAB, and

PFTAB.

(5)  The water movement on the stream network is based on the principle

of continuity (e.g. Equations 3.1a and 3.1b) and the connectivity of the

network maintained by the From-Node and To-Node of each river line

object.

As shown in Tables 3.1 and 3.2 and in Figure 3.11, the PFlow (PFlow(t)

for unsteady state) associated with a subwatershed polygon object is used to

represent the object’s local flow contribution.  FFlow and TFlow (FFlow(t) and

TFlow(t) for unsteady state) associated with a river line section are used to

represent the river flow rate at FNode and TNode of the river line object.  Besides

applying the continuity equations (Equations 3.1 and 3.2) to the river network to

simulate the water movement between the river sections, this module also

determines a the order in which subwatersheds will be simulated.
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(1)
1

2

3

4

(2)

(3)FFlow3=TFlow1,3+TFlow2,3
        - Rnode3

TFlow3,4=FFlow3*C3
       + PFlow3

BasinBoundaries

RiverLines

FFlow1

FFlow3

•
•

•

•

PFlow3

TFlow3,4

Figure 3.11.  River basin flow routing system

The sequential order is constructed using a stack-based algorithm.  A stack

is an array (collection) that allows the Last-In-First-Out (LIFO) access to its

elements.  The algorithm is described below (See Figures 3.12a  and 3.12b).

When simulating the water movement between the river sections, each

stream line and each subwatershed are treated as entities.  The effect that a stream

section and its subwatershed have on the stream network can be replaced by a

value, TFlow of the river section for steady state, or by a vector TFlow(t) for

unsteady state.  In other words, as soon as TFlow, (or TFlow(t) for unsteady state)

of a subwatershed is acquired, the river section as well as the streams upstream of

the section can be cut-off from the remainder of the network.

As the algorithms used to simulate the physical processes in terms of

PFlow, FFlow, and TFlow depend on the modeling conditions and methodology

used, they can be different from one model to another.  The flow simulation
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algorithms used in this research are presented in sections 3.4.2, and 3.4.3.  To

illustrate how water movements between river sections are simulated, it is

assumed that (1) the PFlow of a subwatershed polygon object is retrievable by

sending a request to the polygon object, and (2) FFlow and TFlow can be

computed based on the PFlow defined on the subwatershed polygons and the

connectivity of the river network.  Under steady state, the relationships (Equations

3.1 and 3.2) between FFlow, PFlow, and TFlow can be derived from the principle

of mass conservation and the connectivity of the river network (Figure 3.11).

Given a river section i, we have:

FFlowi = TFlowk, i + Ri
k

∑ (3.1a)

if this river is not a head section, or

FFlow PFlow
Thrd

Areai i
i

i

= •
(3.1b)

if this river is a head section, where,

i = a river section’s ID (=FNode#),

j = a river section’s TNode#,

k = the ID of river sections that have node i as their To-Nodes,

FFlowi
 = flow rate at From-Node of river section i (m3/s),

TFlowk,i = flow rate at To-Node (i) of river section k (m3/s),

Ri = source term (pumping or recharging) at node i (m3/s),

Thrdi= threshold defining a river starting point used in basin delineation,
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Areai= area of the subwatershed that contains river section i (m2).

The flow rate at the To-Node is given by:

TFlowi , j = FFlowi * Ci + PFlowi − DFlowi
(3.2a)

if this river line is not a head section, and

TFlow PFlow DFlowi j i i, = −
(3.2b)

if this river line is a head section, where,

i = river section ID,

Ci = river sectional flow gain/loss coefficient of river section i (1/m),

PFlowi = runoff contribution of river basin polygon i, that contains river

section i (m3/s),

DFlowi = flow diversion on river section i (m3/s).

Figures 3.12a and 3.12b show the program flow chart of the module that

simulates the water movement between river sections.  The center-piece of the

algorithm is a stack used to keep track of the stream lines that the model has

traveled, so the algorithm can be called a stack-based stream network analysis

algorithm.  The logic of the algorithm is explained below.

It can be seen from the program flow chart (Figures 3.12a and 3.12b) that,

for a given river section, the program starts with searching upstream to find the

stream sections flowing into it.  There are three possible outcomes of the search.

(1)  If no upstream section is found, and the section is not the head section,

then a mistake must have occurred either in the programming procedure or in the
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stream network formulation.  The program will exit and print an error message for

program debugging.

(2)  If one or more upstream sections are found, at least one of them is not

yet simulated, the current river object (identified by its ID) is pushed into the

stack and the program moves upstream to one of the river objects not yet

simulated.  This procedure is repeated until a head section is found.  Once a head

section is identified, the program searches through the subwatershed polygon

attribute table (PFTAB) to identify the subwatershed containing the head section.

If none is found, the program exits and prints an error message. Otherwise, the

program issues a request to the flow simulation module defined on the

subwatershed polygon to get PFlow.  Equations 3.1b, and 3.2 are used to compute

the FFlow and TFlow of the river object.  Once this is done, the algorithm moves

to the next downstream river section by issuing a pop request to the stack.  At this

downstream section, the algorithm again searches upstream and checks the if all

the upstream sections have been simulated.  Based on the outcome of this search

and test, the program decides if it can simulate water movement on the current

river object or whether it must push this stream object into the stack and move

upstream.

(3)  If one, or more than one upstream sections are found, and all have

their flow simulations completed (indicated by state value, isdone=1), the river

flow is simulated at the current section.  The program searches for the

subwatershed containing the current river section.  One and only one basin should

be found.  If not, the program prints out an error message and exits.  Otherwise,

the program issues a request to the subwatershed polygon to get the PFlow and

uses Equations 3.1a and 3.2 to compute FFlow and TFlow.
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The procedure is repeated until the outlet section is reached and its flow is

simulated.  This procedure is illustrated in the flowchart shown in Figures 3.12a

and 3.12b.

The program is designed in such a way that it allows the model to be

applied on any user defined portion of a river basin.  The program can also be

used to simulate water flow in a region having more than one river network.



71

Program Starts:
(1) Initilize computation related attributes
(2) Select a stream to start the computaton
(3) Create a stack (RvSt) to hold river id (rvid)

Yes

AllDone=0 LFound=0

No

No

Yes

No

Error: Exit level(1)

Yes

Loop 2: basin polygon objects

Loop 1:  river line objects

PFound=0

No
Error: Exit level(2)

Yes
Error: Exit level(3)

Yes

No

Send request to get
PFlow(t) from the
polygon flow model

Yes

Model run completes
Exit level(0)

rvid=rvst.pop
Start moving
Downstream

Update FFlow of
downstream river
section (rvid)

Send a request to a river
module to get TFlow(t)

Update: Tflow
Lisdone=1

RvSt.Push(rvid)
Move upstream

No

If((isOutlet) or
(RvSt.IsEmpty))

If(AllDone)

IsHead(rvid)

If(PFound)

If(PisDone)

If(LFound)

Update: PFlow
PisDone=1

Figure 3.12a.  The main loop of algorithm simulating water movement within and
between subwatersheds
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Get LTnodeV Get IsHeadV
Get IsDoneV  Get IsOutletV

No
Yes

Yes
No

AllDone=1

LFound=1

Given FnodeC

IF(TnodeV=FnodeC)

IF(IsDoneV=1)

IsLastStream

AllDone=0, EXIT

EXIT

Next Stream

Loop ONE:
Loop through
stream class in
searching for
the upstream
river section

Get the first stream

Get PGCodeV
Get IsDoneV

PFound=1
EXIT

NextBasin

Given A LGCodeV Get a basin polygon

PGCodeV=LGCodeVIsLastBasin
No Yes

PFound=0
EXIT Yes

No

Loop TWO:
Given LGCodeV
searching for
a basin poly with
PGCodeV=
LGCodeV

Figure 3.12b.  Subloops of the algorithm simulating water-movement within and
between subwatersheds
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As an example to show how inter-subwatershed water movement is

simulated on a river network, line section 25 (be referred to as S25 here after) in

Figure 3.13 is selected to start a simulation run.  The sequence by which the

simulation model is applied to each river section on the stream network is

described below.

