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ABSTRACT

An Arc/Info Geographic Information System (GIS) method has been developed

for the assessment of nonpoint source pollution in a watershed.  This method makes use

of publicly available elevation, stream network, rainfall, discharge, and land use data

sets and uses a digital discretization, or grid representation, of a watershed for the

approximation of average annual pollutant loads and concentrations.

The San Antonio-Nueces Coastal Basin in south Texas is identified as the test site for

execution of the method.

A digital grid replica of the basin stream network is first created, employing a

"burn-in" process to affix the USGS Digital Line Graph stream network to the Digital

Elevation Model of the basin.  Precipitation is then compared with historical discharge

at five gauge locations in the basin and a mathematical relationship between rainfall

and runoff is established, using a regression analysis.  Literature-based Expected Mean

Concentrations (EMC's) of pollutant constituents are associated with land uses in the

watershed.  The products of these spatially distributed EMC's and the runoff in each

digital basin grid cell are calculated and then summed in the downstream direction to

establish spatially distributed grids of average annual pollutant loads in the basin.

Finally, grids of nonpoint source pollutant concentrations are created by dividing the

average annual pollutant load grids by a grid of total annual cumulative runoff.

In an effort to refine the process, a method of simulating suspected nutrient

point sources in the basin is investigated and an optimization routine is used with

pollutant measurement data at four major sampling points to adjust the literature-based

Expected Mean Concentration values for phosphorus.

The GIS nonpoint source pollution assessment method is performed for four

pollutant constituents:  phosphorus, nitrogen, cadmium, and Fecal Coliform.  Predicted

concentrations for phosphorus and nitrogen, when determined with the simulated point

sources, match closely with average observed concentrations in the basin.  Predicted

Fecal Coliform concentrations did not match well with average observed values, but

Expected Mean Concentration values for the pollutant were highly variable between

land uses and should be investigated further.  Insufficient heavy metal measurement

data exist to make conclusive assessments of predicted cadmium concentrations.
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1 INTRODUCTION

1.1 Background

In recent years, the contribution that nonpoint sources make to pollution in the

United States’ surface waters has come under closer scrutiny.  Nonpoint source, or

diffuse, pollution can be defined as pollution that is not associated with a specific

location, pipe effluent discharge, or “point”.  Duda (1993) lists nonpoint sources of

pollution to include agricultural activities, urban and industrial runoff, combined

sewer overflows and leaks, hazardous waste dumpsites, septic tank systems, mining

and forest harvesting activities, spills, atmospheric deposition, and hydrologic

modifications.  Intermittent discharges from these sources travel over land in a diffuse

manner before reaching surface waters (Rifai et al., 1993).

The relative significance of nonpoint sources in the overall spectrum of

pollutants has also been reassessed in recent years.  In a national assessment compiled

by the U.S. Environmental Protection Agency (EPA) (1992), four times as many

waters were found to be polluted by agricultural activities than by municipal point

source discharges.  Olem (1993) has identified nonpoint source pollution as the main

reason that U.S. waters do not meet water quality standards and, in an analysis of

nutrient water pollution, Puckett (1995) found that nonpoint sources were the

dominant source of nitrogen and phosphorus in the majority of streams studied.

While the Clean Water Act (CWA) of 1972 provided the initial legislative

means for restoring the quality of the nation’s waters, it was not until section 319 was

added in the Water Quality Act of 1987 (PL 100-4) that specific accounting for

nonpoint sources of pollution was addressed.  Through section 319, titled “Nonpoint

Source Management Programs”, the legislature required State governors to submit

State Assessment Reports identifying significant nonpoint sources of pollution to the

States’ navigable waters.  The Act also required the adoption and implementation of

State management programs for controlling pollution added from nonpoint sources to

navigable waters (U.S. Congress, 1987).

The Water Quality Act of 1987 also included, as section 320, a provision for

the establishment of regional National Estuary Programs (NEP's) to oversee the

development of comprehensive estuary management plans.  These National Estuary
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Programs are administered by the EPA and include representatives from State and

local jurisdictional entities, interested Federal agencies, and affected industries and

educational institutions.  One of the main purposes of each National Estuary Program,

in the construction of the management plan, is the development of a relationship

between in situ loads and point and nonpoint loadings of pollutants to the estuarine

zone (U.S. Congress, 1987).  As a result of this focus, much emphasis has been placed

on the characterization of water quality, including nonpoint source pollution

estimates, in each of the National Estuary Program study areas.

In addition to sections 319 and 320 of the Clean Water Act, section 6217 of

the Coastal Zone Act Reauthorization Amendments of 1990 requires States to

establish coastal nonpoint programs, subject to approval by the EPA and the National

Oceanic and Atmospheric Administration (NOAA).  The main purpose of section

6217 is to reinforce the interface between Federal and State coastal zone management

and water quality programs in order to strengthen regional efforts to manage land use

activities that typically degrade coastal waters (USDC-NOAA and USEPA, 1993).

At the Texas State level, the Texas Clean Rivers Act (Senate Bill 818),

enacted subsequent to section 319 of the Clean Water Act, requires that biennial

water quality assessments be performed for each major basin in the State.  The Texas

Natural Resource Conservation Commission (TNRCC) is responsible for

administering these assessments and relies on regional partner entities, such as river

authorities, to organize the assessments for each river basin.  For those

locations/basins where no river authority exists (such as in coastal areas between river

basins), the TNRCC is responsible for producing the assessment report (TNRCC,

1994).

Pursuant to Senate Bill 818, the Texas Clean Rivers Program was created by

the TNRCC to be the administering entity for the regional assessments.  One of the

responsibilities of the Clean Rivers Program is the organization of the assessment

report for the San Antonio-Nueces Coastal Basin, which does not fall within the

jurisdiction of an existing river authority.  The Corpus Christi Bay National Estuary

Program (CCBNEP) is also currently being conducted in the region and there is

considerable interest in the accurate characterization of pollutant loads to the bay

network and estuarine system there.

In support of the TNRCC's water quality assessment of the San Antonio-

Nueces basin, a study of pollutant sources is needed.  As part of this study, a reliable



3

method of assessing nonpoint source pollution in the basin is required.  This report

addresses the need for such a method and takes advantage of the technical

opportunity to investigate alternatives for computing nonpoint source loadings on a

spatially distributed basis.

1.2  Objectives

A simplified method of nonpoint source pollution assessment is developed

using the Arc/Info geographic information system (GIS).  This method uses a fine

mesh of 1 hectare (ha) cells laid over the landscape, accounting for the pollutant

loading and runoff derived from each cell.  By tracing the flow of water from cell to

cell, the movement of pollution over the landscape and through a stream network is

simulated.  This method allows for the calculation of average annual nonpoint source

pollutant loadings to a regional hydrologic system.  In addition, estimates of average

expected pollutant concentrations resultant from nonpoint sources are determined.

This research shows that the association of typical pollutant concentrations

with land uses in a watershed can provide a reasonably accurate characterization of

nonpoint source pollution in the watershed.  This method can also be used to identify

areas within a basin that may contribute more significantly to nonpoint source

pollution.  Accordingly, the method is well suited for the selective location of

sampling stations in the establishment of local water quality sampling programs.

There are some limitations with the method discussed in this report.  First, only

average annual assessments are performed, so that runoff and pollutant loads are

considered to be steady state parameters from year to year and within any year.

Average monthly assessments could be just as easily performed using the same

method, but temporal variations in runoff and pollutant loads throughout the basin

would need to be correlated with gauged U.S. Geological Survey (USGS) streamflow

values and are not considered in this study.

Secondly, pollutant concentration from local runoff is assumed to be directly

related to land use in the region and is not considered to vary from event to event or

within areas of similar land uses.  In particular, a single average estimated pollutant
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concentration is assigned to all agricultural land uses instead of considering unique

concentrations for different crops, soil types, or activities.

Throughout this study, pollutant transport in streams is considered to be

conservative, i.e. no decay of pollutants is examined.  This assumption is more

legitimate for smaller watersheds, whose times of concentration (Chow et al., 1988)

are shorter than the chemical reaction times of pollutant constituents.

Finally, point sources are not initially considered as part of the regional

pollution assessment.  A separate study, performed in the later stages of the research,

investigates a method of estimating and simulating point loads along with the spatially

distributed nonpoint loads.  However, a preferred method of including point source

loads would be through the access of publicly available point source permit

documentation.

1.3 Study Area

For this study, the area of interest is the San Antonio-Nueces Coastal Basin,

located in south Texas, just north of the city of Corpus Christi.  The basin is

approximately 7000 square kilometers in size and is bounded by the San Antonio

River Basin to the north, the Nueces River Basin to the south and west, and the Texas

Intracoastal Waterway, including San Antonio Bay, Aransas Bay, and Corpus Christi

Bay, to the south and east.  The basin includes two main rivers, the Mission and

Aransas Rivers, which both flow to the southeast into Copano Bay and, ultimately,

into Aransas Bay.  Figure 1.1 shows the location of the San Antonio-Nueces Coastal

Basin and Figure 1.2 identifies most of its major hydrologic features.

Topographically, the San Antonio-Nueces Coastal Basin is characterized by

fairly distinct variations in elevation in the western part of the basin, away from the

coast, and extremely flat terrain in the near-shore portions of the basin, to the south

and east.  Much of the southern part of the basin is used for agricultural purposes.

Major crops and land uses receiving applications of nutrients and chemicals include

cotton, corn, grain sorghum, melons, and improved pasture.  Soils that support these

land uses range from the dark, calcareous Victoria clays in the coastal portions of the

basin to the fine sandy loams of the Papalote and Orelia series inland and in the
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southern basin.  The shallow, gravelly loams of the Olmos series characterize the

western upland portions of the watershed (Baird et al., 1996).

The San Antonio-Nueces Coastal Basin is largely rural, having only a few

small cities with populations exceeding 5000.  Table 1.1 shows the populations of the

larger cities within the watershed.

1.4 Research Approach

This study makes use of Arc/Info version 7.0 with the GRID module installed.

Additionally, some steps are performed in the accompanying ArcView 2.0 software.

A FORTRAN 77 compiler is also required for the reformat of data acquired over the

 Internet.  The methodology for this study is partitioned into 8 tasks:

(1) A digital database for the study area is established through the assembly of

various publicly available physiographic data sets.

(2) The hydrography of the basin is then modeled using Arc/Info GRID

manipulations of a digital elevation model.  Digital elevation models (DEMs)

discretely represent the surface elevations of a region with a fine mesh of equal area

(1 hectare) grid cells.  The flow of water over this digital elevation surface can be

simulated from cell to cell by following the path of steepest descent.  As a result, this

step produces a digital replica of the basin stream network.

City or Town County Population

Beeville Bee 13,547
Portland San Patricio 12,224

Aransas Pass San Patricio 7,180
Ingleside San Patricio 5,696

Sinton San Patricio 5,549
Rockport Aransas 4,753
Refugio Refugio 3,158

Table 1.1 :  Populations of Major Cities within the San Antonio-Nueces

Coastal Basin (Baird et al., 1996)
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(3) A mathematical relationship between rainfall and runoff in the basin is

established by performing a regression analysis of the 30-year average rainfall

distribution in the basin and the adjusted 30-year average runoff measured at USGS

gauging stations.

(4) Expected Mean Concentration (EMC) values for a number of pollutants

are linked with the various land uses in the basin.  The values used in this study are

published by the U.S. Department of Agriculture Natural Resource Conservation

Service (USDA-NRCS).

(5) Annual pollutant loadings throughout the basin and at sub-basin outlet

points are estimated by accumulating runoff downstream through the digital stream

network.

(6) Estimates of the aerial concentration distribution are calculated for each

pollutant constituent by dividing the total annual cumulative load grid by the total

annual cumulative runoff grid.  These values are compared with average sampled

pollutant concentrations at various locations within the basin.

(7) Point loads in the basin are estimated for locations where the average

sampled concentration is significantly larger than the calculated concentration.

(8) Finally, in an effort to adjust the literature-based Expected Mean

Concentration values, an optimization routine is used to establish values of Expected

Mean Concentration from the mass balance equations at a number of constituent

sampling locations in the basin.

The process developed here, while specific to the San Antonio-Nueces Coastal

Basin, could also be employed for similar nonpoint source pollution assessments in

other geographic regions.  For this study, only average annual loads and annually

averaged concentrations have been considered and estimated.  However, average

seasonal or average monthly loads and concentrations could also be established by

further analysis of the same data sets.
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2 LITERATURE REVIEW

As nonpoint source pollution has garnered more attention in recent years,

governmental agencies, academic and research institutions, and commercial

consulting firms have developed methods of assessing pollution from nonpoint

sources.  Many of these methods have involved the development of computer-based

models for automated, reliable, and repeatable analyses.  More recently, some of

these models have been linked with geographic information systems (GIS) for ease of

data management or for the apportionment of processing tasks.

This chapter provides a review of some of the more well-known nonpoint

source pollution models.  An investigation of some of the more recent integrated

GIS/nonpoint source modeling efforts is also included.  Finally, a discussion is

provided of previous water quality analyses performed in the study area.

2.1 Nonpoint Source Pollution Models

Ever since the EPA created the Stormwater Management Model (SWMM) in

the early 1970's as the first urban runoff quality model (Donigian and Huber, 1991),

researchers worldwide have continued to develop computer-based models to simulate

runoff hydraulics and water quality in urban and non-urban environments.  The role

of GIS in these modeling efforts has also grown from that of a pre-processor for

spatially oriented input data (Evans and Miller, 1988) to that of a stand-alone system

through which runoff hydraulics and water quality are directly simulated (Newell et

al., 1992).

This section describes some of the most commonly used nonpoint source pollution

models and some successful GIS links to them.  All of the models included in this

section are written in standard FORTRAN 77 and are executable under the MS/DOS

environment.

HSPF

The Hydrological Simulation Program-FORTRAN (HSPF) was developed by

the EPA-Athens laboratory (Johanson et al., 1984).  It is executable under either
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DOS-based or VAX VMS systems.  HSPF simulates both watershed hydrology and

water quality for conventional and toxic organic pollution.  The model provides

estimates for these parameters on a one-dimensional stream network basis.  HSPF is

the only water quality model that provides for integrated simulation of land and soil

contaminant runoff processes with instream hydraulic and sediment-chemical kinetics

(Donigian and Huber, 1991).

HSPF requires continuous rainfall records to drive the agricultural runoff

routine embedded in the program.  Additionally, records of evapotranspiration,

temperature, and solar radiation are input to the model.  HSPF simulates the transfer

and reaction processes of hydrolysis, oxidation, photolysis, biodegradation,

volatilization, and sorption.  Settling and resuspension of silts and clays are also

modeled (Johanson et al., 1984).

The outputs of the HSPF model include time histories of the runoff flow rate,

sediment load, and nutrient and pesticide concentrations.  These time histories can be

produced for any point in the stream network of a watershed (Donigian and Huber,

1991).

In 1995, Donigian et al. used HSPF, along with its more recently developed

Agrichemical (AGCHEM) soil nutrient submodel, to estimate nutrient loadings to

Chesapeake Bay.  For this study, the AGCHEM modules were used to establish

typical nutrient balances for each of the major agricultural crop categories in the

Chesapeake Bay watershed.  The analysis  was the first extension and detailed

application of HSPF/AGCHEM on a large (176,000 km2) drainage area (Donigian et

al., 1995).

Also in 1995, Al-Abed and Whiteley used the Arc/Info GIS, along with HSPF,

to simulate the effects of changes in land use and in resource management strategies

on the quality and quantity of irrigation water in the lower portion of the Grand River

watershed, in southwestern Ontario, Canada.  In this study, Arc/Info was used to

establish watershed segments based on soil classification and land use/crop type.  For

each segment in the watershed, water holding capacity, soil infiltration capacity,

surface slope, and initial soil water storage were calculated and provided as inputs to

the HSPF model (Al-Abed and Whiteley, 1995).
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CREAMS/GLEAMS

The U.S. Department of Agriculture-Agricultural Research Service developed

the Chemicals, Runoff, and Erosion from Agricultural Management Systems

(CREAMS) model (Knisel, 1980) to aid in the assessment of agricultural best

management practices for pollution control.  Like HSPF, CREAMS is a continuous

simulation model requiring continuous precipitation data and monthly values of air

temperature and solar radiation.  Soil and crop type data are also provided as inputs.

In order to assess best management practices, the user of CREAMS can simulate

various management activities, such as aerial spraying or ground application of

pesticides, animal waste management, tillage operations, or terracing (Knisel, 1980).

CREAMS calculates runoff volume, peak flow, infiltration,

evapotranspiration, soil water content, and percolation on a daily basis.  Daily erosion

and sediment yield are also estimated and average concentrations of sediment-

associated and solute chemicals are calculated for the runoff, sediment, and

percolating water (Knisel, 1980).

By incorporating a component for vertical flux of pesticides in the root zone,

the Groundwater Loading Effects of Agricultural Management Systems (GLEAMS)

model (Leonard et al., 1987) was established.  GLEAMS is partitioned into three

components, namely hydrology, erosion/sediment yield, and pesticides.  Rainfall is

partitioned into surface runoff and infiltrating water using the Soil Conservation

Service (SCS) Curve Number Method (Chow et al., 1988).  Soils are divided into

multiple layers of varying thickness for water and pesticide routing (Leonard et al.,

1987).