From S25, realizing its upstream section S27 has not been computed yet,

the program pushes S25 into the stack and moves upstream to S27.  Because S27

is a head section, the program gets PFlow from the subwatershed containing S27,

computes FFlow and TFlow for S27, then issues a pop request to the stack to get

S25 and moves downstream to S25.  On S25, it finds that S33, another upstream

section of S25, has not been simulated.  The program again pushes S25 into the

stack and moves upstream to S33, gets the PFlow from the polygon containing

S33, and moves downstream to S25.  This time, the program finds that all its

upstream sections (S27, S23) have been simulated and it is time to simulate water

movement from the From-Node to To-Node of S25.  The model will then activate

a module that simulates water movement between the From-Node and To-Node of

a river section to simulate the water movement on section S25.  After this, the

program sends a pop request to the stack to get S18 and moves downstream to

S18.  This procedure is repeated until the outlet section is reached and simulated.

Figure 3.14 gives the sequence by which the program visits and simulates river

sections on the river network shown in Figure 3.13.
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Figure 3.13.  The Guadalupe River Basin

* S25 S27 S25 S33 S25 S18 S21

S35 S28 S40 S39 S40  OutletReached (Loop 14 times )

S18

S28

Figure 3.14.  Program travel path given by the stack-based algorithm

3.4.2.  Simulating Water Movement within a River Section

This section describes how water movement from the From-Node to the

To-Node on a river section is simulated.  As discussed at the beginning of this

section, this simulation model is designed in such a way that by changing the

modules used to compute PFlow, FFlow, and TFlow (element functions), the

model can be used to simulate different hydrologic processes without changing

the stack-based stream network analysis procedure.

In this map-based surface water flow simulation model, four flow routing

modules are available to simulate water movement between the From-Node and

the To-Node.  These four modules use (1) a response function method, (2) a two-

step function method, (3) dam/reservoir model combined with the two-step

function method, and (4) a Muskingum-Cunge method.  All of these four modules
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are constructed based on the principle of continuity.  Figure 3.15 shows the logic

of the program used for river routing.  IMax in Figure 3.15 stands for the

maximum time step interval allowed before the Muskingum method becomes

unstable.  HasDam, HasResp, and Muskingum are the states of a river line object

given in Table 3.2.  As can be seen from this figure, the decision of selecting one

specific simulation module (out of four) is made based on the river features at run-

time.  The theory and programming methodology used to construct each of these

four modules are discussed below:

.

Given a river section HasDam
Yes

C
all D

am
R

outingP
rogram

No

HasResp
Yes

Get Resp. function &
compute TFlow(t)
using Eq 3.3

Muskingum

No

No
Yes

Istep< IMax

No

Yes

UseMuskingum
method for the
river routing

Use the Two-Step
flow routing
procedure to
compute TFlow(t)

START

END

END

Figure 3.15.  Program flow chart of river section flow routing module

(1)  The Response Function-Based Flow Routing Module

The state, HasResp, of a river line object, indicates if a user-supplied

response function (Maidment, 1993) is available for the river section.  HasResp=0

indicates no response function is available and HasResp=k (k≠0) indicates a user-

supplied response function is available and the response function has k
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components.  When a river section has a response function that takes the water

flow time-series at the From-Node as an input and produces the flow time-series

at the To-Node as an outputs, this response function is used to simulate water

movement between the From-Node and To-Node of the river section.  The

response-function-based flow routing module is constructed using the following

equation:

TFlowi, j
t = FFlowi

t −k

k=0

min(t,N )
∑ ⋅Ui

k + PFlowi
t − DFlowi

t − Lossi
t (3.3)

where,

TFlowi, j
t = TFlow of river section i (with j as its To-Node), at time step t

(m3/s),

FFlowi
t −k = FFlow of river section i at time step t-k (m3/s),

Ui
k = the response function of N elements for river section i,

PFlowi
t = PFlow of subwatershed i at time step t (m3/s),

DFlowi
t= flow diversion of river section i at time step t (m3/s),

Lossi
t = stream water loss of river section i at time step t (m3/s).

The water loss in a river section is computed using the following equation:

Lossi
t = FFlowi

t ⋅ Lengthi ⋅ LossCi (3.4)

where, Lengthi  = the length of river section i, (m),

LossCi = loss coefficient of river section i, (1/m), a river line attribute that

can be used as a model calibration parameter.
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(2)  The Two-Step Flow Routing Module

This flow routing model is a special case of the response function flow

routing model.  This module is used when a user-supplied response function is not

available and when the use of Muskingum method is not computationally

efficient, i.e., when the size of simulation model time step is much greater than

the average travel time through the reach, ∆t >>
Li

vi

.  Given below is the equation

used for the two-step flow routing module:

TFlowi , j
t = FFlowi

t −1 ⋅ Llagi + FFlowi
t ⋅(1 − Llagi )

                 + PFlowi
t − DFlowi

t − Lossi
t

(3.5)

where, Llagi = The normalized time lag between From-Node and To-Node

of river section i,

Llagi =
Li

Vi

∆t
, (3.6)

Li  = the length of river section i (m),

Vi  = the average flow velocity on river section i (m/s),

∆t  = the size of simulation time step.

As it can be seen from Equation 3.5, the two-step flow routing module is

based on the principle of continuity of water flow and guarantees that the water

mass will be preserved.
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(3)  Dam and the Two-Step Flow Routing Module

The state, HasDam, of a river line object, indicates if dams (or reservoirs)

exist on the river section.  HasDam=0 indicates there is no dam on the river

section.  HasDam=k, (k≠0) indicates there is at least one dam located on the river

section, and the value k is also the ID number of the first dam on the section.

When one or more dams exist on a river section, the reservoir routing procedure

(DAMRT.ave) is called to simulated the effects of reservoirs on the river flow.

Whenever reservoirs exist on a river section, the two-step flow routing module is

used to simulate the water movement on the river segments between the dams and

From-Node and To-Node of the river section.  The dam simulation module is

discussed in Section 3.5.1.

(4) Muskingum-Cunge Flow Routing Module

The state, Muskingum, of a river line object, indicates if the Muskingum-

Cunge river routing method will be used for the river section.  Muskingum=0

indicates the Muskingum method will not be used to simulate water movement on

the river section and Muskingum=n (n≠0) indicates that the Muskingum flow

routing method will be used if the number of internal loops is less than n.  The

internal loops are constructed to ensure the computational stability of the

Muskingum river flow routing procedure.  The internal loop is discussed further

below.  The Muskingum-Cunge method is introduced in Chapter Two and the

flow routing equations derived for the method are reproduced here as Equations

3.7 and 3.8.

TFlow C FFlow C FFlow C TFlow Ci j
t

i
t

i
t

i j
t

, ,= ⋅ + ⋅ + ⋅ +− −
1 2

1
3

1
4 (3.7)



79

where,

C1 =
∆t − 2KX

2K(1 − X) + ∆t
(3.8a)

C2 =
∆t + 2KX

2K(1− X ) + ∆t
(3.8b)

C3 =
2K(1 − X) − ∆t

2K(1 − X) + ∆t
(3.8c)

C4 =
PFlowi

t − DFlowi
t − Lossi

t

2K(1 − X) + ∆t
, (3.8d)

K
x

c
=

∆
, K is a storage constant [T], (3.8e)

X =
1

2
−

Avg(TFlow, FFlow)

2c B Se∆X
 (3.8f)

X = a weighting factor showing the relative importance that FFlow and

TFlow have on a river section’s storage, (0 ≤ X ≤ 0.5) , where 0

indicates pure storage and 0.5, indicates pure translation,

c = kinematic wave velocity (m/s),

B = cross-sectional top width associated with average of TFlow and

FFlow,

Se = the energy slope,

∆x  = the length of a river section.

To ensure the stability of the flow routing, C3 needs to be greater than

zero.  From equation 3.7c, it can be seen that in order for C3 ≥ 0 , we need to have

∆t ≤ 2K(1− X) .  When the simulation time step ∆t  does not satisfy this

relationship, the time step needs to be subdivided into smaller steps.  In the

simulation model, C3 ≥ 0  is achieved by subdividing a simulation model time
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step into multiple n internal time steps so that ∆ti =
∆t

n
≤ 2K(1− X ) .  When n is

too large, the round-off errors accumulated by the internal loop may outweigh the

benefits brought by using the Muskingum-Cunge method.  In this event, the

simulation model switches to use the two-step function flow routing module

(Figure 3.15).

3.4.3.  Simulating Water Movement within a Subwatershed

In this map-based surface water flow simulation model, PFlow(t)

represents local runoff generated in a subwatershed.  Several methods are

available to calculate PFlow(t) from precipitation observations, e.g. by spatially

interpolating the precipitation to the center point of each subwatershed and then

converting the precipitation to PFlow(t).  In the Niger River Basin simulation

model, PFlow(t) is constructed from the soil-moisture surplus time-series

produced using a simple bucket model.  As the input data sets for the soil-

moisture balance model, monthly time-series tables of precipitation and potential

evaporation for the period July 1983 to December 1990 were estimated at each

point on a regular mesh of 0.5 degree cells covering the study area.  This

computational mesh was selected because long term mean monthly estimates of

rainfall and temperature at these points were available from C.J. Willmott at the

University of Delaware.  As discussed in Chapter Two, a convolution procedure

(Olivera and Maidment, 1996) is used to convert soil-moisture surplus to local

runoff (SurpF(t)-> PFlow(t)).

Using this method, PFlow(t) is simulated with two flow components.  One

is SFlow(t) used to simulate the overland flow and the other one is OFlow(t) used

to simulate the subsurface water flow.  The overland flow is estimated by

applying the concept of unit hydrograph to the soil surplus, SurpF(t). The
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equations that the subwatershed to river water movement simulation module uses

are given below:

SFlowi
t = SurpFi

t −k

k= 0

min( t, N)

∑ (1 −α i) ⋅Ui
k (3.9)

where,

  SFlowi
t = local flow contribution (through surface) of subwatershed i at

time step t (m3/s),

SurpFi
t −k = soil moisture surplus of subwatershed i at time step t-k (m3/s),

Ui
k  = k-th component of the response function of PFlowi

t  on SurpFi
t ,

αi  = the fraction of surplus that goes to subsurface, (0 ≤ αi ≤ 1),

N = total number of components in the response function Ui
k .

The response function of used in this study is given below:

U

k Di
kvi
Ti

( )     k= , , ....Ni
k

(
kvi
Ti

)

Di
kvi
Ti

= −
−1

2

1 2 3
1 2

4
π

exp (3.10)

where,

k =1,2,3...N, the index of components in the response function,

Di= dispersion coefficient for subwatershed i, Dispersion coefficient is

used to measure the degree of the overland water spreading

through time.
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Vi  = average overland flow velocity for subwatershed i, (m/s),

Ti  = average overland flow time for subwatershed i (s).

The values of these parameters for a subwatershed can be estimated either

through hydrologic analysis of the subwatershed or through the optimization

module to be discussed later in this chapter.

The subsurface water flow component of PFlow(t) is considered to be

going through an imaginary underground reservoir.  The flow through the

reservoir can be simulated using a linear reservoir model.  Equations used to

perform flow routing through a linear reservoir are given below:

OFlowi
t = Si

t −1 / Ki         (t = 1,2,3,....) (3.11)

Si
t = Si

t −1 + (SurpFi
t ⋅ αi −OFlowi

t ) ⋅ ∆t (3.12)

where,

  OFlowi
t  = the subsurface flow component at time step t, on polygon i

(m3/s)

  Si
t  = storage of the under-ground-reservoir at time step t, on polygon i

(m3),

Ki  = the linear reservoir constant representing the average residence time

of water in the reservoir (s).

After these two components are computed, the local flow contribution of

subwatershed i at time step t is computed using Equation 3.13.

PFlow SFlow OFlowi
t

i
t

i
t= + (3.13)
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3.5.  OTHER SIMULATION MODEL OBJECTS

This section describes three other classes of objects used in the simulation

model, dam/reservoir object, flow-check object, and flow-diversion object.  All

these objects appear as a points on a point coverage and are located on a river line

object.  The point location on the river line is dynamically calculated from a user

specified cursor location.  The algorithm that performs the dynamic line

segmentation is described in Section 3.6.4.

3.5.1.  The Dam Objects

The dam/reservoir objects are designed to simulate the effects of dams and

reservoirs on river flows.  The states of a dam/reservoir object are given in Table

3.3.  A utility program is available to construct dam/reservoir object directly and

interactively from a river map.  For each dam object created, a new record is

added to the dam feature attribute table (FTAB) and a time-series table is created

to hold time-series data sets for reservoir routing.  The states of a dam object are

listed in Table 3.3a and the fields in the dam routing time-series table are given in

Table 3.3b.  The graphic point on the dam coverage is connected to the dam’s

FTAB through the shape field in the FTAB.  The connection to its associated

time-series table is established through the DamId and the name of the time-series

table.

During a flow simulation, the presence of a dam/reservoir object is

detected by the simulation model through the return value of the HasDam state of

a river section.

HasDam=0 indicates that no dam is located on the river section.  The

return of a non-zero value of HasDam indicates that there is at least one dam on
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the river section and the non-zero value is the Dam-ID of the first dam located on

the river section.

Table 3.3a.  The Attributes of a Dam/Reservoir Object

State Function (What the attribute represents)
Shape Pointer pointing to the map location of the object
Damid The ID of a dam/reservoir object, Damid is also a pointer pointing to the time-series

table associated with the reservoir
DamName The name of a dam/reservoir
Capacity Capacity of a reservoir (m3)
Area The water surface area of the reservoir when storage=capacity (m2)
Upst The active storage of the dam/reservoir (m3)
DeadSt The dead storage of the dam/reservoir(m3)
Evt The evaporation rate of the reservoir (mm/day)
Pdam Damid of the upstream dam located on the same section, 0=No upstream dam
Ndam Damid of the dam downstream of the dam on the same stream section, 0=No dam

located downstream
Storage0 Initial storage of the reservoir (m3)
Area0 Initial water surface area of the reservoir (m2)

Table 3.3b.  The Fields of a Dam-Routing Time-Series Table

FieldName Function (What the attribute represents)
Time Simulation time steps
Inflow Inflow time-series of the reservoir (m3/s)
DmdFact Demand factor of each simulation time step
WithDraw Water withdraw of each time step
NetEvp Net evaporation of each time step (mm/day)
Sarea Surface area of each simulation time step (m2/s)
Spill Discharge (including water used for power generation) of each time step (m3/s)
Storage Storage at the end of each simulation time step (m3/s)

In the process of a river flow routing, if a reservoir is detected on a river

section, the river routing program will call the dam simulation module DAMRT

and pass the Dam-ID and FFlow(t) to DAMRT.  The DAMRT module will then

simulate the behavior of the reservoir.  The simulation is based on the information
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passed to it from the river-routing program, the states of the dam object, and the

reservoir operating rules.  The results of the simulation are stored in a time-series

database table associated with the dam, of which, discharge time-series (spill-

vector) is passed back to the river routing program to be used as FFlow(t).  If

more than one dam exist on a river section, the output of the first dam becomes

the input of next dam.  This loop will continue until the last dam of the river

section is reached and simulated.  The output of the last dam is then returned to

the river routing program to be used as FFlow(t).