A watershed version (Opus) of CREAMS/GLEAMS has also been created.

Opus is a comprehensive model that simulates the processes of sediment transport,

chemical transport, carbon and nutrient cycles in soil microbial decay, flow of heat in

soil, and growth of crops (Smith, 1992).  Opus relies heavily on algorithms from other

models:  weather conditions are simulated by a daily weather generation model

(WGEN), daily runoff is calculated from a modified SCS Curve Number approach,

and soil erosion is modeled using the Modified Universal Soil Loss Equation

(MUSLE) (Williams, 1975).
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Zhang et al. (1995) used CREAMS-WT, a modified field scale version of

CREAMS, for simulating runoff and nutrients under high water table conditions, along

with the Enhanced Stream Water Quality Model (QUAL2E) (Brown and Barnwell,

1987) and the GIS-based Lake Okeechobee Agricultural Decision Support System

(LOADSS), to simulate phosphorus transport processes in the watersheds draining to

Lake Okeechobee in south Florida.  For this study, the LOADSS GIS was used to

provide spatially distributed land use data to the CREAMS-WT model.  Using soils

associated data for the land uses, the CREAMS-WT calculates phosphorus

concentration values throughout the watershed.  This data, along with surface runoff

data, is provided to QUAL2E, which simulates the phosphorus transport and retention

in wetlands and stream channels.  The South Florida Water Management District

continues to use this modeling framework for assessment of eutrophication problems

in the lake (Zhang et al., 1995).

AGNPS

The Agricultural Nonpoint Source Pollution Model (AGNPS) was created by

the U.S. Department of Agriculture-Agricultural Research Service (Young et al.,

1986) in order to compare the effects of different watershed pollution control

management practices.  AGNPS simulates sediment and nutrient loadings from

agricultural watersheds for single storm events or for continuous data input.

Watersheds in the model are discretized into series of square cells, for which

homogeneous characteristic parameters are assigned.

AGNPS is partitioned into two submodels.  The erosion portion of the model

provides estimates of upland erosion, channel erosion, and sediment yield.  The model

uses the Modified Universal Soil Loss Equation (Williams, 1975) for soil erosion

calculations and distributes predicted erosion into five particle size categories:  sand,

silt, clay, small aggregates, and large aggregates.  The pollutant transport portion of

AGNPS is subdivided into one part addressing soluble pollutants and one part

handling pollutants adsorbed onto solids.  Nitrogen and phosphorus loads are

determined using relationships between chemical concentrations, sediment yield, and

runoff volume (Young et al., 1986).
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Input data for AGNPS are classified into two categories:  watershed data and

cell data.  Watershed data includes information applicable to the entire watershed,

while cell data is based on land use practices and soil type data within each cell.

Output of the model includes a hydrology component, with runoff volume and peak

runoff rate, and a sediment component, which includes the erosion data described

above and estimates of pollutant loadings.  Volumes and loadings can be determined

on a watershed scale or for each receiving cell (Young et al., 1986).

AGNPS has proven to be a quite popular model with researchers and there

have been significant numbers of studies coupling AGNPS to other models and GIS.

Evans and Miller (1988) used a grid cell-based GIS known as ERDAS (Earth

Resources Data Analysis System) integrated with AGNPS.  In their study, Evans and

Miller used an ERDAS algorithm called AGNPSIN to compute average AGNPS cell

values for land slope, channel slope, curve number, roughness coefficient, surface

condition constant, soil texture, chemical oxygen demand, and cropping factor.  The

calculated average cell values were then written to a data file, which supplied direct

input to AGNPS during execution of the model.

Vieux and Needham (1993) studied the sensitivity of AGNPS to variations in

Arc/Info grid-cell sizes.  A 282-hectare agricultural and forested watershed near

Morris, Minnesota was used as the test case.  By varying the Arc/Info grid-cells

between one hectare and 16 hectares, simulated flow path lengths were seen to

decrease with increasing grid-cell size.  This shortening of flow paths is attributed to

stream meander short-circuiting at the larger grid-cell sizes.  A corresponding

variability in AGNPS sediment yield, which is dependent on flow-path length, was

also observed.  Sediment delivery ratio, when using the one-hectare grid-cells, was

71% greater than for the 16-hectare grid-cells.  This variation was due solely to the

cell size selected to represent the watershed.  This research showed that cell size

selection for a discrete watershed analysis should be based on the scale necessary to

capture the spatial variability of parameters in the watershed.

Mitchell et al. (1993) used the Geographic Resources Analysis Support System

(GRASS) GIS (U.S. Army, 1987), integrated with AGNPS, to perform a validation of

the model for small mild topography watersheds in East Illinois.  Using GRASS, all 22

input parameters for the AGNPS model were obtained from just four GIS layers.

These input parameters were established either by using internal GRASS routines or
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by reclassification of the original GIS layers.  For example, the Universal Soil Loss

Equation K factor, the percent sand, percent clay, and the hydrologic soil group are

AGNPS parameters which are associated with GIS polygons on the soils map.

Reclassifications of the soils map with values for these parameters resulted in four

input parameter layers for the AGNPS model.

Other AGNPS links with Arc/Info have also been investigated.  A study of the

impact of changing agricultural management practices on predicted water quality of

the 1465 km2 Bedford-Ouse catchment in England (Morse et al., 1994) showed that

AGNPS input parameters could be effectively processed and provided through an

interface with Arc/Info.   Also, an evaluation of the effectiveness of different

management strategies in reducing sediment loads was performed for the 417-hectare

Bluegrass watershed in Audubon County, Iowa (Tim and Jolly, 1994).  The integrated

AGNPS-Arc/Info system proved to be an effective framework for assessing sediment

load reductions through the management practices of vegetation filter stripping and

contour buffer stripping.

ANSWERS

The ANSWERS (Areal Nonpoint Source Watershed Environment Response

Simulation) model was developed in the Agricultural Engineering Department of

Purdue University in the late 1960’s.  It is a distributed parameter, event-based model

for predicting the hydrologic and erosion response of agricultural watersheds.  The

distributed parameter approach allows the user to account for spatial variability of

input variables.  ANSWERS also allows for selective evaluation of output within the

watershed instead of being limited to the basin outlet (Donigian and Huber, 1991).

Within ANSWERS, an entire watershed is discretized into square cells within

which input variables are constant.  Principal inputs to the model are the rainfall

hyetograph, antecedent soil moisture, and the soil, crop, and physical characteristics

of each discrete cell.  The model calculates amount of infiltration and then simulates

surface storage, surface detention and overland flow.  Soil detached from rainfall or

runoff is also available for transport by overland flow.  ANSWERS outputs an event

hydrograph and an event sedimentgraph, from which net sediment yield may be

determined (von Euw et al.. 1989).
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ANSWERS has been found to be extremely sensitive to rainfall input,

indicating that care must be taken for temporally and spatially variable events.  The

model is also sensitive to infiltration variables for small events (von Euw et al., 1989).

In a comparative study of various water quality models, Engel et al., (1993)

used GRASS, linked with ANSWERS, to assess model accuracy of predicted

hydrologic responses and sediment loads from  single rainfall events in an 830-acre

agricultural watershed near West Lafayette, Indiana.  GRASS tools, written in the C

programming language, were used to calculate flow direction and slope lengths from

digital elevation model data, determine SCS curve number values for each ANSWERS

cell, and develop soil property data layers from soil series data layers.

For four separate rainfall events, the simulated (ANSWERS) hydrologic

responses were found to correlate closely with actual hydrograph responses in the

watershed.  Predicted sediment loads from ANSWERS, however, were significantly

and consistently less than actual measured loads.  This research showed that rough

estimates for ANSWERS input parameters, as calculated in GRASS, were sufficient

for the prediction of hydrologic response, but not for predicting sediment loads (Engel

et al., 1993).

SWAT

The Soil Water and Assessment Tool (SWAT; Arnold et al., 1993) was

developed as an extension to the Simulator for Water Resources in Rural Basins

(SWRRB; Williams et al., 1985) at the Texas Water Resource Institute in College

Station, Texas.  SWAT is a continuous spatially distributed watershed model operating

on a daily time step.  It simulates runoff, sediment, nutrient, and pesticide movement

through a watershed and aids in assessing water supplies and nonpoint source

pollution in large basins (Arnold et al., 1993).

SWAT was one of the nonpoint source pollution water quality models assessed

in the comparison of Engel et al. (1993).  As with the ANSWERS model, input

parameters were calculated in GRASS and provided to the SWAT model.  SWAT

estimates for total runoff and nutrient and sediment loads were less accurate than the

ANSWERS simulated values.



16

Jacobson et al. (1995) also used a coupling of GRASS and SWAT in their

evaluation of water quality impacts of diverse crops and management practices in the

Herring Marsh Run Watershed in the North Carolina Coastal Plain.  For this study,

GRASS was used to input data for the SWAT model.  The resultant monthly stream

flows predicted by SWAT were seen to be adequate, but nitrate-nitrogen loading

values were not.

Other Models

Other water quality models have been coupled with GIS for a variety of

purposes.  Kern and Stednick (1993) used Arc/Info with a metal speciation model

(MINTEQA2) to develop the Chemical-Hydrologic Resource Information System

(CHRIS).  CHRIS was then used in the Upper Arkansas River catchment to identify

heavy metal species concentrations in specified stream reaches and to associate water

quality analyses with landscape elements in the basin.

The GRASS GIS has also been used extensively in combination with other

water quality models.  In an effort to provide for easier assessment of downstream

hydrologic and sedimentation impacts, Hodge et al. (1988) linked GRASS with the

ARMSED model of the U.S. Army Construction Engineering Research Laboratory

(USA-CERL).  ARMSED is an adapted version of the Multiple Watershed Sediment

Routine (MULTSED) model, which was developed jointly by Colorado State

University and New Mexico State University personnel.

Matlock et al. (1995) used GRASS as a data storage and display medium in the

development of the Spatially Integrated Model for Phosphorus Loading and Erosion

(SIMPLE).  SIMPLE was then used to characterize nonpoint source contributions of

phosphorus at a watershed scale.

Less recognized GIS programs have also been used for nonpoint source

pollution modeling.  Klaghofer et al. (1993) linked AGNPS and the Erosion

Productivity Impact Calculator (EPIC; Williams et al., 1993) to Clark University’s

IDRISI GIS (Eastman, 1990) to estimate sediment and nutrient transport resultant

from runoff processes.  In The Netherlands, Molenaar et al. (1993) used data layers

from an unnamed GIS, integrated them into a system called the Integrated River
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Information System (IRIS), and used IRIS for the identification and quantification of

transboundary pollutant sources and loads.

2.2 GIS-Based Nonpoint Source Pollution Models

In their investigation of alternative management strategies for reduction of

sediment pollution using the combined AGNPS-Arc/Info model, Tim and Jolly (1994)

refer to three potential levels of integrating GIS with hydrologic/water quality models.

For the first level of integration, known as Ad-hoc integration, the GIS and the Model

are developed separately and are executed independently.  The GIS serves only as a

pre-processor of the input data for the model.  Most of the studies discussed in section

2.1 fall into this category.

The second level of integration - partial integration - is the result of

establishing an interactive interface between the GIS and the model.  In this level of

integration, the GIS provides input data to the model, but also accepts modeling

results from the model for further processing and/or presentation.

The third level of integration is typically referred to as complete integration or

“modeling within GIS”.  For this level of integration, the functionality of the

hydrologic/water quality model is implemented or programmed directly into the GIS,

so that data pre-processing and analytical functions are performed under the same

operating system.  This level of integration is technically preferred by most modelers,

but is often difficult to implement, due to incompatibilities in the data structures of the

model and the GIS, or due to proprietary rights of commercial GIS software limiting

the introduction of additional processing routines.

Figure 2.1 shows schematic illustrations of the three potential levels of

integration for GIS and hydrologic/water quality models.  This section describes some

hydrologic and nonpoint source pollution modeling efforts employing either partial or

complete integration with a GIS.
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Partial Integration

Tim and Jolly (1994) refer to their own investigation as a partial integration of

the Arc/Info GIS with AGNPS.  For this study, the AGNPS input data was created in

Arc/Info through manipulation of topography, hydrography, soil, land cover, land

management and climate data coverages.  These vector data sets were converted into

raster data units corresponding to the AGNPS cell size.  Once the data was provided

to AGNPS and execution of the model was performed, the output was fed back into

Arc/Info for subsequent analysis and presentation.

Kim and Ventura (1993) used an unnamed GIS, along with the Source Loading

and Management Model (SLAMM), to identify critical areas of excessive nonpoint

source pollutant loadings in the urban portion of southern Milwaukee County,

Wisconsin.  Contrasting with most of the studies discussed in section 2.1, most of the

analytical processing in this study was performed in the GIS, with SLAMM used to

estimate runoff volumes and pollutant loadings from individual rainfall events for

each land use polygon in the study area.  The GIS was then used to accumulate the

calculated loads of phosphorus, zinc, copper, lead, cadmium, and sediment for each

digitally delineated sewer sub-basin in the watershed.

Complete Integration

Stuebe and Johnston (1990) modeled rainfall runoff directly into the GRASS

GIS for six watersheds in Lawrence County, South Dakota.  Starting with elevation,

soils, and land cover data, GRASS was used to connect the soils and land use data

layers to 30-meter resolution raster map layers corresponding to the digital elevation

model grid cells.  The soils grid was reclassified to create a grid of hydrologic soil

group values and the land use grid was reclassified to assign Soil Conservation Service

(SCS) curve number values to each discrete 30-meter grid cell.

Then, using the SCS curve number model, map layers of potential abstraction

and runoff from each 30-meter grid cell were established.  The watersheds of the

region were digitally delineated using GRASS’s internal Gwatershed program.

Finally, the grid cell-based surface runoff values determined from the curve number

method
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were accumulated throughout the digital basin to establish values of runoff at each

watershed outlet point (Stuebe and Johnston, 1990).

Completely integrated GIS models of the Universal Soil Loss Equation (USLE)

have also been created.  Hession and Shanholtz (1988) created the Virginia

Geographic Information System (VirGIS), incorporating the USLE and a sediment

delivery ratio, for the estimation of potential sediment loadings to streams from

agricultural lands.  Separate land use-based map layers were created for rainfall

erosivity factor, soil erodibility factor, slope length, cover and management factor,

and conservation practice factor.  Each of these parameters are components of the

USLE, and a value for soil loss per unit area was determined by combining them.

Sediment delivery ratio for each land use cell was also determined as a function of the

relief and slope in each cell.

Potential sediment loading from each cell was determined as the product of

the soil loss per unit area and the delivery ratio.  Finally, a Pollution Density Index for

each modeled watershed was calculated as the sum of all cell-based potential

sediment loadings in the watershed divided by the number of cells there (Hession and

Shanholtz, 1988).

Heidtke and Auer (1993) also modeled the USLE in a GIS developed and

maintained by the Cayuga County Planning Board in Upstate New York.  The GIS

was used to build a matrix of land use areas, specified by soil texture and surface

slope, for six sub-basins draining to Owasco Lake.  The USLE was used, with the

appropriate factors indexed by the soil and slope data, to calculate annual soil erosion

from each sub-basin.  Unit area phosphorus load from each sub-basin was determined

by multiplying the annual soil erosion by typical phosphorus concentration values

obtained from in situ soil chemistry measurements for each soil type.  As a result of

this implementation, a simple GIS-based model for prediction of annual phosphorus

loads to Owasco Lake was established.

Zollweg et al. (1995) created another GIS-based phosphorus loading model for

the 25.7-hectare Brown Watershed near Harrisburg, Pennsylvania.  For this study, the

Soil Moisture-based Runoff Model (SMoRMod) was rehosted within the GRASS GIS.

SMoRMod is an event-based, distributed model of watershed processes, including

infiltration, soil moisture redistribution, groundwater flows, and surface runoff.

SMoRMod also accounts for variable source areas, which are defined as
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runoff contributing regions within a watershed that expand and contract during storm

events, providing variable amounts of runoff over the length of the event (Ward,

1984).

Through use of the GRASS GIS, aerial distributions of simulated runoff and

phosphorus losses were produced, allowing for the identification of zones of runoff

and phosphorus production.  The GRASS-hosted SMoRMod algorithm was also

modified to implement various land management practices throughout the watershed.

This allowed for an assessment of the phosphorus load reducing capabilities of each

practice (Zollweg et al., 1995).

Newell et al. (1992) performed an assessment of nonpoint sources and

loadings to the Galveston Bay in Texas, as part of a Galveston Bay National Estuary

Program study.  The assessment was done completely within the Arc/Info GIS and

was executed for a list of 15 pollutant constituents, including heavy metals, nutrients,

total suspended solids, biochemical oxygen demand, and fecal coliform.  For this

study, subwatersheds within the study area were manually digitized from USGS 7.5-

minute quadrangle maps.  Annual runoff values were then established for each

subwatershed, using the GIS-modeled SCS curve number method, with precipitation,

soil type, land use, and curve number data as inputs to the model.  Annual runoff

values were calculated for typical wet, average, and dry years.