The module DAMRT, that simulates a reservoir water balance is

constructed based on equation 3.14 (Chow et al., 1987):

St = St −1 + (I t − Yd t − Atet − Qt )∆t (3.14)

where,

It = inflow in time step t (m3/s),

St = reservoir storage at time step t (m3),

Yd t= withdrawal at time step t, given by the reservoir operation rule

(m3/s),

Atet = evaporation loss at time step t (m3/s),

et  = evaporation loss rate at time step t (m/s),

At = reservoir water surface area (m2).

The reservoir water surface area, At , is estimated using the equation

(Woelke, 1985):

At = (St −1)0.72  (3.14a)
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where, Qt = reservoir water release to downstream at time step t (m3/s).

Reservoir release is given by the reservoir’s operating rule subject to the

following constraints:

Qt ≥
St −1

∆t
+ (I t − Ydt − Atet ) −

Sc

∆t
(3.15a)

Qt ≤
St −1

∆t
+ (I t − Ydt − Atet) −

Sd

∆t
(3.15b)

where, Sc = the reservoir storage capacity (m3),

Sd = the reservoir dead storage (m3).

Relation 3.15a ensures that at any time step, the reservoir storage will not

be greater than the reservoir capacity, and relation 3.15b ensures none of the water

in the dead storage goes into release.

Inflow to a reservoir is computed differently based on the location of the

reservoir.  When a reservoir is located at a non-head river section and is the first

on the river section, Equation 3.16a is used to compute the inflow.

I t = FFlowt(1 − Llag) + FFlowt −1 ⋅ Llag + PFlowt ⋅
∆A

A
(3.16a)

where,

Llag =
(XL / v)

∆t
 = fractional time it takes for water to travel from the

From-Node to the location of the dam,

XL = the distance between the From-Node and dam location (m),
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v = river flow velocity (m/s),

∆t  = the size of time step of the simulation (s),

∆A = regional area between FNode and the reservoir location (m2).

When∆A  is not given, it can be estimated using Equation 3.16b:

∆A =
XL

TL
⋅ A (3.16b)

A = the total area of the subwatershed where the reservoir is located,

TL = total length of the river section.

When a reservoir is located at a head section and is the first on the river section,

Equation 3.16c is used to compute the inflow.

[ ]I PFlow Llag PFlow Llag
A

A

PFlow
A

A

t t t thrd

t

= ⋅ − + ⋅ ⋅

+ ⋅

−( ) ( )1 1 ∆

∆
       

(3.16c)

where, ∆Athrd  = threshold area that initializes a river used in watershed

delineation procedure.

Comparing Equation 3.16c with 3.16a, it can be seen that in the head river

section, FFlowt = PFlowt ⋅(
∆Athrd

A
) .  When a reservoir is not the first reservoir

on a river section, its inflow is computed using equation 3.16d.
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Ii
t = Qi −1

t ⋅(1 − Llag) + Qi −1
t −1 ⋅ Llag[ ]+ PFlowt ⋅

∆A

A
(3.16d)

where,

i = sequential numerical index of the dams in a river section with i=1 for

the first dam on the river section.  i=2,3,4..,

Llag =
(XL / v)

∆t
the fractional time it takes for water to travel from dam i-1

to i,

XL = travel distance along the river line from dam i-1 to i,

Qi−1
t  = water release of reservoir i-1 at time step t. (m3/s).

It can be seen from the equations above that dam simulation module uses

Equations 3.14 and 3.15 to perform the reservoir water balance computation and

uses the two-step flow routing module to simulate the flow in the river segments

between the dams.  More complex reservoir operating rules such as the ones

introduced in the works of Loucks (Loucks, 1981) could also be included in this

dam/reservoir simulation model.

3.5.2.  The Flow-Check Point Objects

The flow-check objects are created at the locations where stream flow

estimations are desired because the simulation model produces the flow estimates

only at the From-Node and To-Node of each river section.  A utility program is

written to allow the interactive construction of these objects on a river network.

Table 3.4 lists the attributes of a flow-check point object.  The algorithm used to

interpolate flow rate to a flow-check point is discussed in Section 3.6.4.
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Table 3.4.  Attributes of a Flow-Check Point Object

State Function (What the attribute represents)
Shape Pointer pointing to the map location of the object
Pointid Identification number of a flow-check point
FFlow FFlow of the river line object on which a flow-check point is located
TFlow TFlow of the river line object that a flow-check point is located
IFlow Flow interpolated at a flow-check point
Oline A flag specifying if a flow-check point is located on a river (Oline=0 indicates the

flowchk point is on the river line, Oline=1 indicates the point is not on the river line
but within the simulated area, and Oline=-1  indicates the point is out of the area)

Pcntage between the distance of a Flow-Check point to From-Node and the length of the
river section.

Length The length of the river section where a flow-check point is located

3.5.3.  The Flow-Diversion Point Objects

When a flow diversion point has a constant flow rate, it is incorporated

into the river object associated with the point.  The diversion rate is put into the

attribute DFlow of a river object.  When a flow diversion point has a time-varying

flow rate, it can be simulated using the reservoir object with constant storage and

no evaporation loss.  These objects are detected and simulated by the river flow

routing module.

3.6.  UTILITY PROGRAMS AND POST-PROCESSORS

The utility programs of this map-based simulation model are constructed

to allow interactive model modification and make easy result presentations

possible.  This section describes the designs of these interactive model

modification and result presentation programs.
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3.6.1.  Construction of a Sub-Model

When simulating surface water flow process on a large river basin, it is

sometimes necessary to isolate a portion of the river basin for more detailed study.

For this purpose, it is desirable to clip a portion of the river basin from the main

model to form a sub-model.  When a simulation model is constructed in the

traditional means, constructing such a sub-model requires an effort comparable to

that used to construct the original basin model.  In this map-based simulation

model, however, a sub-model can be constructed interactively from the existing

basin model in a ’real-time’ operating style, i.e. when a portion of the map is

selected and copied, a new model of the selected region is created.  The procedure

to create a sub-model is listed below:

(1)  select the maps necessary to create the model by making their

corresponding themes active in an ArcView’s view window,

(2)  select the features (polygons, lines, or points) from each map that fall

into the study region of the sub-model,

(3)  run the sub-model construction utility program (CLIPMDL.utl) to

create the sub-model.

Because the model is constructed based on the concept of object-oriented

programming, the newly created sub-model inherits all the features of the original

model.  Therefore, once constructed, all the programs applied to the original

model can be applied to the sub-model.  Figure 3.17 in Section 3.6.2 shows an

example of a sub-model.  The logic of the program that enables interactive sub-

model creation is explained below.

It is known that for each feature object on a geographic map there is a

record in the relational database table containing the states of the object and the

model programs have the ability to access both the map feature and its associated
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record.  In procedure (1), at the same time when each map is selected, its related

database table is also selected, and in procedure (2), when features on these maps

are selected, their corresponding records in the database tables are also selected.

The functions of the sub-model construction program [CLIPMDL.utl] are

(1) to make one copy of map-templates (class) for each user-selected map, (2) to

loop through each selected database table and copy the selected records to its

newly created map-template, and (3) to create an alias for the newly-created maps

so that they are the same as those for the maps in the original models.  The reason

that newly created maps keep the same alias as those of its original maps is that

the maps are referenced in the model programs by their alias.  Programs identify

maps by their alias rather than their real file name, and if the maps of the sub-

model have the same alias as those of original maps, all the programs used in the

original model can be applied to the sub-model without any modifications.

The sub-model construction utility program also identifies the sources of

the river network so that inputs related to those streams can either be inherited

from the original model simulation results or supplied by the user.  A source

stream is defined as a river section whose inflow streams in the original model are

cut off by the clipping procedure.

3.6.2.  Optimization Algorithms

This section describes the optimization algorithms developed for the

purpose of simulation model calibration.  Two optimization algorithms, multi-

directional and interactive, are developed in this research for the purpose of model

calibration.  Both algorithms require a user to provide, on a space defined by the

optimization variables, a value range for each variable to be calibrated.  The

interactive model usually requires multiple runs to get an optimal solution and for

each optimization process, a new solution space based on previous runs needs to
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be defined.  The second method, multiple directional optimization requires a user

to define only the solution space at the beginning of a calibration process.  After

the solution space is defined, the optimization model applies a bisection algorithm

on each dimension to search for an optimal solution set.  The concepts of both

optimization modules are discussed below in Sections 3.6.2.1. and 3.6.2.2.

3.6.2.1.  The Interactive Optimization Algorithm

The purpose of this interactive optimization algorithm (IOA) is to calibrate

the model parameters for this map-based simulation model.  The optimized

parameters are defined as a set of parameters that produce a best-fit between a

simulated and observed river flow time-series at a given location.  Two standards

(match standard) used by the algorithm to evaluate the extent of fit are: sum of

mass discrepancies (SMD) and sum of root mean square errors (RMSE). A best-

fit time-series can be defined as the time-series that minimizes RMSE and

produces zero SMD.  SMD function is used to ensure that the average flow rate

produced by the simulation model equals that of the observed in the same period

of time.  RMSE function is used to pursue the best match between the simulated

flow time-series and observed flow time-series.  Since the model is designed in

such a way that the optimization algorithm is independent of the match standards

used, a user of the model can add other standards to achieve better matches on the

low flow and peak flow period.   Mathematically, the sum of mass discrepancies

can expressed as:

SMD =
(Ot − Ft)

t =1

n

∑
Ot

t =1

n

∑
(3.17)
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The sum of root mean square error can be expressed as:

RMSE

O F

O

t t

t

n

t

t

n=
−

=

=

∑

∑

( )2

1

1

(3.18)

where, Ot  = observed flow rate at time step t at a flow gage station,

Ft  = simulated flow rate at time step t at the same flow gage

station.  The function Ft  can be written as:

Ft = F(x1,x2, x3,...xn ) (3.19)

where, x1,x2, x3,...xn = model parameters.  The parameter optimization

problem becomes the problem of finding a parameter set   

r 
P = x1, x2 , x3, ...xn{ } that

satisfies:

SMD =
(Ot − Ft)

t =1

n

∑
Ot

t =1

n

∑
= SMD(x1, x2 , x3, ...xn ) = 0 (3.17a)

and minimizes:
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RMSE
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As an example to show how the interactive optimization algorithm works,

the procedure of optimizing two variables, X1 and X2, for a simulation model

based on the standards imposed in Equations 3.17 and 3.18 is described below.

The algorithm assumes that the lower and upper limits of X1 and X2 are

known or could be reasonably estimated.  Let the lower and upper limit for X1 and

X2 be designated as x1min, x1max, x2min, and x2max, respectively.  The optimization

problem is equivalent to finding the X1, X2 combination from the parameter space

{X1,X2} that gives a minimum SMD and RMSE (Figure 3.16).  The algorithm

first discretizes each variable (represented as one dimension in the parameter

space) into a user specified range.  In this example, 6 steps are specified for

parameter X1 and 5 for X2.  As a result, 30 X1~X2 parameter combinations are

formed.  The interactive optimization algorithm then uses these parameter sets to

run the simulation model 30 times, and computes the RMSE and SMD based on

each simulation result.  The parameter set that returns the minimum RMSE or

SMD is manually selected as the first estimate.  A finer step size can now be used

to form another grid around the first estimate to form another parameter set in

search for a better fit.  The procedure can be repeated several times until an

optimal is found.
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Figure 3.16.  Problem solution space X1~X2

The procedures of applying this interactive optimization model to the

region above the Koulikoro flow-gauging station in the Niger River Basin is

described below to show the technical details of the optimization model

application.  Figure 3.17. shows the region whose parameters are to be optimized.

The region above the Koulikoro flow-gauging station consists of 10

subwatersheds with a total drainage area of 120,000 km2.  The flow-gauging

station is located at a distance 0.814 percent (measured from the From-Node of

the arc) of the total length on the outlet river section.  Monthly runoff records of

90 months from July 1983 to December 1990 at the Koulikoro flow-gauging

station are processed and used.  The input data sets for the map-based simulation

model are the time-series of soil-moisture surplus defined on each subwatershed

polygon.  The time-series of soil-moisture surplus are produced using the soil-

water balance model described in Chapter Two.
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Figure 3.17.  The area above the Koulikoro flow-gauging stations

            The purpose of applying the optimization model to the region is to find a set of
values  for  the  loss-coefficient   and  flow   velocity   of   each   river   section   so     that
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the river flow time-series produced by the simulation model at Koulikoro matches

that of observed at the location.  The match is defined by Equations 3.17 and 3.18.

As an estimate, ranges of the loss-coefficient1 and average flow velocity

on the river are estimated as below:

0.00001 ≤ lossC ≤ 0.0007 (1/km)

0.2  ≤ V ≤ 0.55 (m/s) (3.19)

The range of each variable is divided into 4 intervals with 5 steps, which

creates a testing space of 5x5=25 data sets.  After applying the interactive

optimization model under such conditions, four charts are generated by the model

to show the parameter values that produce the best fit.  These four charts are (1)

RMSE vs. parameter set (Figure 18a), (2) SMD vs. parameter set (Figure 18b), (3)

flow time-series plot of observed vs. simulated when RMSE is the minimum, and

flow time-series plot of observed vs. simulated when |SMD| is the minimum.  The

last two charts are not shown here because similar charts will be produced later in

Section 3.6.2.2.

Figures 3.18a and 3.18b show the plots of SMD and RMSE for each

parameter sets.  It can be seen from the plots that the minimum RMSE can be

achieved by adjusting the river velocity while the minimum SMD can be achieved

by adjusting the loss-coefficient of the river.  In most situations, to have zero mass

discrepancy between the simulated time-series and the observed time-series is

very important.  Figure 3.18b shows that the SMD curve crosses zero under all 5

velocity values used indicating the zero mass discrepancy can be achieved by

varying the loss-coefficient alone.  Therefore, by selecting a flow velocity that
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produces a minimum RMSE followed by adjusting the loss-coefficient of river

sections to get a zero mass discrepancy, it is possible to find a set of velocities and

loss-coefficient that produce zero SMD while minimizing RMSE.
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Figure 3.18.  Model calibration (SMD and RMSE vs. simulation runs)

Because this optimization run only produced the minimum RMSE and

|SMD| out of the predetermined parameter sets, further optimization runs are still

needed in order to find the river velocity and loss coefficient combination that

produces the minimum RMSE and |SMD| values.  As can be seen from Figure

                                                                                                                                                              
1 .  Loss in a river section is computed by: Loss=RiverLength*LossC*FlowRate while flow loss on
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3.18a, the value of RMSE may still go down if river velocity is further reduced.