Typical pollutant constituent loadings for all three categories of runoff were

calculated by associating pollutant event mean concentrations with land use polygons

in each subwatershed.  For each pollutant of interest, an average weighted event mean

concentration was established in each subwatershed and multiplied by the annual

runoff in that subwatershed to establish total nonpoint source loads of the pollutant

(Newell et al., 1992).

The nonpoint source pollution assessment method described by Newell et al.

(1992) resembles the method applied in this report more closely than do the

approaches of the other studies cited in this section and section 2.1.



22

2.3 Earlier studies in the San Antonio-Nueces Coastal Basin

The modeling efforts discussed in sections 2.1 and 2.2 represent a diverse

cross-section of approaches for simulating hydrologic and water quality parameters.

Those investigations also represent a wide variety of study areas where the models

have been implemented.  These regions are chosen for various reasons, ranging from

ease of implementation at the location to availability of an abundance of measurement

data with which to compare model results.  Frequently, however, study areas are

chosen, not for the convenience of model implementation, but because a particular

hydrologic or water quality problem exists there.

Complex natural hydrologic systems that are placed under some additional

manufactured or man-made burden typically encounter such problems.  The Texas

Intracoastal Waterway, with its elaborate network of bays, estuaries, marshes, and

barrier islands, is a complex hydrologic system made more complicated by the

encroachment of industry, agriculture, and shipping throughout its length.  In

accordance with the greater potential for the occurrence of water quality problems,

many hydrologic and water quality analyses have been conducted throughout the

waterway.  This section focuses on water quality modeling studies that have been

performed in close proximity to the San Antonio-Nueces Coastal Basin, particularly in

the estuarine regions near Copano Bay, Aransas Bay, and Corpus Christi Bay.

Estuarine water quality modeling of the Corpus Christi Bay dates back to at

least the mid 1970’s.  In 1974, Penumalli et al. applied a model developed by the

Texas Water Development Board (TWDB) called the Corpus Christi-Aransas-Copano

Bay System Model.  This model simulated the aerial shape of the bay network with a

series of one square nautical mile grid cells (Figure 2.2).  Hydraulic flow throughout

the bay network was simulated using a finite difference method to model flow

between cells, or segments.

For the same study, a mathematical water quality model was also created to

represent conservative constituent transport between grid cells.  A finite difference

implementation was also employed for this model, accounting for spatial and temporal

distributions of the mass concentration of a constituent (Penumalli et al., 1974).

Using these models, with boundary conditions implemented for all boundary

cells in the discrete network, simulated phosphorus and nitrogen concentrations were
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established for each grid cell.  These concentrations were determined using estimated

loadings of the nutrients for the year 1972.  The results were compared with observed

concentrations measured at various locations throughout the bay network and the

models were adjusted for better agreement with the observed measurements.  The

final adjusted models were used to estimate nitrogen and phosphorus concentration

profiles throughout the bay network for the years 1980 and 1990, using anticipated

nutrient loadings for those years (Penumalli et al., 1974).

Lambert and Fruh (1976) used a modified version of a hydrodynamic

mathematical model called HYDTID, along with a salinity transport model called

LOTRAN, to help in the determination of minimum fresh water inflow requirements

to Corpus Christi Bay.  For the grid-cell representation of the bay, HYDTID and

LOTRAN account for hydrodynamic circulation patterns, tidal effects, and vertical

mixing, when provided with a varying fresh water inflow profile and a tide cycle

period as inputs.

The combined HYDTID/LOTRAN model also accepts, as input parameters,

aerial locations and magnitudes of return flows and diversion sources, average rainfall

and gross evaporation, average wind speed and direction, aerial locations and

magnitudes of excitation tides, and typical boundary condition salinity concentrations.

Each of these parameters are provided as average values for a chosen time interval

(typically monthly) of the model (Lambert and Fruh, 1976).

For this analysis, various model runs were performed, using monthly values of

the input data parameters and fresh water inflow data from the period 1913-1962.  By

using the historical health profiles of certain aquatic indicator organisms local to

Corpus Christi Bay for the same time period, assessments of the adequacy of the

documented fresh water inflows were made.  Finally, determinations of the minimum

fresh water inflows required to maintain organism health were established (Lambert

and Fruh, 1976).

Another study of fresh water inflows to the bay network was performed in

1981 by the Texas Department of Water Resources (TDWR).  For this analysis, the

TDWR used the same hydrodynamic and salinity transport mathematical models to

assess the effects of fresh water inflows to the Nueces and Mission-Aransas estuaries.

For the purposes of the investigation, this estuary system was defined as the portion of
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the Texas Intracoastal Waterway including Nueces Bay, Corpus Christi Bay, Oso

Bay, Redfish Bay, Aransas Bay, Copano Bay, and Mission Bay (Figure 2.3).

Annual and monthly average values of fresh water inflows over the period

from 1941 to 1976 were used as inputs to the model.  Water quality of these inflows

was determined by comparison with measured data from USGS gauging stations on

Copano Creek, Mission River, Chiltipin Creek, Nueces River, and Oso Creek.  As a

result of this modeling effort, simulated salinities were generally seen to be within five

parts per thousand of observed salinities.  Exceedences of this value were consistently

seen for the Nueces Bay area, where additional unmodeled industrial brine discharges

were suspected of contributing to elevated salinities during periods of low flow

(TDWR, 1981).

The TDWR study also included a fresh water inflow/salinity regression

analysis in an attempt to determine mathematical relationships applicable at different

points within the bay network.  The regression analysis resulted in the establishment

of two geometric series relationships for monthly average salinity and monthly gauged

flow.  Using these relationships, salinities were estimated for gauged streamflow into

the Nueces Bay and Copano Bay (TDWR, 1981).

The Texas Natural Resource Conservation Commission (TNRCC) published a

study of water quality in the Nueces Coastal Basins in 1994.  In an effort to identify

areas with a high potential risk of nonpoint source loadings, the TNRCC used

Arc/Info for the establishment of a nonpoint source pollution potential index.  This

index was determined by considering components related to soil type, land use, and

landscape features such as soil permeability, slope, and soil erodibility.

Components of the nonpoint source pollution potential index are based on the

Revised Universal Soil Loss Equation (RUSLE; Renard et al., 1993).  For each of the

elements of this equation, a separate Arc/Info layer was created with element values

assigned to the reclassified polygons from the original source map.  For example,

values for the soil erodibility an slope steepness layers were assigned to polygons from

the initial soils map.  In addition to the elements from the RUSLE, the nonpoint

source pollution potential index also includes factors accounting for land use potential

to permanently degrade receiving waters and land use potential to supply non-

sediment related hazardous pollutants, such as pesticides or heavy metals.  Separate

Arc/Info layers for each of these factors were also created (TNRCC, 1994).
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The product of the RUSLE elements and the other factors provided values for

the nonpoint source pollution potential index.  Through application of this index to the

study areas of the San Antonio-Nueces and Nueces-Rio-Grande Coastal Basins, the

TNRCC concluded that the region generally had a moderate potential for nonpoint

pollutant sources, but that areas of higher potential existed for agricultural land uses in

regions of maximum slope and erodible soils (TNRCC, 1994).

Most recently, Baird et al., (1996) used SWAT and HSPF in a comparison of

each model’s effectiveness in the assessment of nonpoint source pollution.  This

comparison was performed on the Oso Creek watershed in southern Nueces County,

as part of a Corpus Christi Bay National Estuary Program study.  Both models were

calibrated for the period of 1987 through 1992, using rainfall data from three gauges

in the watershed and streamflow data from the USGS Oso Creek gauge, which drains

the upper 39% of the watershed.

The SWAT model was used to simulate streamflow at the Oso Creek gauge,

with rainfall data from two of the three precipitation gauges used as input.

Agricultural cropping profiles, along with tillage management practices for the fallow

period, were also applied as inputs.  As a result of this modeling effort, average annual

predicted streamflow was determined to be approximately 10% less than the average

observed streamflow over the period between 1987 and 1992.  Predicted streamflow

values for each individual year between 1986 and 1993 showed errors in excess of

80%, when compared with observed annual streamflow values (Baird et al., 1996).

HSPF was used to model both streamflow and loadings of nutrients and

sediments.  Model parameters were calibrated for the upper portion of the watershed

and then applied to the entire watershed for the estimation of runoff and loadings to

Corpus Christi Bay.  Rainfall data from the most central of the three precipitation

gauges was applied across the watershed.  The average annual predicted streamflow

calculated by HSPF was within 0.4% of the average observed value over the period

from  1987 to 1992.  As with the SWAT model, however, predicted stream flow

values for individual years showed more significant errors of up to 68% (Baird et al.,

1996).

Nutrient and sediment loadings were predicted by the HSPF model by

applying expected mean concentration values to land uses in the Oso Creek

watershed, determining the percentage of each land use within the watershed,

calculating the
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corresponding percentages of the total runoff from each land use type, and

multiplying the pollutant expected mean concentration values by the land use-based

runoff values.  This process resulted in sets of land use-based loads for each month in

the eight year modeling period.  Summation of the land use-based loads resulted in a

total load of pollutant from the watershed.  Variability of the loadings from year to

year naturally corresponded to the observed variability of streamflows from year to

year (Baird et al., 1996).  Overall, the HSPF model was seen to be more robust and to

provide more accurate results than the SWAT model.
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3 DATA DESCRIPTION

This study uses raster and vector data sets that are publicly available from a

variety of sources.  Raster data sets have values stored in a uniform rectangular array

and are typically referred to as grids.  A digital elevation model is an example of a

raster data set.  Vector data sets include points, lines, and/or polygons and are

typically referred to as coverages.  A point coverage includes data represented by

single coordinate values, such as locations of streamflow gauges.  Line coverages,

such as stream networks, are defined by series of points, with nodes specified as the

starting and ending points of each line.  Polygon coverages, such as watershed

boundaries, are made up of connected sequences of lines.  Vector data sets also have

associated tables of values that describe the geographic features they represent.

(Environmental Systems Research Institute, 1990).

Vector data layers can be converted into raster data layers (and vice versa) by

using the conventions that a point may be represented as a single grid cell, a line may

be represented as a string of grid cells, and a polygon may be represented as a zone of

cells.  The Arc/Info GIS supports the transformations between these raster and vector

data sets.

3.1 Map Projection

A standard map projection is needed for any study where the superposition

and spatial analysis of geographic data from different sources is performed.  Spatial

data sets are typically available at various map scales and in different coordinate

systems.  Arc/Info GIS allows for the successful adjoining of spatial data, even if the

data are of different spatial scales, as long as that data have common datum and map

projections.  Arc/Info also allows for conversion from one map projection to another.

The Texas State Mapping System, which is sometimes referred to as the

Shackleford State Mapping System, is defined using a Lambert conformal conic

projection, which preserves shapes on a map.  For this study, a map projection that

preserves area, such as the Albers equal-area conic projection, is preferred to the

Lambert projection because it simplifies computations of water and mass balances



30

over a region (Snyder, 1987).  Thus, a hybrid map projection is used for the study,

called the Texas State Mapping System-Albers (TSMS-Albers) projection.  A list of

the TSMS-Albers projection parameters is shown in Table 3.1.

The North American Datum of 1983 (NAD83) uses the Geodetic Reference

System of 1980 (GRS80) ellipsoid as a reference ellipsoid defining orientation relative

to the geoid of Earth.  The Texas State Mapping System projection uses this datum

instead of the North American Datum of 1927 (NAD27), which uses the older Clarke

(1866) ellipsoid as a reference (Snyder, 1987).

3.2  Establishing a Digital Database

The establishment of a watershed digital description involves the assembly of

the data that is ultimately used for each of the subsequent steps of the assessment.

Table 3.2 summarizes the data sources used in this study and provides Internet

addresses for obtaining the data.  Procedures for accessing this data can be obtained

from the University of Texas at Austin GIS Hydrologic Modeling World Wide Web

site at http://civil.ce.utexas.edu/prof/maidment/gishydro/.

This section describes each of the data sets and provides a discussion of how

they are managed in order to extract the data specific to the San Antonio-Nueces

Coastal Basin.   A running narrative of the steps performed is provided along with the

Projection: Albers
Datum: NAD83
Units: meters

Spheroid: GRS1980
1st Standard Parallel: 27  25  0.00
2nd Standard Parallel: 34  55  0.00

Central Meridian -100  0  0.00
Latitude of Origin: 31 10  0.00
False Easting (m): 1,000,000
False Northing (m): 1,000,000

Table 3.1  :  Texas State Mapping System-Albers Projection Parameters
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DATA SOURCE INTERNET ADDRESS

Digital Elevation Models (DEMs) http://sun1.cr.usgs.gov/eros-home.html
Hydrography Digital Line Graphs http://sun1.cr.usgs.gov/eros-home.html
Hydrologic Unit Codes (HUCs) http://h2o.er.usgs.gov/nsdi/wais/water/huc250.HTML

Land Use/Land Cover (LULC) Files http://www.epa.gov/epahome/search.html
USGS Daily Discharge Values http://txwww.cr.usgs.gov/cgi-bin/nwis1_server

USGS Stream Gauge Locations http://txwww.cr.usgs.gov/cgi-bin/nwis1_server
Precipitation Grids fsl.orst.edu  (anonymous ftp site)

Expected Mean Concentration values CCBNEP (not available via Internet)
Water Quality Measurement Data tnris.twdb.state.tx.us  (anonymous ftp site)

Table 3.2 :  Internet Addresses for Data Sources

actual Arc/Info and UNIX commands.  This format provides the reader insight into

the specific steps performed and describes the theoretical bases for each procedure.

In addition, some of the steps in this chapter are more efficiently performed via

automated Arc Macro Language (AML) scripts.  Where appropriate, these AMLs are

referenced and included in Appendix B.

Hydrologic Unit Codes (HUCs)

Watersheds typically define the boundaries of a hydrologic study.  Reasonable

approximations of the drainage basin boundaries in the United States are available

through the USGS 1:250,000-scale Hydrologic Unit Codes (HUCs).  This data was

created through digitization of a combination of 1:250,000-, 1:100,000-, and

1:2,000,000-scale Hydrologic Unit Maps, which divide the United States into 21 major

hydrologic regions and further subdivide the regions into subregions, accounting units,

and cataloging units.  Each of these subdivisions are uniquely identified by two-digit

fields contained within an eight-digit attribute code referred to as the Hydrologic Unit

Code.  The first two digits in the code identify water resources region; the first four

digits identify subregion; the first six digits identify accounting unit; and the whole

eight-digit code identifies the cataloging unit (Steeves and Nebert, 1994).

The Hydrologic Unit Codes are available on Internet from the USGS in an

Albers equal area conical projection (see Table 3.2 for address).  The San Antonio-

Nueces Coastal Basin HUCs are not specifically required data for the nonpoint source
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pollution assessment, but they do provide a useful frame of reference for comparison

with the digitally delineated versions of the basin and subwatersheds (see Figure 3.1).

The Hydrologic Unit Codes start as Arc/Info interchange files (denoted by a

file extension of .e00).  A coverage is created from the interchange file through use of

the Arc/Info Import command:

Arc:  import cover huc250.e00 huc250

The huc250 coverage is displayed in the ArcView 2.0 program and the

regional location of the San Antonio-Nueces coastal basin is magnified.  Through use

of the ArcView query builder, five polygons that approximate the basin are identified.

Using ArcView Tables, the eight-digit Hydrologic Unit Code for each of the polygons

is determined and recorded.  Table 3.3 lists the five Hydrologic Unit Codes that

approximate the San Antonio-Nueces coastal basin.

To create a new Hydrologic Unit Code coverage including only the five San

Antonio-Nueces polygons, the Arc/Info Reselect command is invoked.  Through use

of the re-select and add-select features of the command, the HUCs with values

between 12100404 and 12100407 are chosen and then appended with the code of

12110201.  The new coverage is then converted into the desired TSMS-Albers

projection and polygon topology is restored with the Arc/Info Clean command:

Arc:  reselect huc250 hucs
>:  res huc >= 12100404
>:  ~    <return>
Do you wish to re-enter expression?(Y/N):  n
Do you wish to enter another expression? (Y/N):  y
>:  res huc >= 12100407
>:  ~
Do you wish to re-enter expression?(Y/N):  n
Do you wish to enter another expression? (Y/N):  y
>:  asel huc = 12110201
>:  ~
Do you wish to re-enter expression?(Y/N):  n
Do you wish to enter another expression? (Y/N):  n

5 features out of 2157 selected
Arc:  project cover hucs hucsan alb-tsms.prj
Arc:  clean hucsan sanhucs
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Hydrologic Unit Code Name

12100404 West San Antonio Bay
12100405 Aransas Bay
12100406 Mission River
12100407 Aransas River
12110201 North Corpus Christi Bay

Table 3.3 :  Hydrologic Unit Codes Approximating the

San Antonio-Nueces Coastal Basin

The above Project command makes use of a projection file (alb-tsms.prj) that

specifies conversion from the national Albers projection to TSMS-Albers parameters.

This projection file is included in Appendix B.  The sanhucs coverage provides an

initial approximation of the San Antonio-Nueces coastal basin boundaries.  The

sanhucs polygons and corresponding Hydrologic Unit Code values are displayed in

Figure 3.1.