Because for each run, this optimization model requires a user to specify a new

range for each model calibration parameter based on the previous run, using this

interactive optimization for the simulation model calibration can be a lengthy

process.

Another problem one may face when using this interactive optimization

model is to decide the ranges of parameters for a new run after an optimization

run is done because when the number of calibration parameters is greater than

two, the plots like Figure 3.18 will not be available, and without these plots, the

patterns of RMSE and SMD variations cannot be easily detected.  Because of

these problems, this interactive optimization model is never used to calibrate the

simulation model in this study.  Instead, the optimization model based on a

direction set method described in the following section is responsible for all the

model parameter calibrations.

The reasons why this interactive optimization model is discussed in this

section are (1) this model provides an alternative means of simplifying model

calibration procedure when the number of parameters to be calibrated is low and

(2) this model produces charts showing the effects that each model parameter has

on the changes of RMSE and SMD (Figure 3.18) when the number of parameters

is two.

3.6.2.2.  Optimization Module Based on a Direction Set Method

Using directional method, the optimization problem presented in

Equations 3.17a and 3.18a can be stated as:

                                                                                                                                                              
a subwatershed is computed by: Loss=MeanFlowLength*LossC*PFlow
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Given as inputs the vectors   
r 
P  and   

r 
n , and functions,   RMSE(

r 
P ) , from

Equation 3.18a, and SMD P( )
r

, from Equation 3.17a, find a scalar setλn

that minimizes   RMSE(
r 
P + λn

r 
n )  and satisfies   SMD(

r 
P + λn

r 
n ) = 0, where

  
r 
P  is a vector pointing to a point P in a N-dimensional space and   

r 
n  is the

unit vector in nth dimension of the N-dimensional space.  Once the scalar

set is found, the new vector   
r 
Q =

r 
P + λn

r 
n  is pointing to the point in the n-

dimensional space whose coordinates gives the optimal values of the

parameter set.

In searching for the optimal vector   
r 
Q , this optimization model uses the

bisection method (Press et al., 1992) in each dimension to perform successive line

minimization.  The bisection method is used for its simplicity and reliability, i.e.

when a root is contained in a range, the root will not be lost during the iterative

root-finding procedure if bisection method is used.

Before the bisection method can be used to search for a root of a function

G(x)=0 (Figure 3.19(A)), an interval [xa,xb] containing the root needs to be

provided.  For a continuous function, whether the interval contains a root can be

easily checked by testing the function values at the end points of the interval.  If

the function values have different signs at the end points, then at least one root is

contained in the interval.  The concept of the bisection algorithm is simple.  Once

an interval containing at least one root is given, the algorithm will evaluate the

function at both endpoints and the midpoint.  The endpoint giving the function

value the same sign as that of the function value at the midpoint is then replaced

by the midpoint.  The procedure is repeated until the function value at the

midpoint is sufficiently close to zero.  The criteria for convergence is problem



101

dependent and can usually be given by a user.  For our problem of solving

equation SMD x( ) = 0 , the convergence criteria are:

SMD xmid( ) < −10 5 (3.20a)

or

( )x x
k

1 2

2

+
< ≈ε (3.20b)

where, x1,x2,xmid = the endpoints and midpoint of last iteration,

respectively,

ε  = the convergence criterion given by a user, and

κ  = a computer’s floating point precision, 10-8 for float (single precision)

and 10-15 for double precision.  Similar convergence criteria is used for the

procedure that minimizes the RMSE.

Detailed discussion regarding how the convergence criteria should be set

can be found in books on numerical methods (e.g., Press et al., 1992).

Using the bisection algorithm to search for the minimum point of a

function follows a similar logic to the method used to find a function root.

Starting with a given interval [xa,xb] and xb>xa (Figure 3.19(B)), the program first

evaluates the values at the endpoints and the midpoint of the interval.  If the

function value at the middle point is greater than those at the endpoints, the

program will continue on to evaluate the function points at the locations of

xa+0.25(xb-xa), xa+0.75(xb-xa), and so on, until a point whose function value is

less than at least one endpoint is found, and the point would be used as xmid.  To

decide the next move, the program evaluates the function value at xtmp=xmid+dx,

where dx is a small number comparable to ε  in Equation 3.20b.  If F(xmid) <
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F(xtmp), then xmid is used to replace xb to start the next iteration, otherwise, xa will

be replaced.  The procedure is repeated until the function F(x) converges to its

minimum point or until the user specified maximum number of iterations is

reached.

Xa

XbXmid

xa

xmid+dx

Function F(x)

Function G(x) A

B

•

•

F(xmid+dx)

xbxmid

Figure 3.19.  Using bisection method to find root and minimum points of a
function
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3.6.3.  Simulation Model Calibration

The optimization models developed in the last section are used in this

section to optimize model parameters for the purpose of simulation model

calibration.

Figure 3.20. shows the map of the Niger River Basin and the locations of

the flow-gauging stations where reasonably reliable observed monthly flow time-

series data are available for the time period between July of 1993 and December

of 1990.  For model calibration purposes, five sub-models, each associated with a

flow-gauging station, are created.  The optimization model based on the direction

set method is applied to each sub-model to optimize the model parameters within

its region.  Based on river basin characteristic and the simulation model structure,

it was decided that six parameters affect the simulated river flow time-series.

These six parameters are listed in Table 3.3.

Table 3.5.  Simulation Model Parameters To Be Calibrated

State Function (What the attribute represents)
1 ToRes The fraction of a subwatershed water surplus that goes to the subsurface

reservoir
2 ResK Mean residence time of water in a subsurface reservoir [T]
3 VFact Overland flow velocity (m/s)
4 PlossC Subwatershed loss coefficient (1/m)
5 Velocity Flow velocity on a river line (m/s)
6 LossC Loss coefficient related to a river line (1/m)

After applying the optimization module to the Koulikoro sub-model

(Figure 3.17) with all six parameters selected it was found that the parameters

ToRes and ResK have little impact on the simulation results, although the

combination of ToRes=0.1 and ResK=7 produces slightly better results than other

combinations of these parameters.  Therefore, ToRes=0.1 and ResK=7 are used

throughout the whole model calibration process.
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Because both river velocity and overland flow velocity (Vfact) affect flow

distributions over the time domain, only one of them is needed for the

optimization.  For model calibration, the overland flow velocity (Vfact) is set to

0.013 m/s(=46.8 m/hr) while the river velocity was used in the optimization

model to minimize the RMSE.

Because overland flow occurs mostly in the form of small streams, and

because subwatershed water loss is estimated using the formula WaterLoss =

PFlow*MeanFlowLength*PLossC, which resembles the water loss formula used

in river loss estimation, it was decided that the polygon flow loss coefficient

PlossC should be set equal to the river flow loss coefficient, LossC.

After these considerations, the river water loss (LossC) and river velocity

(Velocity) are selected as the optimization parameters for the simulation model.
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Total Drainage Area = 2.337x106 km2

Delineated from 30’’ DEM (cell size=930x930 m)
with threshold=10000 cells

Figure 3.20.  The locations of flow-gauging stations in the Niger River Basin

Figure 3.21 shows the converging path of RMSE and SMD of the

simulated river flow time-series at Koulikoro when applying the bisection-

optimization scheme.  Figures 3.22 and 3.23 show the plot of the observed vs.

simulated flow time-series when the parameter sets obtained from the

optimization model are used.  From Table 3.6, it can be seen that when the river

velocity is 0.192 m/s (row 11), and Loss-Coefficient for the river and

subwatershed is 0.000985 /km, the best fit has RMSE=0.32 and SMD=0.0000116

(row 22).  These two values indicate that in a 90 month period, the simulated flow

time-series produced the same amount of mass while about 16%(=32%*0.5) of
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the mass is incorrectly placed in the time domain when compared with the

observed flow time-series.