Hydrography Digital Line Graphs (DLGs)

The 1:100,000-scale Hydrography Digital Line Graph (DLG) data files are

derived from USGS 30 x 60 minute quadrangle topographic maps and include stream

networks, standing water, and coastlines as hydrographic features.  These graphs are

distributed in groups of files that cover a 30 x 30 minute area (the east or west half of

the 1:100,000-scale source map).  Typically, each 30-minute area is represented by

four 15-minute files.  Thus, each 30 x 60 minute quadrangle is represented by eight

15-minute files (USGS, 1989).

The 1:100,000 digital line graphs are available in either standard or optional

format.  The standard format has a larger logical record length (144 bytes) than the

optional format (80 bytes), but is projected in an internal file coordinate system

(thousandths of a map inch) that is not as easy to work with as the Universal

Transverse Mercator (UTM) projection of the optional format (USGS, 1989).  For this

reason, the optional format hydrography digital line graphs are used in the San

Antonio-Nueces Coastal Basin study.
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In addition to hydrography, the USGS distributes 1:100,000-scale digital line

graphs for roads, rail lines, and pipelines.  These are all available publicly via the

Internet address in Table 3.2.  Alternatively, digital line graph files for the United

States are available (in optional format) from the USGS Earth Science Information

Center in a 14-volume Compact Disc-Read Only Memory (CD-ROM) set.  For this

analysis, the required hydrography 15-minute files were accessed and downloaded

from Volume 8 (Texas and Oklahoma) of the CD-ROM series (USGS, 1993).

The Hydrography files for Texas are located in the 100k_dlg directory of the

USGS 1:100,000-Scale Digital Line Graph Data CD-ROM (USGS, 1993).  This

directory contains separate subdirectories for each of the 1:100,000-scale USGS

mapsheets (60’ x 30’) in Texas and Oklahoma.  By cross-referencing the 1:100,000-

Scale Digital Line Graph Index Map at the USGS EROS Data Center Internet World

Wide Web site (Table 3.2) with a map of delineated watershed boundaries in Texas

(USGS, 1985), five 1:100,000-scale mapsheets that completely overlay the watershed

are identified (Figure 3.2).  These mapsheets are:  Beeville, Goliad, San Antonio Bay,

Corpus Christi, and Allyns’ Bight.

The hydrography files from each of the five mapsheet subdirectories are

copied from the CD-ROM into a local UNIX workspace:

$:  cp /cdrom/100k_dlg/beeville/be3hydro.zip ./
$:  cp /cdrom/100k_dlg/sananbay/be4hydro.zip ./
$:  cp /cdrom/100k_dlg/goliad/be1hydro.zip ./
$:  cp /cdrom/100k_dlg/corpus_c/cc1hydro.zip ./
$:  cp /cdrom/100k_dlg/allyns/cc2hydro.zip ./

Each of these files exist in a compressed (zipped) format.  Uncompressing

them creates eight 15-minute (1:62,500-scale) coverages, arranged in a 2-row by 4-

column format.  For example:

$:  unzip be3hydro.zip
Exploding:  be3hyf01
Exploding:  be3hyf02

: :
Exploding:  be3hyf08

 Once all five hydrography files are unzipped, forty separate 15-minute map

coverages exist.  Through consultation with an atlas (USGS, 1970), the number of
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these coverages required to completely overlay the San Antonio-Nueces Coastal

Basin is determined as eighteen.  These map coverages include all 8 associated with

the Beeville mapsheet, maps 5-8 from the Goliad mapsheet, maps 2-4 from the

Corpus Christi mapsheet, maps 1 & 5 from San Antonio Bay, and map 1 from Allyns’

Bight.

Before manipulation of the hydrography coverages can be performed, each of

the 18 maps must be converted from its digital line graph format to an Arc/Info

format.  The Dlgarc command, with the optional format argument specified,  is used

for this purpose.  Once converted, line topology is restored to each new Arc/Info

coverage through application of the Build command.  For example, conversion of the

first Beeville 15-minute coverage is performed as:

Arc:  dlgarc optional be3hyf01 beef01
Arc:  build beef01 line

Each of the 15-minute hydrography coverages contain lines representing the

streams, lakes, and coastlines associated with a particular map.  A border around each

coverage, representing 15-minute meridians and parallels, is also included.  If all of

these maps were merged together into a single coverage of the basin hydrography, the

15-minute meridians and parallels would be included.  Alternatively, these border

lines may be removed.  This is performed by acknowledging that all arcs in a line

coverage have a left polygon number and right polygon number field associated with

them and that the value of the exterior polygon in a coverage is always defined as

one.  Using this information, the meridians and parallels can be trimmed away from

each coverage through use of the Reselect command.  Using the first Beeville 15-

minute coverage as an example:

Arc:  reselect beef01 bee1 line # line
>:  res rpoly# > 1
>:  ~
Do you wish to re-enter expression?(Y/N):  n
Do you wish to enter another expression? (Y/N):  y
>:  res lpoly# > 1
>:  ~
Do you wish to re-enter expression?(Y/N):  n
Do you wish to enter another expression? (Y/N):  n

187 features out of 240 selected
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Once the meridian/parallel removal process is performed on all 18

hydrography coverages, they can be joined together using the Append command.

Line topology is added with the Build command and the appended coverage is then

converted from its initial Universal Transverse Mercator projection to TSMS-Albers

parameters using the projection file, utmtsms.prj (included in Appendix B).

Arc:  append sanutm
Enter the 1st coverage:  bee1
Enter the 2nd coverage:  bee2

: :
Enter the 18th coverage:  allyn1
Enter the 19th coverage:   ~
Done entering coverage names (Y/N)?  y
Do you wish to use the above coverages (Y/N)?  y

Appending coverages.....
Arc:  build sanutm line
Arc:  project cover sanutm sanhydro utmtsms.prj

This procedure is much more efficiently performed using an AML.  Dlgmerge.aml, is

used to convert individual files from the 30’ x 60’ mapsheet subdirectories into a

single coverage and is inlcuded in Appendix B.  Figure 3.3 shows the final

hydrography coverage, sanhydro, as clipped by a coverage of the basin boundary,

which is created as per discussion in Chapter 4.

Digital Elevation Models (DEMs)

Three-arc second (3”) digital elevation models (DEMs) are created by the

Defense Mapping Agency by first digitizing cartographic maps ranging in scale from

1:24,000 to 1:250,000, and then processing elevation data from these digitized maps

into a rectangular matrix format.  The USGS distributes digital elevation models (via

the Internet site noted in Table 3.2) in 1º x 1º blocks that correspond to either the

eastern or western half of a USGS 1:250,000-scale map sheet.  The models contain

elevation data points at 3” intervals, or 20 elevation data points per minute.  With 60

minutes per degree, each digital elevation model contains 1201 rows and 1201

columns of data (including the data points on the whole degree latitudes and

longitudes, which are repeated in adjacent 1º x 1º grids) (USGS, 1990).
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Because the meridians of longitude converge at the poles, the latitudinal

distance between 3” data points decreases as one moves north or south away from the

equator.  The distance along the surface of the earth at a specific radian of latitude

(Lλ) can be calculated as Lλ = Rcosφ, where R (Earth's radius) = 6371.2 km and φ =

latitude.  The distance between 3” elevation points at that latitude can then be

calculated as (Lλ * π/180º)/1200 (Reed and Maidment, 1995).  For the San Antonio-

Nueces Coastal Basin, which is bisected by the 28º North parallel, the latitudinal

distance between elevation points is

               [6371.2 m * cos(28º) * π/180º]/1200 = 81.8 meters    (3-1)

and the longitudinal distance between points is

          (6371.2 m * π/180º) /1200 = 92.67 meters.  (3-2)

For use in a hydrologic analysis, digital elevation model data is first

reprojected from geographic coordinates to a flat map coordinate system, in which

horizontal dimensions can be measured in units of length and slopes can then be

calculated by comparison with elevation values, also in units of length.  When the

digital elevation model is reprojected, a new grid is created by resampling the data at

uniform intervals in the new projection.  For example, a 3” x 3” geographic grid cell

size is typically converted into a 100 m x 100 m flat map grid cell size.

Three arc-second (3”) digital elevation models are available via the US

Geodata section of the USGS EROS Data Center Internet World Wide Web site

specified in Table 3.2.  Each 1° x 1°  model is identified by the east or west half of a

1:250,000-scale Index Map.  For the San Antonio-Nueces basin, four digital elevation

models (Beeville East/West and Corpus Christi East/West) are required to completely

cover the watershed.

When accessing compressed versions of the digital elevation models, the local

UNIX file extension should be defined to show that the file is compressed (.gz).

Compressed files can be uncompressed using the UNIX gunzip utility.  These files

must then have their record lengths modified to a format that Arc/Info can recognize.

The UNIX dd command adds a carriage return at the end of every 1024 bytes.  For
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example, these steps, as performed on the Beeville East digital elevation model

appear as:

$:  gunzip beevillee.dem.gz
$:  dd if=beevillee.dem of=beeve cbs=1024 conv=unblock

where if = input file name, of = output file name, cbs = conversion buffer size, and

“conv=unblock” specifies to allow for variable sized record lengths.  Once these

commands are performed for all four digital elevation models, the unblocked files can

be converted into Arc/Info grids by using the Arc/Info Demlattice command:

Arc:  demlattice beeve beedeme usgs

This creates a grid called beedeme from the input digital elevation model beeve,

which is specified as existing in a standard USGS format.

After the four four grids are created, they are combined into one large digital

elevation model using the Arc/Info Grid Merge function.  The large digital elevation

model is then converted from its initial geographic projection into the desired TSMS-

Albers using the projection file al72tsms.prj (included in Appendix B), and specifying

a grid cell size of 100 m.

A smaller digital elevation model that contains just the area corresponding to

the San Antonio-Nueces Coastal Basin is created by using the previously created

sanhucs coverage.  A five-kilometer buffer is first established around the sanhucs

boundary through use of the Arc/Info Buffer command.  Then the Grid Setwindow

command is used to reduce the analysis window to the mapextent of the buffered

sanhucs coverage.  Once this analysis window has been reduced, a new digital

elevation model (sndemalb) is defined that contains the values of the larger model

within the analysis window.

Arc:  grid
Grid:  bcdem = merge(beedeme,beedemw,corpdeme,corpdemw)
Grid:  bcdemalb = project(bcdem,al72tsms.prj,#,100)
Grid:  quit
Arc:  buffer sanhucs hucbuff # # 5000
Arc:  grid
Grid:  setwindow hucbuff bcdemalb
Grid:  sndemalb = bcdemalb
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Figure 3.4 shows the gray-shaded digital elevation model overlayed with the USGS

Hydrologic Unit Codes, the major streams from the 1:100,000-scale hydrography

digital line graphs, and a coverage of the intracoastal waterway features near the

basin.

Land Use/Land Cover (LULC) Files

The 1:250,000-scale Land Use/Land Cover (LULC) data files are GIS polygon

coverages and were created by the USGS through manual interpretation of aerial

photographs acquired from NASA high-altitude missions in the late 1970’s.

Digitization of the land use maps resulted in the creation of the Geographic

Information Retrieval Analysis System (GIRAS) (USGS, 1986).  The land use files are

available electronically from the USGS (conforming to an Universal Transverse

Mercator projection) and the EPA (conforming to an Albers equal area projection).

For this study, the land use files are downloaded from the EPA Internet World Wide

Web site.  Procedures for accessing this data can be obtained from the University of

Texas at Austin GIS Hydrologic Modeling World Wide Web site at

http://civil.ce.utexas.edu/prof/maidment/gishydro/.

The land use files employ the Anderson Land Use Classification System,

which identifies two-digit subcategories within the categories of urban, agricultural,

range, forest, water, wetland, barren, tundra, and snowfield land uses (Anderson et al.,

1976).  While widely available and frequently used, this data set is significantly dated

and is considered out of date by many municipalities conducting urban assessments.

However, this data set is still considered to be fairly accurate for the San Antonio-

Nueces Coastal Basin, which is largely rural.

The land use files are organized and accessible by their associated 1:250,000-

scale USGS mapsheet name.  Starting at the EPA Internet site identified in Table 3.2,

the user performs a query on “land use”.  This query results in the display of the EPA

WAIS Gateway page, where the user selects the EPA EPAGIRAS (HTML) link.

Finally, at the EPAGIRAS Data Sets page, the user performs queries on the

1:250,000-scale mapsheet names of interest.  Only two land use files (corresponding

to the Beeville and Corpus Christi mapsheets) are required to cover the San Antonio-

Nueces Coastal Basin.  These files are downloaded as compressed Arc/Info

interchange files and have extensions of .e00.gz.

http://www.ce.utexas.edu/prof/maidment/gishydro
http://www.ce.utexas.edu/prof/maidment/gishydro
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The land use files are first uncompressed, imported, and cleaned as per the

previous discussions.  Using the Beeville land use file (lbe28096.e00.gz) as an

example:

$:  gunzip lbe28096.e00.gz
Arc:  import cover lbe28096.e00 lbe28096
Arc:  clean lbe28096 beelu

Once both land use coverages have been created, they are appended together

and converted into the TSMS-Albers projection using the alb-tsms.prj file.  The

parallel line between the two mapsheets is removed using the Arc/Info Dissolve

command.   This command eliminates arcs between polygons that have the same

value for a specified attribute, or “dissolve item”.  The attribute lanuse-id contains the

value of the Anderson land use code for each polygon.  By selecting lanuse-id as the

dissolve item, any arcs between polygons of the same land use are eliminated.

Arc:  mapjoin landuse
Enter the 1st coverage:  beelu
Enter the 2nd coverage:  cclu
Enter the 3rd coverage:   ~
Done entering coverage names (Y/N)?  y
Do you wish to use the above coverages (Y/N)?  y

Appending coverages.....
Arc:  project cover landuse lanuse alb-tsms.prj
Arc:  dissolve lanuse luse lanuse-id poly

Using ArcView 2.0 to inspect the luse coverage and selecting lanuse-id as the

field through which to display shows that most of the polygons have values reflective

of the Anderson land use codes.  However, one polygon has a lanuse-id value of

200000.  Upon further inspection in ArcView, this anomaly is identified as the lanuse-

id for the Gulf of Mexico.  By performing a Reselect on the luse coverage, the

anomalous polygon is removed:

Arc:  reselect luse sanlus
>:  res lanuse-id < 100
>:  ~
Do you wish to re-enter expression?(Y/N):  n
Do you wish to enter another expression? (Y/N):  n

6513 features out of 6514 selected
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Figure 3.5 shows the final land use coverage, sanlus, as clipped by a coverage of the

basin boundary, which is created as per discussion in Chapter 4.

USGS Daily Discharge Values

Daily average discharge values (in units of cubic feet per second) are available

for all active and inactive USGS streamflow gauges in Texas from the Texas Surface

Water Database section of the USGS-Austin, TX World Wide Web site listed in Table

3.2.  For the San Antonio-Nueces Coastal Basin, five streamflow gauges (three active,

two inactive) exist.  Table 3.4 identifies the periods of record for each gauge.

The discharge values recorded by each USGS gauge represent average

streamflow at the gauge for that particular day.  Daily, monthly, and annual

streamflow volumes are calculated by processing the raw discharge data through the

FORTRAN algorithm montflow.f (included in Appendix B).

USGS Stream Gauge Locations

Geographic locations (in degrees, minutes, and seconds) of the USGS

streamflow gauges cited above are available from the same section of the

USGS-Austin, TX World Wide Web site.  Table 3.4 shows the latitudes and longitudes

for each of the five San Antonio-Nueces coastal basin streamflow gauges.

In order to create a GIS coverage of these stations, the latitudes and longitudes

are first converted into decimal degrees via the relationship,

DD = D + MIN/60 + SEC/3600 (3-3)

where DD = decimal degrees, D = degrees, MIN = minutes, and SEC = seconds.  A

raw data file of the digital coordinates (longitude listed first) is then built in a UNIX

text editor window and named lonlat.dat.  A copy of this raw data file, constructed by

increasing USGS gauge number, is shown in Figure 3.6.  Note that West longitude is

treated as negative in decimal degrees.
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USGS Gauge Gauge Description Period of Operation Latitude (N) Longitude (W)

08189200 Copano Creek near
Refugio, TX

6/17/1970 - present 28º 18’ 12” 97º 06’ 44”

08189300 Medio Creek near
Beeville, TX

3/1/1962 - 10/17/1977 28º 28’ 58” 97º 39’ 23”

08189500 Mission River at
Refugio, TX

7/1/1939 - present 28º 17’ 30” 97º 16’ 44”

08189700 Aransas River near
Skidmore, TX

4/1/1964 - present 28º 16’ 56” 97º 37’ 14”

08189800 Chiltipin Creek at
Sinton, TX

7/23/1970 - 4/6/1987,
8/4/1987 - 9/30/1991

28º 02’ 48” 97º 30’ 13”

Table 3.4  :  USGS Streamflow Gauge Information

A point coverage of this digital coordinate data is built using the Arc/Info

Generate command, specifying the lonlat.dat file as input and points as the geographic

feature type.  Once the coverage is created, point topology is established through the

Build command and the digital coordinate values are added as attributes to each point

by using the Addxy command:

Arc:  generate stations
Generate:  input lonlat.dat
Generate:  points

Creating points with coordinates loaded from lonlat.dat
Generate:  quit

Externalling BND and TIC...
Arc:  build stations points

Building points...
Arc:  addxy stations

1 -97.1122 28.3033
2 -97.6564 28.4828
3 -97.2789 28.2917
4 -97.6206 28.2822
5 -97.5036 28.0467
end

Figure 3.6 :  Digital Coordinate Data File for
San Antonio-Nueces Stream Gauges
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1 08189200 Copano
2 08189300 Medio
3 08189500 Mission
4 08189700 Aransas
5 08189800 Chiltipin
end

Figure 3.7 :  Gauge Number and Name Data File for
San Antonio-Nueces Stream Gauges

A second data file, called statname.dat, is then created as per Figure 3.7.  This

file includes the gauge-id’s and names listed in order.  The shell of an attribute data

file, called attribut.dat, is then built through use of the Arc/Info Tables function.