Figure 3.22a also shows that when using the calibrated parameters, the

model underestimates both the high and low flows.  The possible explanations of

the underestimation may be the following reasons:

(1)  in the simulation model, the same LossC value is applied to all the

river sections and subwatersheds in the sub-model simulated area,

(2)  LossC is kept constant throughout the whole simulation period,

(3)  the surplus produced by the soil-water balance model may not be

adequate to generate the observed stream flow.

The underestimation caused by reasons (1) and (2) can be corrected to

some extent by assigning spatial and temporal variations to LossC but using non-

constant LossC will make the optimization model become more complicated.  The

underestimation caused by reason (3) can be corrected by either using a better

soil-water balance model with improved data sets or adopting other means to

produce soil-moisture surplus (SurpF(t)) and subwatershed runoff contribution

(PFlow(t)).  The estimation can probably also be improved by reducing the sizes

of subwatershed polygons and the number of subwatersheds selected for each sub-

model.
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Figure 3.21.  Using bisection method to fit two simulation model parameters
(LossC and Velocity)
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Table 3.6.  Optimization of River Flow Velocity and Loss Coefficient

Index RMSE SMD P-value Parameter-optimized
1 1.1312006 -0.1048283 0.0500000  Ngriver.shp,Velocity,0.05,0.4,1
2 0.4353920 -0.1303611 0.4000000  Ngriver.shpRatio ,Velocity,0.05,0.4,1
3 0.3635078 -0.1295793 0.2250000  Ngriver.shp,Velocity,0.05,0.4,1
4 0.3637302 -0.1295891 0.2260000  Ngriver.shp,Velocity,0.05,0.4,1
5 0.3926416 -0.1277653 0.1375000  Ngriver.shp,Velocity,0.05,0.4,1
6 0.3913918 -0.1278081 0.1385000  Ngriver.shp,Velocity,0.05,0.4,1
7 0.3634192 -0.1289932 0.1812500  Ngriver.shp,Velocity,0.05,0.4,1
8 0.3631668 -0.1290096 0.1822500  Ngriver.shp,Velocity,0.05,0.4,1
9 0.3612605 -0.1293339 0.2031250  Ngriver.shp,Velocity,0.05,0.4,1

10 0.3612916 -0.1293474 0.2041250  Ngriver.shp,Velocity,0.05,0.4,1
11 0.3610867 -0.1291775 0.1921875  Ngriver.shp,Velocity,0.05,0.4,1
12 0.3921203 -0.2030196 0.0007000  Ngriver.shp,LossC,0.0007,0.0013,0
13 0.3200113 0.1924934 0.0013000  Ngriver.shp,LossC,0.0007,0.0013,0
14 0.3198814 0.0100611 0.0010000  Ngriver.shp,LossC,0.0007,0.0013,0
15 0.3484921 -0.0924330 0.0008500  Ngriver.shp,LossC,0.0007,0.0013,0
16 0.3314523 -0.0402009 0.0009250  Ngriver.shp,LossC,0.0007,0.0013,0
17 0.3251588 -0.0148247 0.0009625  Ngriver.shp,LossC,0.0007,0.0013,0
18 0.3224380 -0.0023209 0.0009813  Ngriver.shp,LossC,0.0007,0.0013,0
19 0.3211422 0.0038874 0.0009906  Ngriver.shp,LossC,0.0007,0.0013,0
20 0.3217759 0.0007864 0.0009859  Ngriver.shp,LossC,0.0007,0.0013,0
21 0.3221004 -0.0007651 0.0009836  Ngriver.shp,LossC,0.0007,0.0013,0
22 0.3219352 0.0000116 0.0009848  Ngriver.shp,LossC,0.0007,0.0013,0
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Figure 3.22a.  Observed vs. simulated flow time-series at the Koulikoro flow-
gauging station (flow rate on base 10 logarithm scale)
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Figure 3.22b.  Observed vs. simulated flows at the Koulikoro flow-gauging
station
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Figure 3.23.  Observed vs. simulated mean-monthly flow at the Koulikoro flow-
gauging station

Using the same procedure, sub-models were created for the regions

associated with four other flow-gauging stations.  On each sub-model, the

optimization model is used to calibrate two simulation model parameters against

the long-term (1961-1990) monthly average flow and flow time-series in a seven

and a half year representative period (90 months from July, 1983, to December,

1990).  The results of these calibrations are summarized in Table 3.7.

Table 3.7.  Calibration Parameter Values for the Sub-Models

Station Name Time-series LossC (1/km) Velocity (m/s) RMSE SMD
Koulikoro 90 months 0.00098 0.192 0.3219 0.0000116

LongTerm 0.001 0.1656 0.1429 -0.0026
Douna 90 months 0.002826 0.0656 0.3736 -0.00394

LongTerm 0.000964 0.1029 0.1997 -0.0004
Dire 90 months 0.000609 0.184 0.278 -0.00134

LongTerm 0.00253 0.08 0.3735 0.000167
Ansongo 90 months 0.00027 0.289 0.1986 0.00095

LongTerm 0.0002935 0.2113 0.093 -0.00287
Niamey 90 months 0.000433 0.4859 0.399 0.00013

LongTerm 0.00692 0.29 0.262 -0.0008
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3.6.4.  Flow Interpolation Module

This module is created to interpolate the river flow rates to a flow-check

point object.  Due to its ability to dynamically segment an arc, the module is also

used in the optimization models and dam/reservoir object construction modules to

define the location of a point object.

The flow interpolation problem can be described as: given the flow rates at

From-Node (FFlow) and To-Node (TFlow) of an arc, find the flow rate at a given

point A located on the arc (Figure 3.24).  The equation used for the flow rate

interpolation at point A can be written as:

IFlowA = FFlow + (TFlow − FFlow) ⋅
SL

TL
(3.21)

where,

IFlowA  = Interpolated flow rate at point A,

SL = river distance between From-Node and point A,

TL = river distance between From-Node and To-Node, (point a and point g

in Figure 3.24).

As shown in Figure 3.24, a river line section consists of a set of straight

line segments.  Before SL can be computed, it is necessary to identify which

segment contains point A.  In Figure 3.24, α   and β  are two angles formed by the

line segment and the lines connecting point A to the end nodes of the line

segment.  It follows that if the line segment contains point A, the condition

((0 o ≤ α < 90o ) and (0 o ≤ β < 90o )) holds.  This condition is referred to as

“condition-A” in this section.  Otherwise, one of the angles is less than 90o , while
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the other angle will be greater than 90o .  It is also true that if the angle formed by

two non-zero vectors   
r 
A  and   

r 
B  is less than 90o , we have the dot product:

  

r 
A ⋅

r 
B = xa xb + yayb > 0 (3.22)

Because in an ARC/INFO coverage, the x,y coordinates of a point are

readily available, the dot product and the angle formed by any to vectors can be

evaluated using Equation 3.22.  Therefore, to compute SL in equation 3.21, the

flow interpolation program needs first to find out which river segment contains

point A.  Using the river section given in Figure 3.24 as an example, the method

for computing SL is described below.