Attribute field names and formats are defined for each of the items in the

statname.dat file, making sure to define the first item, stations-id, to be in the same

format as the stations-id field in the stations coverage.  The data from statname.dat is

used to fill in the formatted attribut.dat file, using the Tables “add from” command.

The attribute data is then appended to the stations point attribute table (pat) through

use of the Arc/Info Joinitem command.  This command links data from two tables

through the use of a common relate item.  In this case, the station-id field is used as

the relate item. Finally, the stream gauge coverage is converted from geographic to

the required TSMS-Albers projection, using the geotsms.prj file:

Arc:  tables
Enter Command:  define attribut.dat

1
Item Name:  stations-id
Item Width:  4
Item Output Width:  4
Item Type:  i

5
Item Name:  stat-num
Item Width:  10
Item Output Width:  10
Item Type:  c

15
Item Name:  stat-name
Item Width:  15
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Item Output Width:  15
Item Type:  c
Item Name:  ~
Enter Command:  add from statname.dat
Enter Command:  quit
Arc:  joinitem stations.pat attribut.dat stations.pat stations-id stations-id
Arc:  project cover stations sangages geotsms.prj

The resultant sangages coverage, shown in Figure 3.8, identifies the locations

of each USGS stream gauge in the San Antonio-Nueces Coastal Basin and is used to

define outlet points from which subwatersheds can be delineated for hydrologic

analysis.

Precipitation Grids

Rainfall data typically provide a prime input to any nonpoint source pollution

model.  Much has been written about the importance of establishing definitive rainfall

inputs for nonpoint source pollution load estimation.  Collins and Dickey (1989)

employed a stepwise least squares optimization procedure in the development of a

stochastic model for simulating individual rainfall-runoff events and performing

nonpoint source pollutant load assessments.  Rudra et al. (1993) have identified that,

for some nonpoint source pollution models that accept non-steady state rainfall inputs,

variations in the selected rainfall time step interval can significantly affect estimates

of runoff, sediment yield, and erosion characteristics.

This study considers precipitation as a steady state quantity averaged over an

extended (30 year) time period.  As a result, nonpoint source loads are also estimated

as static quantities and concerns about temporal variations in rainfall inputs are

somewhat mitigated.  Precipitation data for the San Antonio-Nueces coastal basin is

extracted from a set of grids developed at the Oregon State University Forestry

Sciences Laboratory.  These grids are part of the Parameter-elevation Regressions on

Independent Slopes Model (PRISM) and cover the conterminous United States.

PRISM is an analytical model that uses precipitation data measured at over 7000

National Weather Service and cooperator stations, 500 SNOTEL stations, and some

selected State network stations (Daly et al., 1994).
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      GRASS Format            Arc/Info Format

north: 50:01:15 N ncols 1465
south: 24:03:45 N nrows 623
east: 64:58:45 W xllcorner -126.020833333
west: 126:01:15 W yllcorner 24.0625
rows: 623 cellsize 0.041666667
cols: 1465 nodata_value -9

Table 3.5 :  ASCII Header Formats for PRISM files

in GRASS and Arc/Info

Estimated precipitation values are established for intermediate grid-cells

through the use of a regression function, considering the measured precipitation point

data along with digital elevation model data to account for orographic effects (Daly et

al., 1994).  The result of this process is a completely gridded surface of average

precipitation across the nation.  Average monthly (January-December) and average

annual precipitation grids for the period between 1961 and 1990 are available.

The PRISM grids exist as compressed Geographical Resource Analysis

Support System (GRASS) ASCII files at the ftp site noted in Table 3.2.  For this study,

only average annual precipitation data is required and is downloaded from the ftp site

as the prism_us.ann.Z ASCII file.  In order to uncompress the file, the file extension is

changed from .Z to .gz and the gunzip utility is invoked:

$:  mv prism_us.ann.Z  prism_us.ann.gz
$:  gunzip prism_us.ann.gz

GRASS is a different GIS than Arc/Info, and there are some file format

differences.  The prism_us.ann ASCII file is compatible for immediate conversion to a

GRASS GIS grid, but must have some modification to its’ header before conversion to

an Arc/Info grid.  Table 3.5 shows the ASCII header formats that both GRASS and

Arc/Info recognize.  To create Arc/Info header information, (1) the nrows and ncols

fields are directly transferrable from the GRASS rows and cols fields.  (2) The

xllcorner and yllcorner fields are just digital degree representations of the GRASS

west and south fields.  (3) Cellsize is calculated as the decimal degree difference
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between the GRASS east and west coordinates, divided by the number of columns.

(4) Finally, nodata_value is specified as the value that GRASS uses to represent

NODATA cells, -9 in this case.

Once the ASCII header information is modified from the GRASS format, the

Arc/Info Asciigrid command is used to convert the ASCII file into an Arc/Info grid:

Arc:  asciigrid  prism_us.ann  p_ann
Arc: describe p_ann

                Description of Grid P_ANN

Cell Size =                0.042         Data Type:                       Integer
Number of Rows    =            623           Number of Values =             3470
Number of Columns =        1465           Attribute Data (bytes) =            8

           BOUNDARY                                STATISTICS

Xmin =                 -126.021         Minimum Value =                 36.000
Xmax =                  -64.979         Maximum Value =             6539.000
Ymin =                    24.063          Mean          =                       771.181
Ymax =                   50.021         Standard Deviation =           441.307

                          NO COORDINATE SYSTEM DEFINED

The Arc/Info Describe command is used to obtain projection and statistical

information about the p_ann grid.  This description shows that, while no coordinate

system is defined for the grid, the X and Y boundary values are digital representations

of the original GRASS coordinates, indicating that the grid is in a geographic

projection with decimal degrees specified as the units of measure.  For projection

definition purposes, this information can be used, along with the datum and spheroid

information (NAD83, GRS1980) of the TSMS-Albers projection.

In order to select the portion of the precipitation grid applicable to the San

Antonio-Nueces Coastal Basin, a copy of the buffered Hydrologic Unit Code

coverage (hucbuff) is first reprojected from TSMS-Albers to a Geographic coordinate

system, using the tsmsgeo.prj file, included in Appendix B.  The Grid Setwindow

command is then used to reduce the analysis window to the mapextent of the new

geobuff coverage.  Once this analysis window has been reduced, a smaller

precipitation grid (p_ann2) is defined that contains the values of p_ann within the

analysis window.  The
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smaller precipitation grid is then projected to the TSMS-Albers projection using the

geotsms.prj file and specifying a grid cell size of 100 meters:

Arc:  project cover hucbuff geobuff tsmsgeo.prj
Arc:  grid
Grid:  setwindow geobuff  p_ann
Grid:  p_ann2 = p_ann
Grid:  rainbuff = project(p_ann2,geotsms.prj,#,100)
Grid:  rainbfcv = gridpoly(rainbuff)

A vector representation of the rainbuff grid is created using the Arc/Info

Gridpoly command.  When this command is invoked, each feature of the resulting

coverage is assigned an attribute field called Grid-Code that contains the value of the

corresponding grid cell.  Figure 3.9 shows this precipitation coverage, as clipped by a

coverage of the basin boundary, which is created as per discussion in Chapter 4.

Expected Mean Concentration Values

In order to calculate loadings of pollutants from each grid cell in the San

Antonio-Nueces basin, pollutant concentration values need to be associated with the

cells.  Using literature-based expected mean concentration (EMC) values associated

with land use is one way to spatially assign average pollutant concentrations.  For this

study, a set of expected mean concentration values used in a previous Corpus Christi

Bay National Estuary Program analysis (Baird et al., 1996) was applied to the land

uses in the basin.  These expected mean concentrations were developed from water

quality analyses performed at the Oso Creek and Seco Creek USGS stream gauges in

south Texas.  The Oso Creek stream gauge is located just west of Corpus Christi and

represents the outlet of a predominantly agricultural subwatershed.  The Seco Creek

gauges are northwest of Hondo, Texas and represent drainage of rangeland (Baird et

al., 1996).  Expected mean concentration values for eighteen pollutants were used

during this study and are included in Table 3.6.
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Urban Urban Urban Urban Urban Agr Range Undev/

Constituent Res Comm Ind Trans Mixed Open

11 12 13 14 16/17# 2* 3* 7*

Total Nitrogen (mg/L) 1.82 1.34 1.26 1.86 1.57 4.4 0.7 1.5

Total Kjeldahl N. (mg/L) 1.5 1.1 1 1.5 1.25 1.7 0.2 0.96

Nitrate + Nitrite (mg/L as N) 0.23 0.26 0.3 0.56 0.34 1.6 0.4 0.54

Total Phosphorus (mg/L) 0.57 0.32 0.28 0.22 0.35 1.3 <0.01 0.12

Dissolved Phos (mg/L) 0.48 0.11 0.22 0.1 0.23 0.03

Suspended Solids (mg/L) 41 55.5 60.5 73.5 57.9 107 1 70

Dissolved Solids (mg/L) 134 185 116 194 157 1225 245

Total Lead (ug/L) 9 13 15 11 12 1.5 5 1.52

Total Copper (ug/L) 15 14.5 15 11 13.9 1.5 <10

Total Zinc (ug/L) 80 180 245 60 141 16 6

Total Cadmium (ug/L) 0.75 0.96 2 <1 1.05 1 <1

Total Chromium (ug/L) 2.1 10 7 3 5.5 <10 7.5

Total Nickel (ug/L) <10 11.8 8.3 4 7.3

BOD (mg/L) 25.5 23 14 6.4 17.2 4 0.5

COD (mg/L) 49.5 116 45.5 59 67.5 40

Oil and Grease (mg/L)** 1.7 9 3 0.4 3.5

Fec Coliform (col./100 ml)** 20,000 6,900 9,700 53,000 22,400 200

Fecal Strep (col./100 ml)** 56,000 18,000 6,100 26,000 26,525

# calculated as avg of land uses 11-14

* applied to all subcategories within the land use type

**average concentrations base on instantaneous rather than flow-averaged samples

Table 3.6  :  Relationship Between Land Use and Expected Pollutant

Concentrations
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Water Quality Measurement Data

Once estimated average pollutant loads and concentrations have been

established, they need to be compared with sampled data to validate the analysis.  In

support of this, a ten-year period (1982-1992) of water quality data measured in the

region is used.  This data set was previously used for the screening analysis portion of

the 1994 Regional Assessment of Water Quality in the Nueces Coastal Basins

(TNRCC, 1994) and was made available by the Texas Surface Water Quality

Monitoring (SWQM) Program, managed by the Watershed Management Division of

the TNRCC.

The Surface Water Quality Monitoring data available for the Nueces Coastal

Basins (both San Antonio-Nueces and Nueces-Rio Grande basins) include 37 fixed

monitoring stations measuring various combinations of 107 different water quality

parameters.  The parameters typically fall into three classes:  (1) conventional

parameters, such as pH, dissolved oxygen, and temperature, (2) nutrients (e.g.

nitrogen and phosphorus), and (3) toxics (e.g. metals and pesticides).  As the

coordinating agency, TNRCC oversees and collects sampling data from other various

Federal, State, and local agencies that perform the sampling (TNRCC, 1994).

The water quality data is provided, via the TNRCC ftp site identified in Table

3.2, as one compressed GIS point coverage identifying the sampling locations and two

database (.dbf) files:  one specifying each of the available water quality parameters in

the EPA's standard STORET code format, and the other providing the actual time-

tagged measurement values.  Once the three files are accessed from the ftp site, the

station location point coverage is imported and reprojected using the wqtsms.prj file in

Appendix B.  The .dbf files are converted to INFO files using the Dbaseinfo

command;

Arc:  import cover snwqsites.e00 wqsites
Arc:  project cover wqsites sanwq wqtsms.prj
Arc:  build sanwq points
Arc:  dbaseinfo value.dbf  value
Arc:  dbaseinfo storet.dbf  storet

Figure 3.10 shows the TNRCC water quality measurement points in the San Antonio-

Nueces Coastal Basin.
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In order to link specific concentration values from the value table to stations in

the sanwq coverage, a common linkage item must be identifed between the value

table and the point attribute table (pat) of the coverage.  A review of the two tables

shows that the sanwq-id field in the pat contains the same data as the station-id field

in the value table.  However, the two fields are in different formats and must be in  a

common format in order to be linkable.  This problem is resolved by adding a station-

id field to the pat of the coverage, filling in the field with values from the

sanwq-id field, and then changing the format of the new station-id field from integer

to character type, using the Arc/Info Tables Alter feature:

Arc:  additem sanwq.pat sanwq.pat station-id 5 5 i
Adding station-id to sanwq.pat to produce sanwq.pat.

Arc:  tables
Enter Command:  sel sanwq.pat

105 Records Selected
Enter Command:  calc station-id = wqsites-id
Enter Command:  alter
Enter item name:  station-id
COLUMN  ITEM NAME   WIDTH  OUTPUT  TYPE  N.DEC  ALTERNATE NAME
        17      STATION-ID         5         5             I          -
Item name:  station-id
Item output width:  5
Item type:  c
Alternate item name:  ~
COLUMN  ITEM NAME   WIDTH  OUTPUT  TYPE  N.DEC  ALTERNATE NAME
        17      STATION-ID         5         5             C          -
Enter item name:  ~

Using ArcView 2.0, the sanwq point attribute table and the value table are

linked through their station-id fields and the storet table is linked to the value table

through their respective param-id and storetcode fields.  Figure 3.11 shows portions of

the three linked tables and demonstrates how selection of a pollutant constituent in

the storet table identifies the sanwq locations where that pollutant is measured and the

values of those concentration measurements in the value table.





60

3.3 Scales of Analysis

For this study, there are four spatial scales at which hydrologic and loadings

analysis can be performed:  (1) the 100 m digital elevation model grid cell (0.01 km2

in area), (2) the PRISM 20 km2 rainfall grid cell, (3) the subwatersheds defined by

drainage area to the USGS streamflow gauges (average area = 650 km2), and (4) the

coastal basin (7235 km2) taken as a whole.  Figure 3.12 demonstrates the relationships

between these scales of analysis.

Processes in this study are performed using the 100 m x 100 m (1 hectare)

digital elevation model grid cell as the analysis unit.  This is the only reasonable scale

to use for the watershed modeling step, since an accurate replica of the stream

network in the basin is required.  Even at this scale, the resultant digital streams are all

of a uniform 100 m width (or 141 m when flowing to diagonally adjacent cells).

For calculations performed using the PRISM rainfall data, each 20 km2 cell is

discretized into approximately 2000 grid cells corresponding to the digital elevation

model cells.  One may note, from Figure 3.12, that a number of the rainfall cells are

irregular in shape.  This is the result of (1) the reprojection of the grid from its initial

geographic map projection and (2) the discretization process performed on each

rainfall cell.

While the digital elevation model grid cell is used as the analysis unit for

determination of loadings from each subwatershed, these loadings are also

accumulated and reported on a subwatershed basis.  Finally, the coastal basin scale is

not used at all for this study.  Coastal basins differ from river basins in that there are

multiple outlets versus just one.  For river basins, characteristic parameters such as

runoff or load that are determined on a subwatershed basis can be lumped into single

values associated with the outlet point of the basin.  To perform the same

accumulations for a coastal basin would leave the false impression that these

quantities might be measurable at a specific point.  For this reason, analysis on the

coastal basin scale is avoided.
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4 METHODOLOGY

As discussed in section 1.4, the methodology followed in this study is

partitioned into eight major tasks:  (1) Establishment of a digital database, (2) digital

modeling of the watershed, (3) definition of a rainfall/streamflow relationship, (4)

linking expected mean concentration of pollutants to land  use, (5) calculation of

pollutant loadings in the watershed, (6) predicting the aerial distribution of pollutant

concentrations, (7) simulation of point sources, and (8) estimating EMC values.

Chapter 3 discussed the establishment and preparation of digital data sets for

the nonpoint source pollution assessment.  In the discussion of the remaining tasks, this

chapter is similarly formatted to provide a descriptive narrative of the steps performed

along with the actual Arc/Info and UNIX commands executed.  This format provides

the reader insight into the specific steps performed and describes the theoretical bases

for each procedure.  As in Chapter 3, automated Arc Macro Language (AML) scripts

are referenced where appropriate.