Starting from segment ab, the program evaluates the angles ∠Aab, and

∠Aba.  Since angle ∠Aba is greater than 90o , condition-A does not hold

indicating that segment ab does not contain point A.  Therefore, length ab is

added to SL.  Applying the same procedure to segment bc reveals that condition-

A does not hold for segment bc either so the length of segment bc is also added to

SL.  On segment cd, the program finds that condition-A holds indicating that the

segment contains point A.  After adding the remaining segment cs of cd to SL, the

program uses Equation 3.21 to linearly interpolate the river flow rate to point A.
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Figure 3.24.  Interpolating river flow rate at a given point

The remaining segment cs can be computed using Equation 3.23 (in reference to

Figure 3.24):

cs = cA ⋅cos(α )

=
(xA − xc)(xd − xc ) + (yA − yc )(yd − yc )

(xd − xc )2 + (yd − yc )

(3.23)

3.6.5.  Plotting a Longitudinal Flow Profile

The map-based model allows a user to activate tasks directly from a map,

greatly simplifying some map-oriented operating procedures.  In this and the next

section, two map-oriented post-processing modules are introduced to illustrate the

strength brought by the integration of programs, maps, and databases.

To perform the hydrologic analysis of a river system, it is often necessary

to plot the longitudinal flow profile on a river.  If maps and databases are not

integrated, the river sections of interest first have to be selected,  then the flow

data for the selected river sections have to be extracted from the database.
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Finally, these data have to be sorted before they can be sent out to plot.  The

procedures are repeated each time a different river section is picked or flow

conditions changed.  In addition to the inefficiency brought by this tedious data

extraction and data processing procedure, the curve plotted is usually not shown

together with the map, which further hinders the interpretation of the plot.

In this map-based simulation model, because a program has access to both

the maps and database tables, the longitudinal profile of any selected river

sections can be plotted with a simple click on a river section.  The logic of the

plotting module is described below.

When a river section is selected, its location information is passed on to

the plotting program (SFtrplt.pst).  Based on the location information and river

network connectivity kept by the From-Node and To-Node of each river line, the

program traces downstream until the outlet section of the river network is reached.

As each river section is found, the flow information related to that river section is

collected from the flow table.  Because the flow data is collected at the same time

river sections are traced, the collected data set is already in the correct order to

make the plotting procedure an easy next step.  As the plotting program moves

from section to section downstream, the section it reaches is highlighted on the

map, so that visually, the user can be ensured that no mistake is made in the

tracing procedure.  The river sections remain highlighted when their longitudinal

flow profile plot is on display which helps with profile interpretation (Figure

3.25).  When plotting of another river section is desired, the user can simply mark

the new selection by clicking at the desired location and let plotting program

perform the tasks of river section tracking, data extracting, and curve plotting.
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3.6.6.  Plotting Time-Series Data at a Selected Location

This program (SFtmplt.pst) is designed to plot the temporal distribution of

a physical parameter at a given location.  Like the program designed to plot the

longitudinal flow profile, this program is also activated directly by a click of

mouse on the model maps.  When the location information is passed on to the

plotting program, the program uses the location information (location ID) to select

the time-series (vector) associated with the location and make a plot like that

shown in Figure 3.25.  The program is designed to work with the spatially-

referenced time-series data stored in a database table with the data structure

described in Section 3.3.
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Figure 3.25.  Plotting flow distributions with the map-based surface water flow
simulation model
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3.7.  CHAPTER SUMMARY

The map-based surface water flow simulation model is constructed based

on the concepts of object-oriented programming and GIS.  The model is designed

in such a way that all three components of a model, programs, maps, and

databases, are integrated.

The basic maps of the map-based model are an arc coverage containing the

river lines and a polygon coverage containing the subwatershed polygons. Both

maps can be constructed by applying a watershed delineation procedure to a

digital elevation model (DEM) of the study region.  A sequence of map operations

and data structure modifications are performed on these two coverages by a set of

pre-processor programs to create river objects, subwatershed objects, and finally,

a river network.  The connectivity of the river network is maintained by the From-

Node and To-Node of each river section on the network.  The river sections and

subwatershed polygons have a one-to-one relationship.

To simulate river flow, the attributes FFlow and TFlow (FFlow(t) and

TFlow(t) for unsteady state) are created for each river object to hold the flow rates

at the From-Node and the To-Node of the stream line object.  For each

subwatershed, PFlow (PFlow(t) for unsteady state) is created to represent the

subwatershed’s local runoff contribution.  The basic relationships between these

three quantities are established based on the principle of continuity and are given

by Equations 3.1a, 3.1b and 3.2.

The sequential order by which each subwatershed in the stream network is

simulated is constructed by a stack-based stream network analysis algorithm

developed for this simulation model.  The design of this stack-based stream

network analysis algorithm is based on the connectivity established by the From-
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Node and To-Node of each arc in the network.  After the sequential order is

decided, Equations 3.3 through 3.12 given in Section 3.4.2. are used to establish

the relations between PFlow(t), FFlow(t), and TFlow(t) and simulate water

movement on the river network.

Since the stack-based stream network analysis algorithm can be applied to

any stream network that fits the assumptions given at the beginning of this

chapter, it can be used to simulate other environmental processes as well.  For

example, if PFlow(t) represents some pollutant sources defined on a polygon

object and the pollutant transport mechanism can be established on the rivers, the

pollutant mass loading time-series FFlow(t) and TFlow(t) associated with the

From-Node and To-Node can be simulated the same way that water flow is

simulated.  In fact, the process that this model simulates may vary with the type of

model used to compute PFlow(t) on each subwatershed.

The integration of programs, maps, and databases allows easy creation of

sub-models, making it possible to divide a big study region into several sub-

regions for studies with different levels of detail.

To calibrate the simulation model, two optimization models having direct

access to the maps, databases, and simulation models are constructed.  Of these

two models, the interactive optimization model can be used to calibrate no more

than 3 parameters at a time because the model needs multiple runs to complete the

calibration process, and for each new run the model requires a user who relies

largely on the two-dimension plots (Figure 3.18) to define the problem solution

space.

The optimization model based on a direction set method is used for all the

simulation calibrations in this study.  The optimization program is designed in

such a way that it does not put a limit on the number of parameters that can be

calibrated at one time.  But when the number of parameters to be calibrated is
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more than four, it may take a long time to complete the optimization procedure.

The model also requires a user to provide ranges for all the calibrating parameters

at the beginning of a calibration procedure.

Although SMD and RMSE (Equations 3.17 and 3.18) are used in the

optimization model to evaluate how well the observed and simulated time-series

water, the optimization program is designed in such a way that other standards

such as lag-one correlation can be easily added.

The validation procedure of the map-based simulation model is not carried

out in this study for the following two reasons:

(1)  Because the main purpose of this study is to integrate the three

components of a model, the major effort  has been devoted to the

design and testing of the model programs and the communications

between the programs to ensure a smooth integration.  A large amount

of work is also used to create a smooth pre-processing procedure.

(2)  In the Niger River Basin area, it is difficult to find a second set of the

required data time-series, such as rainfall distribution and river runoff

observations that covers the same length of time without substantial

amount of missing records.

The main program (SFlowSim.prc) is designed in such a way that its

operation is independent of the modules used to simulate PFlow(t), FFlow(t) and

TFlow(t).  The model currently provides four modules for simulating water flow

on river sections.  Because all these four modules are hydrological (lumped) flow

routing algorithms, this map-based surface water flow simulation model can be

categorized as a hydrological (lumped) flow routing model, comparable to other

hydrological (lumped) flow simulation models.  If hydraulic (distributed or semi-

distributed) flow routing modules such as the methods based on the differential

equations of motion and continuity in an open channel (Saint-Venant equations)
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were used, this map-based model would become a hydraulic based (distributed)

simulation model.  At one point of this study, a hydraulic routing module based

on the kinematic wave routing method was designed and tested successfully to

run with the main program.  The module was later disconnected from the main

program because not enough field data were available for the Niger River Basin

area to support the hydraulic routing module.
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