4.1  Grid-Based Watershed Modeling Using Digital Elevation Data

The process of digitally simulating a watershed starts with the digital elevation

model of the basin.  The fine mesh of 1 hectare cells laid out over the basin is simply

represented by a rectangular array, or grid.  For the San Antonio-Nueces region, the

total number of cells in this array is approximately 1.87 million.  Processing of this

digital basin relies heavily on the Arc/Info version 7.0 GRID module.

Establishing a Digital Stream Network

Before digitally simulated stream networks and subwatersheds can be created,

the raw USGS digital elevation model accessed from the Internet must be corrected for

data errors that exist in the original data file or are introduced as a result of reprojection

to a different coordinate system.  In particular, raw digital elevation models

downloaded from Internet may contain many sinks.  Sinks are single grid cells or groups

of cells surrounded by cells of higher elevation.  In order to create a
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"hydrologic DEM" (Reed and Maidment, 1995), all of the sinks in the digital elevation

model must be removed.  This is accomplished through use of the Fill command.  The

Fill command redefines the elevations of each of the sink points to be equal to that of

its lowest elevation neighbor.  This smoothing process should always be used on a

digital elevation model after reprojection because the data resampling that occurs

during reprojection often creates artificial holes, or sinks, in the grid.

Grid:  fill sndemalb sanfil SINK

Once the filled hydrologic digital elevation model has been created, it can be

processed to determine the direction of the flow of water from cell to cell and to

determine, for each cell in the grid, the number of cells that are upstream.  The

Flowdirection and Flowaccumulation commands are used for these purposes.  The

conceptual basis for this process relies on the 8-direction pour point model (Figure

4.1a).  This model represents a cell surrounded by its eight neighbors.  Drainage passes

from each cell to only one of its neighbors in the direction of steepest descent, as

defined by the filled digital elevation model (Figure 4.1b).  By tracing these cell to cell

drainage connections downstream, a flow direction network for a complete basin is

established (Figure 4.1c).   By counting the number of cells that occur upstream of each

particular cell, a flow accumulation grid (Figure 4.1d) is established (Maidment, 1993).

Grid:  sanfdr = flowdirection(sanfil)
Grid:  sanfac = flowaccumulation(sanfdr)

A digital representation of the stream network in the basin is established by

acknowledging that, just as surface runoff accumulates in creeks and streams, flow

accumulation values along the digital streams should be greatest.  The Conditional

(Con) function is used to extract the flow accumulation cells that have value greater

than a certain threshold (in this case, 1000).  The resulting grid (str1) and equivalent

coverage (covstr) actually reflect strings of cells whose flow accumulation values are

greater than 1000.

Grid:  str1 = con(sanfac > 1000,1)
Grid:  covstr = gridline(str1)
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Figure 4.2 shows a comparison of the digitally delineated stream network

(covstr) and the 1:100,000-scale hydrography digital line graph representation of the

basin streams (Saunders and Maidment, 1995).  As can be seen in the figure, the

delineated streams in the inland portions of the basin match quite closely with the

digital line graphs.  However, closer to the coast, the differences between the Grid-

delineated and digital line graph streams are much more apparent.  This is expected, as

slopes in this region of the San Antonio-Nueces coastal basin are generally flat.

Elevations in this region do not change as significantly (or at all) from cell to cell and

flow directions must be determined over larger areas of equal elevation.

Burning Digital Line Graph Streams into the Digital Elevation Model

The digital stream network established in the above procedure is derived using

pure elevation data.  However, the poor match that exists with the digital line graphs in

the near-shore portions of the watershed is of concern.  These digital line graphs are the

result of manual digitizations of USGS 1:100,000-scale maps of the region and are

considered to be fairly accurate.  A review of the digital line graph coverage indicates

many straight constructed channels in the region.  Elevations of these channel beds

may not be accounted for in the digital elevation model.  In order to correct for this

inconsistency, and to ensure that all digitally derived drainage paths adhere to the

accepted stream networks reflected in the digital line graphs, a process of “burning” the

digital line graphs into the digital elevation model is performed (Maidment and

Saunders, 1996).

As can be seen from Figure 3.3, the hydrography digital line graphs of the San

Antonio-Nueces coastal basin include lakes, in-stream lakes, coastlines, and

“disappearing” streams in addition to the streams that flow to the bay network.  The

first step in preparing the digital line graph coverage for the “burn-in” process is to

remove all of the features that do not contribute to providing contiguous drainage paths

throughout the basin.  The Arc/Info ArcEdit module is used for this purpose.  In

ArcEdit, each stand-alone lake and “disappearing” stream is removed.  All in-stream

lakes are replaced with arc segments that would otherwise bisect the lakes.

Additionally, in the deltas of the Nueces and San Antonio Rivers, where the braiding

effects of bifurcating and distributary streams occur, a main channel is identified
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through the delta and all other split channels and sinuous side channels are removed.

This maintains one and only one drainage path for each upstream cell.

Other editing performed on the digital line graph coverage includes the removal

of marsh channels throughout the barrier islands, removal of pipelines, shipping lanes,

and islands within the Intracoastal Waterway, and the addition of arc segments to

bound the Intracoastal Waterway between Corpus Christi Bay and San Antonio Bay.

The final edited coverage, defined as sanrivs4, is shown in Figure 4.3.

Polygons are established from this line coverage by using the Arc/Info Clean

command to create the sanpolys coverage.  When all of the edits have been

implemented correctly, the only polygons produced are those of the Intracoastal

Waterway and the barrier islands.  Unique polygon coverages of the Intracoastal

Waterway and barrier islands are created by displaying sanpolys in ArcView 2.0,

selecting the appropriate polygons, and converting them into shape files (bays.shp and

barriers.shp).  The Arc/Info Shapearc command is then used to build coverages from

these shape files:

Arc:  clean sanrivs4 sanpolys
Arc:  shapearc bays bays
Arc:  build bays poly
Arc:  shapearc barriers barriers
Arc:  build barriers poly

The bays coverage is buffered by 100 meters (one cell width) to create an

approximate bay network coverage that can be used to remove coastlines from the

edited digital line graph coverage.  First a rectangular coverage spanning the extent of

the filled digital elevation model is created through use of the Con and Gridpoly

commands.  The buffered bay coverage is then combined with this rectangle through

the Arc Union command.  The resulting coverage is converted back into 100 m grid cell

format, using Polygrid:

Arc:  buffer bays baybuff # # 100 # poly
Grid:  sqgrid = int(con(sanfil,1,1))
Grid:  sqcov = gridpoly(sqgrid)
Arc:  union sqcov baybuff baycov
Grid:  baygrid = polygrid(baycov,#,#,#,100)
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The grid analysis window is then set to the size of the digital elevation model.

An equivalent grid of the edited stream coverage is created, using the Linegrid

command.  The coastlines of the stream grid are removed with the Con statement, by

selecting only the cells that correspond to the mainland portion of baygrid (i.e. baygrid

cell value = 2).  In effect, this step reduces all subsequent analyses to the mainland

portion of the basin, as all other grid cells (bay network and barrier islands) are

represented by NODATA, or null values.

Grid:  setwindow sanfil
Grid:  strgrid = linegrid(sanrivs4,#,#,#,100,zero)
Grid:  strmgrid = con(baygrid == 2,strgrid)

Strmgrid is “burned” into the digital elevation modelwith the Con statement by

artificially raising the elevation of all off-stream grid cells by five meters while holding

the in-stream grid cells to a value of zero elevation.  This creates a new digital elevation

model with which to restart the digital stream delineation process.

Grid:  ditstrm = con(strmgrid > 0,0,sanfil + 5)

After the new digital elevation model is filled, the bay network region is

redefined with values of zero elevation in place of the NODATA values, using baygrid

and the Con statement.  This is required in order to avoid erroneous flow direction

computations in the subsequent steps.  A flow direction grid is established from the

updated bayfil grid, and then NODATA values are reinserted into the bay network, so

that subsequent analyses will be specific to the mainland region, only.  This last step is

accomplished by using baygrid and the Con statement to isolate the flow direction cells

specific to the mainland:

Grid:  fill ditstrm ditfil SINK
Grid:  bayfil = con(baygrid == 2,ditfil,0)
Grid:  ditfdr = flowdirection(bayfil)
Grid:  clipfdr = con(baygrid == 2,ditfdr)

A flow accumulation grid is created and, as before, flow accumulation cells with

a value greater than 1000 are extracted to define the locations of the digitally simulated

streams:

Grid:  ditfac = flowaccumulation(clipfdr)
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Grid:  ditstr1 = con(ditfac > 1000,1)
Grid:  covstr1 = gridline(ditstr1)

Figure 4.4 shows the new digital streams, as burned into the digital elevation

model and superimposed over the 1:100,000-Scale hydrography digital line graph files

of the basin.

Digital Delineation of Subwatershed Drainage Areas from USGS Flow Gauges

In order to provide a more quantitative check on the accuracy of the digitally

derived basin, drainage areas from the existing USGS flow gauges in the basin are

determined from the flow accumulation grid, using an overlay of the sangages coverage

created in section 3.2.  These digitally delineated subwatershed drainage areas are then

compared with values provided through the USGS-Texas Internet site identified in

Table 3.2.

In order to digitally delineate drainage areas, outlet cells for each particular area

must first be established.  This is accomplished through the Arc/Info Grid module, by

displaying the flow accumulation grid, overlaying the sangages coverage, and selecting

each gauge location along a flow accumulation string.  The fact that each of the stream

gauges in the coverage fall exactly on the flow accumulation network is a testament to

the accuracy of the “burn-in” process used above.  The Selectpoint command allows

the user to interactively define each outlet point.  Once the outlet cell grid is defined,

the Watershed function uses it, along with the flow direction grid, to define the area

draining to the selected cell.  An equivalent coverage of the drainage area is then

created using the Gridpoly command.  This process is performed for all five USGS

gauges in the coastal basin.  For example, the commands for delineating drainage area

to the Aransas River gauge are:

Grid:  drainpt1 = selectpoint(ditfac,*)
Grid:  aranarea = watershed(clipfdr,drainpt1)
Grid:  arancov = gridpoly(aranarea)
Grid:  list aranarea.vat
        Record Value Count

1   56 63291
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By displaying the value attribute tables (vat’s) for each of the five drainage area

grids, a count of the number of cells simulating each drainage area is obtained.  Since it

is known that each cell has area of 1 hectare = 10,000 m2, the area in square kilometers

is established by dividing the number of cells by 100.  These areas, converted to square

miles, are then compared with the USGS drainage areas obtained from the Internet site.

Table 4.1 shows the comparison of the digitally delineated drainage areas with USGS

drainage areas and Figure 4.5 shows the digital drainage areas as they exist within the

basin.

Percent errors from Table 4.1 indicate that the digitally delineated drainage

areas match the USGS areas fairly accurately.  The largest errors, 8.89% for the

Copano Creek drainage and 2.85% for the Chiltipin Creek drainage, occur in the

flattest portions of the basin, which are also closest to the coast.  The smallest error,

0.32% for the Medio Creek drainage, occurs for the furthest inland area.

Figure 4.6 shows a close-up of the Copano Creek drainage area and one

potential contributing factor to the errors occurring in the digital delineation.  The

sinuous nature of the digital subwatershed boundary results when using the “burn-in”

process for establishing the digital elevation model.  While the actual cause of this

anomaly is unknown, it is suspected that the flow direction grid is affected by the sharp

drops in elevation to the burned-in streams.  Even with these boundary anomalies, the

percent errors for the delineated drainage errors are considered to be acceptable.

USGS       DELINEATED ACTUAL USGS %
GAGE # STREAM # CELLS    DRAINAGE AREA DRAINAGE ERROR

(km2) (mi2) (mi2)

08189200 COPANO 20,782 207.82 80.2 88 8.89
08189300 MEDIO 52,708 527.08 203.3 204 0.32
08189500 MISSION 176,619 1766.19 681.4 690 1.25
08189700 ARANSAS 63,291 632.91 244.2 247 1.15
08189800 CHILTIPIN 32,233 322.33 124.4 128 2.85

Table 4.1 :  Comparison of Digitally Delineated and USGS Drainage Areas
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Defining the Coastal Basin Boundary

For many of the figures in section 3.2, a coverage of the San Antonio-Nueces

coastal basin boundary is used to clip out the particular features of the display.  This

boundary is created to facilitate watershed-level analyses of the respective spatial

parameters.  Both Arc/Info version 7.0 and ArcView 2.0 are used in the establishment

of this border.

The Arc/Info Grid module is first employed to delineate subwatersheds within

the complete basin.  A threshold value (i.e. number of cells) defining the size of

subwatersheds to be delineated is specified.  This threshold value should be chosen to

ensure that the total number of subwatersheds delineated is manageable.  The total area

of the San Antonio-Nueces coastal basin is known to be approximately 7000 km2.  In

order to keep the number of subwatersheds in the basin under 100, a threshold value of

8000 cells (i.e. 80 km2) is chosen.  The Con statement is used to identify all flow

accumulation cells in the basin with value greater than the threshold.  As discussed

previously, this results in strings of grid cells that represent a stream grid of the basin.

The Streamlink command is used to identify specific stream reaches, based on

the stream grid and flow direction grids.  The Zonalmax command then produces a grid

of accumulation zones, using the grid of stream reaches along with the flow

accumulation grid.  This command stores the maximum value of each of the stream

reaches into all cells of the corresponding accumulation zones.

Next, using the Con statement, the outlet cells of each accumulation zone are

defined as those cells with identical flow accumulation and accumulation zone grid

values.  The Watershed function is then used, as before, to delineate the drainage areas

to each zonal outlet cell.  Finally, an equivalent coverage of the delineated

subwatersheds is created through the Gridpoly command:

Grid:  ditstr8 = con(ditfac > 8000,1)
Grid:  ditlnk8 = streamlink(ditstr8,clipfdr)
Grid:  ditacc8 = zonalmax(ditlnk8,ditfac)
Grid:  ditout8 = con(ditacc8 == ditfac, ditlnk8)
Grid:  ditshd8 = watershed(clipfdr,ditout8)
Grid:  shed8cov = gridpoly(ditshd8)
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Figure 4.7 shows the digitally delineated subwatersheds of the San Antonio-

Nueces coastal basin overlaid with the USGS Hydrologic Unit Codes to provide an

estimate of which subwatersheds fall within the basin and which are associated with the

Nueces and San Antonio River basins.

Using ArcView 2.0, the subwatersheds coverage (shed8cov) is displayed and

each of the polygons that fall within the San Antonio-Nueces basin are selected.  Once

selected, these polygons are converted into the shapefile, subsheds.shp.  As can be seen

from Figure 4.7, the complete San Antonio-Nueces basin is not accounted for by the

polygons of shed8cov.  This occurs because the San Antonio-Nueces basin is a coastal

basin and not a river basin.  River basins have a single outlet point, but coastal basins

drain to the ocean in a more diffuse manner.  Since many of the actual drainage areas

along the coast are smaller than 80 km2, they are not included in the subwatersheds

coverage.

This problem is resolved by selecting shed8cov polygons that, along with the

baybuff coverage and the subsheds shapefile, completely enclose the basin area not

accounted for in shed8cov.  Only three additional polygons are selected for this

purpose and converted into the shapefile, trimshed.shp.  Figure 4.8 shows the shapefiles

subsheds.shp and trimshed.shp displayed with the baybuff coverage to completely

enclose the undelineated area of the coastal basin.

The subsheds and trimshed shapefiles are converted to coverages using the

Arc/Info Shapearc command.  The coverages are then cleaned to construct polygon

topology.  This process creates the coverages covsheds and covtrim.  The Append

command is used to merge the covsheds, covtrim, baybuff, and barriers coverages into

one large coverage blanketing the entire coastal basin.

Arc:  shapearc subsheds subsheds
Arc:  shapearc trimshed trimshed
Arc:  clean subsheds covsheds
Arc:  clean trimshed covtrim
Arc:  append basin
Enter the 1st coverage:  covsheds
Enter the 2nd coverage:  covtrim
Enter the 3rd coverage:  baybuff
Enter the 4th coverage:  barriers
Enter the 5th coverage:  ~  <return>
Done entering coverage names (Y/N)?  y
Do you wish to use the above coverages (Y/N)?  y
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   Appending coverages....
Arc:  clean basin sanbasin

The final cleaned basin coverage, sanbasin, actually contains the three polygons

from the trimshed shapefile.  By displaying the sanbasin coverage in ArcView 2.0, all

sanbasin polygons except for those from trimshed are selected and converted to the

shapefile, bord.shp.  Once again, the Shapearc and Clean commands are used to create

a border coverage.  Finally, the Reselect command is used to select the exterior

polygon of the coverage.  This has the effect of removing all of the interior

subwatershed boundaries and leaving only the outline of the basin.

Arc:  shapearc bord bord
Arc:  clean bord border
Arc:  reselect bord sanbord
>:  res bord# = 1
>:  ~
Do you wish to re-enter expression (Y/N)?  n
Do you wish to enter another expression (Y/N)?  n
  1 features out of 60 selected

The final sanbord coverage is used throughout this project to define the

boundary of the San Antonio-Nueces Coastal Basin.  For aesthetics, the complete

bodies of both Corpus Christi Bay and San Antonio Bay are included in the coverage.

The Clip command is used, along with this basin border, to select data specific to the

basin from the data sets described in section 3.2.

Arc:  clip sanhydro sanbord sanhyd line
Arc:  clip sanlus sanbord sanlu poly
Arc:  clip rainbfcv sanbord snrainyr poly

4.2  Determination of a Rainfall/Runoff Relationship

In order to assess the transport of pollutant loads in a region, an understanding

of the means by which the loads migrate is first required.  Nonpoint source pollutants

are carried over land and into the stream networks of a region by direct runoff.  This

runoff is largely the result of precipitation over the area, although some runoff may also

be generated by over-irrigation in agricultural areas.  For this study, the volume of
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runoff from a grid-cell is completely attributed to precipitation over the cell.  By

comparing average annual stream flows at each of the USGS flow gauges with the

average annual precipitation that occurs upstream of those gauges, a mathematical

relationship between rainfall and runoff is established.

Determining Average Rainfall for each Delineated Drainage Area

The Parameter-elevation Regressions on Independent Slopes Model (PRISM)

discussed in section 3.2 provides the precipitation data used for this study.  This data is

provided as total annual depth of precipitation (mm) averaged over the 30-year period

from 1961 to 1990.  Two methods of determining average rainfall for each drainage

area are performed and compared in this analysis.

The first method for calculating average rainfall for each drainage area makes

use of a process called a weighted flow accumulation.  This is an extension of the

regular Flowaccumulation command.  However, instead of counting the number of cells

that occur upstream of each particular grid cell, the weighted Flowaccumulation

command uses a second grid, called a weight grid, and sums the weight grid values of

the cells that occur upstream.  Using the buffered precipitation grid as the weight grid, a

grid representing total annual potential runoff is generated:

Grid:  weighfac = flowaccumulation(clipfdr,rainbuff) * 10

The factor of ten is used in this command to convert from the rainbuff units of

depth (mm) to units of volume (m3), using the knowledge that each cell is equal to

10,000 m2, or

Volume = Depth (mm) * Area (#cells) * 10,000 m2/cell * .001 m/mm.  (4-1)

Once the weighted flow accumulation grid is established and displayed, the

USGS stream gauge coverage is overlaid and each of the gauge points are queried,

using the Cellvalue command, to determine the potential runoff that would occur at

each gauge.  By dividing these potential runoff values by the delineated drainage areas

associated with each gauge (from Table 4.1), the average depth of precipitation is

established for each drainage area:
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Grid:  gridpaint weighfac value linear nowrap gray
Grid:  points sangages
Grid:  cellvalue weighfac *
<9 to END>
The cell containing point (1233178.620,682331.934) has value 510618944.000
The cell containing point (1266688.298,684048.117) has value 1487741184.000
The cell containing point (1282992.941,685733.054) has value 192068960.000
The cell containing point (1229206.739,704427.678) has value 412713952.000
The cell containing point (1245272.269,656404.121) has value 273848544.000

A second method of determining average precipitation at each gauge is to create

separate precipitation grids corresponding to each subwatershed grid, using the Con

statement.  Once the localized precipitation grids are created, the Describe command

provides the mean value of all cells in the grid as a statistic.  Using the Aransas drainage

area as an example, this process is performed as:

Grid:  aranrain = con(aranarea,rainbuff)
Grid:  describe aranrain

                Description of Grid ARANRAIN

Cell Size =                     100.000         Data Type:                       Integer
Number of Rows    =           1325           Number of Values =             37
Number of Columns =         1520           Attribute Data (bytes) =         8

           BOUNDARY                                STATISTICS

Xmin =            1180828.125         Minimum Value =                761.000
Xmax =            1332828.125 Maximum Value =               860.000
Ymin =              612183.250          Mean          =                        806.792
Ymax =              744683.250         Standard Deviation =             15.708

Table 4.2 shows the average annual precipitation values determined by both

methods for each gauge.  As can be seen from the table, results are consistent for both

methods.

A precipitation grid that adheres to the watershed boundary is established by

first creating an equivalent grid from the sanbord coverage established in section 4.1.

Then, using that grid with the Con statement, the precipitation cells particular to the

basin are selected.

Grid:  bordgrid = polygrid(sanbord,#,#,#,100)
Grid:  sanpyr = con(bordgrid,rainbuff)
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Method #1 Method #2

Drainage Potential Drainage Precip Precip
Subwatershed Runoff (m3) Area (km2) Depth (mm) Depth (mm)

Mission 1,487,741,184 1766.19 842.34 842.326
Aransas 510,618,944 632.91 806.78 806.792
Copano 192,068,960 207.82 924.21 924.252
Chiltipin 273,848,544 322.33 849.59 849.618
Medio 412,713,952 527.08 783.02 783.033

Table 4.2 :  Comparison of Methods for Determining Average Annual

Precipitation for each Gauged San Antonio-Nueces Drainage Area

Determining Average Depth of Runoff at each USGS Gauge

The montflow.f FORTRAN algorithm (Appendix B) calculates values for total

monthly, annual, and average annual streamflow volume, given average daily

streamflow in cubic feet per second (cfs).  Table 4.3 shows the output from this

algorithm for each USGS streamflow gauge in the San Antonio-Nueces Coastal Basin,

given the raw input data for the years 1961-1990.  Table 4.4 shows the equivalent

depths of streamflow for those volumes, calculated by dividing each value by the

delineated drainage area of the particular gauge (from Table 4.1).  Figure 4.9 shows

how annual depths of streamflow have varied from the average annual depths at each

gauge for the period 1961-1990.

One may note from Tables 4.3 and 4.4 that, of the five USGS gauges in the

basin, only the Mission River gauge has recorded streamflow values for the total period

of applicable precipitation data.  Ideally, for the establishment of a rainfall/runoff

relationship, rainfall and streamflow data from the same periods of record should be

used.  To that end, projected 30-year average annual streamflows at each gauge, Qg, are

estimated using the average annual 1961-1990 streamflow at the Mission gauge, Qm.

These estimates are established by multiplying Qm by the ratio of  qg / qm, where qg is the

average annual streamflow at the gauge and qm is the average annual streamflow at the

Mission gauge over the same time period, or
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Year Mission Aransas Chiltipin Copano Medio

1961 57,685,664
1962 40,983,796
1963 5,693,702 3,769,459
1964 10,694,530 3,144,356
1965 47,063,808 12,482,179 11,207,823
1966 106,309,680 23,827,040 1,432,233
1967 632,705,728 184,715,696 163,328,112
1968 131,968,248 18,562,584 12,908,496
1969 74,330,552 14,724,674 2,892,822
1970 65,834,276 14,914,258 7,378,471
1971 379,032,896 115,493,312 117,657,808 97,337,648 11,217,219
1972 177,693,296 34,983,532 36,046,596 58,093,640 6,511,890
1973 356,130,304 70,796,616 82,647,592 76,333,720 10,388,754
1974 106,735,128 52,987,968 12,367,189 21,977,854 745,549
1975 35,551,872 4,430,039 11,762,097 1,716,429 557,798
1976 253,111,616 30,784,200 59,696,076 42,789,296 18,338,360
1977 117,446,048 16,581,756 26,458,148 14,502,448
1978 61,703,216 6,657,413 15,928,468 57,803,472
1979 123,047,520 16,923,788 55,162,504 47,387,740
1980 114,900,872 21,109,020 57,560,848 10,808,809
1981 347,880,480 55,757,024 43,350,032 134,456,512
1982 113,334,800 11,405,166 25,378,954 21,914,878
1983 164,663,248 26,732,898 46,031,200 84,999,136
1984 26,053,482 7,954,423 41,102,256 7,781,302
1985 70,610,344 19,403,550 51,825,828 14,094,454
1986 39,910,080 3,505,644 775,226 11,878,824
1987 90,450,640 26,621,798 14,231,760
1988 8,253,274 9,077,310 3,634,653 0
1989 1,103,216 2,086,059 419,566 467,225
1990 179,311,024 50,048,796 1,853,683 32,815,878

Avg Annual = 131,339,778 32,791,029 42,734,426* 37,569,551 18,130,096

*calculated for 1971-1986 due to break in service in 1987

Table 4.3 :  Annual Volume (m3) of Recorded Streamflow (1961-1990) for the Five

USGS Gauges in the San Antonio-Nueces Coastal Basin
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Year Mission Aransas Chiltipin Copano Medio

1961 32.7
1962 23.2
1963 3.2 7.2
1964 6.1 6.0
1965 26.6 19.7 21.3
1966 60.2 37.6 2.7
1967 358.2 291.9 309.9
1968 74.7 29.3 24.5
1969 42.1 23.3 5.5
1970 37.3 23.6 14.0
1971 214.6 182.5 365.0 468.4 21.3
1972 100.6 55.3 111.8 279.5 12.4
1973 201.6 111.9 256.4 367.3 19.7
1974 60.4 83.7 38.4 105.8 1.4
1975 20.1 7.0 36.5 8.3 1.1
1976 143.3 48.6 185.2 205.9 34.8
1977 66.5 26.2 82.1 69.8
1978 34.9 10.5 49.4 278.1
1979 69.7 26.7 171.1 228.0
1980 65.1 33.4 178.6 52.0
1981 197.0 88.1 134.5 647.0
1982 64.2 18.0 78.7 105.5
1983 93.2 42.2 142.8 409.0
1984 14.8 12.6 127.5 37.4
1985 40.0 30.7 160.8 67.8
1986 22.6 5.5 2.4 57.2
1987 51.2 42.1 ------- 68.5
1988 4.7 14.3 11.3 0.0
1989 0.6 3.3 1.3 2.2
1990 101.5 79.1 5.8 157.9

Avg Annual = 74.4 51.8 132.6* 180.8 34.4

*calculated for 1971-1986 due to break in service in 1987

Table 4.4 :  Equivalent Depth (mm) of Recorded Streamflow (1961-1990) for the

Five USGS Gauges in the San Antonio-Nueces Coastal Basin
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Figure 4.9 :  USGS Recorded Annual Streamflows for Five Gauges in the
San Antonio-Nueces Basin
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Qg = Qm * (qg/qm).                        (4-2)

This approach is legitimate for temporally averaged estimates in a region, where

variations from year to year generally conform to similar trends.  Figure 4.9 illustrates

these regional trends with coincident occurrences of local maximum and minimum

streamflow values.  Table 4.5 shows the projected 30-year average annual depths of

streamflow for each of the five USGS gauges.

Establishing a Mathematical Relationship Between Rainfall and Runoff

Using the five values for average annual precipitation along with the five values

for projected 30-year average annual depth of streamflow, the Microsoft Excel 5.0

Regression tool is employed to determine the best fit curve between the two data sets.

Assessments of the best linear, best quadratic, and best exponential fits show that the

linear relationship most accurately reflects runoff in the San Antonio-Nueces coastal

basin.  Figure 4.10 shows the Microsoft Excel output of the regression for the linear

case.  This regression run produces a squared multiple correlation coefficient (r2) value

of  0.964, which indicates that the best fit line approximates the actual data well.

Based on the regression output, the linear relationship that best approximates

the rainfall/runoff relationship in the San Antonio-Nueces Coastal Basin is

Q (mm) = 1.0527 * P (mm) - 799.37, (4-3)

where Q represents depth of streamflow and P represents precipitation.

In order to create an Arc/Info grid of runoff, this relationship would be applied

to every cell in the precipitation grid.  However, since the precipitation grid has an

effective range of values between 739 mm and 985 mm, it is noted that there is a small

range of cells (739 - 759 mm) for which the relationship produces negative numbers.  In

order to avert this irregularity, the rainfall/runoff relationship of equation 4-3 is only

applied to precipitation cells with value greater than 759 mm.  In other words, the

adjusted rainfall/runoff relationship becomes

Q (mm) = 1.0527 * P (mm) - 799.37,    P > 759 mm
Q (mm) = 0,   P < 759 mm. (4-4)
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USGS Average Years of Avg Mission Projected
Streamflow Depth of Continuous Depth for 30-Year

Gauge Streamflow Operation those Years Avg (61-90)
(mm) (mm) (mm)

Mission 74.4 1961-90 74.4 74.4
Aransas 51.8 1965-90 83.3 46.3
Copano 180.8 1971-90 78.3 171.6
Chiltipin 132.6 1971-86 88.1 112.0
Medio 34.4 1963-76 96.7 26.5

Table 4.5 :  Projected 30-Year Average Annual Depth of Streamflow for the Five

USGS Gauges in the San Antonio-Nueces Basin

SUMMARY OUTPUT

Regression Statistics
Multiple R 0.9818
R Square 0.9640
Adjusted R
Square

0.9519

Standard Error 12.6196
Observations 5.0000

ANOVA

df SS MS F Significance F
Regression 1 12779.4255 12779.4255 80.2450 0.0029
Residual 3 477.7651 159.2550
Total 4 13257.1906

Coefficients Standard
Error

t Stat P-value Lower 95% Upper 95%

Intercept -799.3698 99.0143 -8.0733 0.0040 -1114.4778 -484.2617
X Variable 1 1.0527 0.1175 8.9580 0.0029 0.6787 1.4267

Figure 4.10 :  Regression Tool Output for Best Linear Fit Relationship Between
Average Annual Precipitation and Depth of Streamflow
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The fact that this equation produces values of Q = 0 for precipitation values less

than 759 mm is a limitation of the linear modeling function.  However, since the region

of the San Antonio-Nueces basin that annually receives less than 759 mm of rain is

limited to a 78 square kilometer area in the northwest corner of the watershed

(approximately one percent of the basin’s area), the adjusted linear rainfall/runoff

relationship is considered acceptable for the basin.  However, it should be stressed that

the equation is specific to the San Antonio-Nueces coastal basin and should not be

applied outside the watershed.  A plot of this adjusted rainfall/runoff relationship is

shown in Figure 4.11.  The five points denoted on the graph represent the average

precipitation and 30-year projected depth of streamflow for each gauge.

While equation 4-4 provides reasonable estimates of runoff for portions of the

San Antonio-Nueces basin that drain to gauged locations, a more comprehensive

relationship for the basin might be established by considering runoff data from gauges

in adjacent basins which receive greater and less precipitation.  Consideration of this

additional runoff data would extend the range of application of the rainfall/runoff

relation and a mathematical form of the relationship could be estimated more

accurately.

Using the rainfall/runoff relationship of equation 4-4 in conjunction with the

precipitation grid and the Con statement, a grid of runoff is produced.  So that

subsequent flow accumulations may be performed on this grid without encountering

cells of NODATA (null) value, the Isnull command is used with a second Con

statement to zero fill all of the null cells resulting from application of the rainfall/runoff

relationship.  Finally, an equivalent coverage of runoff is created through use of the

Gridpoly command.  Figure 4.12 shows this runoff coverage, with annual runoff

amounts depicted in intervals of 50 mm.

Grid:  runoffeq = con(sanpyr > 759, 1.0527 * sanpyr - 799.37, 0)
Grid:  runoff = con(isnull(runoffeq),0,runoffeq)
Grid:  runoffcv = gridpoly(int(runoff))
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4.3  Linking Expected Mean Concentration of Pollutants to Land Use

The measure of pollutant level that occurs during a runoff event is the expected

mean concentration, or EMC, defined as the mass of pollutant transported per volume

of runoff.  For this study, it is assumed that expected mean concentrations of various

pollutants are directly related to land uses in the drainage areas.  In order to associate

pollutant expected mean concentrations with land use, the land use coverage shown in

Figure 3.5 is used along with the expected mean concentration data from Table 3.6.

Establishing a Link Attribute

A review of the data in Table 3.6 shows that, while expected mean

concentration values are included for each subcategory of urban land use, only one

value is included for the agricultural, range, and barren land use categories.  However,

all polygons in the land use coverage are delineated by subcategory.  In order to

facilitate the assignment of expected mean concentrations to land uses in the region, an

additional attribute is first created in the polygon attribute table (pat) of the land use

coverage.  This new attribute, called lusecat, identifies the unique land use categories to

which the expected mean concentrations are assigned.

The Arc/Info Tables tool is used to create the lusecat attribute.  The attribute,

defined as an integer, is first added to the polygon attribute table, using the Additem

command.  All land use subcategory polygons for which no unique expected mean

concentrations exist are then reselected and the lusecat attribute for these polygons is

defined as the truncated lanuse-id field, rounded to the lowest multiple of ten.  This has

the effect of redefining all agriculture land use subcategories, for example, to one value

of land use category.  For those land use subcategory polygons which do have

corresponding unique expected mean concentrations (i.e. urban land uses), the lusecat

attribute is defined as the value of the lanuse-id field.  Finally, the Arc/Info Dissolve

command is used to create a land use map with distinct category, versus subcategory,

polygons.

Arc:  tables
Enter Command:  additem sanlu.pat lusecat 8 8 i
Enter Command:  sel sanlu.pat
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Enter Command:  reselect lanuse-id > 19
Enter Command:  calc lusecat = lanuse-id / 10
Enter Command:  sel
   File SANLU.PAT is now closed.
Enter Command:  sel sanlu.pat
Enter Command:  calc lusecat = lusecat * 10
Enter Command:  sel
   File SANLU.PAT is now closed.
Enter Command:  sel sanlu.pat
Enter Command:  reselect lanuse-id < 19
Enter Command:  calc lusecat = lanuse-id
Enter Command:  quit
Arc:  dissolve sanlu sanluse lusecat poly
Arc:  kill sanlu all
Arc:  rename sanluse sanlu

Attaching the Expected Mean Concentration Data to Land Use

In order to attach the Expected Mean Concentration data from Table 3.6 to the

land use coverage, a separate data table with each of the values listed by land use

category must first be created.  This data table, called emc3a.dat, is shown in Figure

4.13.  Note that land use category appears as the first item in each row of the data and

that expected mean concentration values for each pollutant are listed horizontally, in

order of their appearance in Table 3.6, for each land use category.  It should also be

noted that expected mean concentration values for water, wetlands, tundra, and

snowfield land uses are assumed to be zero for all pollutants and that the concentration

values for range land uses are also applied to forest land uses in the basin.  For the

creation of this data file, special care must be taken to ensure that items in the file are

delimited by single spaces and that the data is followed by an ‘end’ statement.

Once the raw expected mean concentration data file is created, it is used to fill a

formatted data file, called attrib.dat, that is subsequently attached to the polygon

attribute table of the land use coverage.  Construction of the formatted data file is done

with the Tables tool.  A field for land use category is defined and then fields for each

pollutant expected mean concentration value are defined.  This process of defining the

formatted data table is cumbersome and the potential for error in data input is

significant.  The process is more efficiently performed through use of an AML.
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0 0.0 0.0 0.0 0.0 0.0 0.0 0 0.0 0.0 0 0.0 0.0 0.0 0.0 0.0 0.0 0 0
11 1.82 1.5 0.23 0.57 0.48 41.0 134 9.0 15.0 80 0.75 2.1 5.0 25.5 49.5 1.7 20000 56000
12 1.34 1.1 0.26 0.32 0.11 55.5 185 13.0 14.5 180 0.96 10.0 11.8 23.0 116.0 9.0 6900 18000
13 1.26 1.0 0.3 0.28 0.22 60.5 116 15.0 15.0 245 2.0 7.0 8.3 14.0 45.5 3.0 9700 6100
14 1.86 1.5 0.56 0.22 0.1 73.5 194 11.0 11.0 60 0.5 3.0 4.0 6.4 59.0 0.4 53000 26000
15 1.30 1.05 0.28 0.3 0.17 58.0 151 14.0 14.8 207 1.48 8.5 10.1 18.5 81.0 6.0 8300 12050
16 1.57 1.25 0.34 0.35 0.23 57.9 157 12.0 13.9 141 1.05 5.5 7.3 17.2 67.5 3.5 22400 26525
17 1.57 1.25 0.34 0.35 0.23 57.9 157 12.0 13.9 141 1.05 5.5 7.3 17.2 67.5 3.5 22400 26525
20 4.4 1.7 1.6 1.3 0.0 107.0 1225 1.5 1.5 16 1.0 5.0 0.0 4.0 0.0 0.0 0 0
30 0.7 0.2 0.4 0.0 0.0 1.0 245 5.0 5.0 6 0.5 7.5 0.0 0.5 0.0 0.0 200 0
40 0.7 0.2 0.4 0.0 0.0 1.0 245 5.0 5.0 6 0.5 7.5 0.0 0.5 0.0 0.0 200 0
50 0.0 0.0 0.0 0.0 0.0 0.0 0 0.0 0.0 0 0.0 0.0 0.0 0.0 0.0 0.0 0 0
60 0.0 0.0 0.0 0.0 0.0 0.0 0 0.0 0.0 0 0.0 0.0 0.0 0.0 0.0 0.0 0 0
70 1.5 0.96 0.54 0.12 0.03 70.0 0 1.52 0.0 0 0.0 0.0 0.0 0.0 40.0 0.0 0 0
80 0.0 0.0 0.0 0.0 0.0 0.0 0 0.0 0.0 0 0.0 0.0 0.0 0.0 0.0 0.0 0 0
90 0.0 0.0 0.0 0.0 0.0 0.0 0 0.0 0.0 0 0.0 0.0 0.0 0.0 0.0 0.0 0 0
end

Figure 4.13 :  Conversion of Tabulated Expected Mean Concentration
Values to an Arc/Info Data File

Appendix B includes the attrib.aml file, which is used to define item formats in the

attrib.dat file and then fill the formatted file with raw data from the emc3a.dat file.

Finally, the expected mean concentration data is attached to the land use

polygon attribute table through use of the Joinitem command, using the lusecat field as

the linking item between both tables:

Arc:  joinitem sanlu.pat attrib.dat sanlu.pat lusecat lusecat

The resulting land use coverage includes 18 new fields identifying pollutant

expected mean concentrations for each land use category within the basin.  The land

use coverage can be used to show how expected mean concentrations for a particular

pollutant vary throughout the land use polygons of a particular region.  For instance,

Figure 4.14 shows expected mean concentrations for total phosphorus, based on the

land use polygons within the San Antonio-Nueces Coastal Basin.  As expected, the

highest concentrations of total phosphorus are identified in the regions where

agricultural land uses are predominant.
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4.4  Estimating Annual Loadings Throughout the Watershed

The pollutant mass contribution that each cell makes to downstream pollutant

loading is calculated by taking the product of the expected mean concentration and

runoff associated with the cell, or

Load (mass/time)  =  EMC (mass/volume)  *  Q (volume/time).     (4-5)

For load computations in this study, equation 4-5 becomes

L  =  K * Q * EMC  * A, (4-6)

where Q is given in units of mm/year, EMC is given in units of mg/Liter, A is the area

of one grid cell (10,000 m2), and K is a constant to make the units consistent, i.e. K =

10-6 kg-m-L/mg-mm-m3, so that L is determined in units of kg/year.  This approach to

representation of loadings assumes that the downstream transport process is

conservative, i.e. no pollutant decay occurs along the flow paths.  This assumption is

considered appropriate for the pollutants in Table 3.6 along the short flow paths of the

San Antonio-Nueces Basin.  Another important point about this relationship is that it

applies expected mean concentration, which is typically associated with single runoff

events, to mean annual runoff, which generally includes stream base flow as well as

runoff from storm events.

Pollutant loadings associated with each grid cell are determined by first

converting the expected mean concentration map coverage to a grid, through use of the

Polygrid command.  For the creation of this grid, cell values are determined from the

appropriate concentration attribute of the land use coverage.  For the case of total

phosphorus, the tp field is specified as the item from which to extract cell values.  Once

the expected mean concentration grid is created, a cell-based loading grid is established

as the product of this grid and the runoff grid.

Grid:  phosgrid = polygrid(sanlu,tp,#,#,100)
Grid:  phosrnof = phosgrid * runoff

Before a cumulative annual loading grid is created, it is noted that, for display

purposes, a representation of cumulative loads in the stream networks is desired.  One



96

way to accomplish this is through the conversion of grid cell strings to an equivalent arc

coverage, using the Streamline command.  However, arcs created using Streamline start

at the geographic center of the endpoint cell, rather than including the full width of the

cell.  The result of this idiosyncrasy is that the equivalent arc of a gridded stream falls

one-half cell short of its expected outlet point.

To correct for this anomaly, the mainland portion of the baycov coverage,

created in section 4.1, is isolated using the Reselect command.  The new mainland

coverage is then buffered by 100 meters and the buffered coverage is converted to an

equivalent grid, using Polygrid.  Finally, a flow direction grid specific to the buffered

mainland coverage is created with the Con statement.  This procedure has the effect of

creating a flow direction grid that covers the mainland plus a 100-meter boundary

extending out into the bay network.

Arc:  reselect baycov mainland
>:  res baycov-id = 1
>:  ~
Do you wish to re-enter expression (Y/N)?  n
Do you wish to enter another expression (Y/N)?  n
  1 features out of 30 selected
Arc:  buffer mainland main # # 100
Arc:  grid
Grid:  maingrid = polygrid(main,#,#,#,100)
Grid:  mainfdr = con(maingrid,ditfdr)

Cumulative annual loading in the basin is determined by performing a weighted

flow accumulation, using the cell-based loading grid as the weight grid and the new

buffered mainland flow direction grid.  Division by 100 is introduced into this

command, as per equation 4-6, to provide the result in units of kg/year.

Grid:  phosld = flowaccumulation(mainfdr,phosrnof) / 100

In order to facilitate the conversion of the cumulative loading grid to a

coverage, an integer grid of cumulative load is first created.  Then the Con statement is

used with the Streamline command to effectively reselect all grid cells with value

greater than or equal to a threshold of 1000.  Selection of this threshold value reduces

the number of cells to be converted to those that occur at in-stream locations, where

accumulated loads are greatest.  The specific threshold value is not arbitrary, but
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should be selected so as to reflect as much of the known stream network as possible.

Finally, the cumulative loadings coverage is clipped with the mainland template, so that

the endpoints of the streams occur exactly at the bay network borders.

Grid:  phosload = int(phosld)
Grid:  tpline = streamline(con(phosload >= 1000,phosload),mainfdr,grid-code)
Arc:  clip tpline mainland tpload line

By performing a Describe command on the annual cumulative loading grid

(phosload), the maximum value (i.e. load) in the grid can be identified.  Also, by

querying the various outlet cells to the bay network with the Cellvalue command,

annual cumulative loads from each subwatershed in the basin can be established.

Grid:  describe phosload

                Description of Grid PHOSLOAD

Cell Size =                     100.000            Data Type:                       Integer
Number of Rows    =           1325            Number of Values =            4884
Number of Columns =         1520           Attribute Data (bytes) =             8

           BOUNDARY                                STATISTICS

Xmin =            1180828.125         Minimum Value =                   0.000
Xmax =            1332828.125 Maximum Value =           60900.000
Ymin =              612183.250          Mean          =                         74.213
Ymax =              744683.250         Standard Deviation =         1553.429

Grid:  gridpaint phosload value linear nowrap gray
Grid:  cellvalue phosload *
The cell containing point (1267701.191,660318.274) has value 60900

Figure 4.15 shows annual cumulative loads of total phosphorus in the San

Antonio-Nueces basin, using the grid-code attribute of the tpload coverage to display

aerial distributed values of load greater than thresholds of 1000 kg/yr, 5000 kg/yr,

10,000 kg/yr, and 50,000 kg/yr.  Specific load values at five bay network outlet points

are identified on the figure.  It should be noted that the largest contributions of

phosphorus load are seen to be from the agricultural part of the basin in the Aransas

subwatershed.
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4.5  Predicting Downstream Pollutant Concentrations in Watershed Stream

       Networks

Pollutant concentrations that are sampled at various in-stream locations result

from the mixing of all pollutant-laden flows draining from upstream of the particular

location.  For a digitally discretized grid model, this mixing process is approximated by

dividing the accumulated load at each cell by the accumulated runoff that also occurs

there.  Mathematically, this is represented by

Ca = La / Qa, (4-7)

where La is the annual cumulative loading, Qa is the annual cumulative runoff, and Ca is

the average concentration expected at the location.

These predicted concentration values can be compared with measured data

from a sampling program in order to assess the accuracy of the predicted values.  For

this study the water quality measurement data described in section 3.2 are used for

comparison.  For each sampling location in the data set, the assumption is made that the

expected observed concentration is simply the average of all the measurements made

there, or

                      n

     Co =  (1/n) * Σ Ci ,     (4-8)
                                  i=1

where Ci is each concentration value measured at a particular sampling location, n is

the total number of samples made at that location, and Co is the average observed

concentration.

Estimating Average Concentrations

Before estimated concentrations can be calculated, grids of annual cumulative

loading and annual cumulative runoff need to be established.  Grids of annual

cumulative loading are created as per the procedure in section 4.4.  Annual cumulative

runoff is created by performing a weighted flow accumulation, using the runoff grid as
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the weight grid.  The result of the weighted flow accumulation is multiplied by 10 to

convert from runoff units of mm/yr to accumulated units of m3/yr, as in equation 4-1.

Grid:  runoffac = flowaccumulation(mainfdr,runoff) * 10
Grid:  describe runoffac

By performing a Describe command on the cumulative runoff grid, the

maximum value of the grid is determined as more than 290 million m3/yr.  This is the

value at the outlet of the Mission River to Mission Bay.  The equivalent annual

cumulative runoff grid, in units of cubic feet per second (cfs), is calculated by

multiplying the runoffac grid by the number of cubic feet per cubic meter and dividing

by the number of seconds per year.  In these units of measure, the annual cumulative

runoff is represented as an average stream flow and is more easily compared with

recorded USGS stream flow values.  For display purposes, an equivalent coverage of

the accumulated runoff grid is created by first converting the real number grid to an

integer grid.  Then the Streamline command is used, along with the Con statement, to

create arcs for all cells having value greater than or equal to a certain threshold value,

specified so that only in-stream cells are converted.  For this conversion, the threshold

value is chosen to be 1 cfs.  The cumulative runoff coverage is then clipped with the

mainland coverage to create cumulative runoff arcs that end exactly at the boundaries

of the bay network.  Figure 4.16 shows average stream flows in units of cubic feet per

second.

Grid:  rofaccfs = runoffac * 35.2875 / 31557600
Grid:  introfac = int(rofaccfs)
Grid:  rofaclin = streamline(con(introfac >= 1,introfac),mainfdr,grid-code)
Arc:  clip rofaclin mainland rofaccov line

Once the annual cumulative runoff grid is created, a grid of predicted pollutant

concentration can be created as per equation 4-7.  Using total phosphorus as an

example pollutant, a grid of predicted concentrations is produced by dividing the

annual total phosphorus cumulative load grid by the annual cumulative runoff (m3/yr)

grid.  Multiplication of this result by 1000 produces a concentration grid in units of

mg/L as per the equation

C (mg/L)  =  L (kg/yr) / Q (m3/yr) * 106 mg/kg * .001 m3/L.     (4-9)





102

A grid of concentration values specific to the basin stream network is

established using the Con statement with the introfac grid created above. Values from

the predicted total phosphorus concentration grid are filled into those cells that

correspond to locations along the stream networks.  Since arc coverages may only be

converted from integer value grids, the stream concentration grid is multiplied by 1000

to retain significant figures, the product is truncated to create the integer grid, and the

resulting grid is converted to a coverage, using the Streamline command.  Finally, the

phosphorus concentrations arc coverage is clipped so that the concentration arcs end

exactly at the shores of the bay network.

Grid:  phosconc = phosload / runoffac * 1000
Grid:  phconstr = con(introfac >= 1,phosconc)
Grid:  phline = streamline(int(phconstr * 1000),mainfdr,grid-code)
Arc:  clip phline mainland phcon line

Figure 4.17 shows the predicted concentrations for total phosphorus in the San

Antonio-Nueces coastal basin.  These predicted concentrations represent the levels of

pollution that are attributed to nonpoint source runoff, only.  Additional point source

pollutant loadings are considered in section 4.6.

Attaching Observed Concentration Data to Measurement Locations

The Surface Water Quality Monitoring (SWQM) data described in section 3.2

are used for comparison with the predicted concentration values.  With the data linked

in ArcView 2.0 as shown in Figure 3.11, the average measured value of a particular

pollutant constituent is established through use of the Summary Statistics tool.  First, a

pollutant is selected in the storet.dbf table.  Then, with the station_id field selected in

the value.dbf table, the Summary Statistics tool is invoked.  This tool allows the user to

sort and manipulate data from the selected table, using the previously selected field to

sort by.  Using the tool, the Value field is specified as the data to manipulate and the

Summary Statistics Averaging function is performed on the data.  This process creates a

new database file (.dbf) that includes three fields:  (1) all station-id’s reporting data for

the particular pollutant, (2) a field called count that represents the total number of

measurements of the pollutant at that station, and (3) a field called ave_value that
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represents the mean value of the specified measurements.  Table 4.6 shows a portion of

the tp.dbf file identifying all measurement locations where total phosphorus is

measured, the number of measurements at each location, and the average

concentrations at each location.

The tp.dbf file is attached to the water quality measurement stations point

coverage in Arc/Info.  First, the file is converted to an Arc/Info Information file (.dat)

using the Dbaseinfo command.  The new tp.dat file is then attached to the sanwq point

attribute table using the Joinitem command with the station_id field specified as the link

item.  Using the Arc/Info Tables module, the new count and ave_value fields of the

sanwq point attribute table are altered to have the more definitive tp_cnt and tp_avg

field names.

Arc:  dbaseinfo tp.dbf tp.dat
Arc:  joinitem sanwq.pat tp.dat sanwq.pat station_id station_id
Arc:  tables
Enter Command:  sel sanwq.pat
   105 Records selected
Enter Command: alter
Enter item name: count
COLUMN   ITEM NAME        WIDTH OUTPUT  TYPE N.DEC  ALTERNATE NAME
   22  COUNT                   8     11     F      0
Item name: tp_cnt
Item output width: 11
Item type: f
Item decimal places: 0
Alternate item name: ~
COLUMN   ITEM NAME        WIDTH OUTPUT  TYPE N.DEC  ALTERNATE NAME
   22  TP_CNT               8    11     F      0
Enter item name: ave_value
COLUMN   ITEM NAME        WIDTH OUTPUT  TYPE N.DEC  ALTERNATE NAME
   30           AVE_VALUE              8     16     F      2
Item name: tp_avg
Item output width: 16
Item type: f
Item decimal places: 2
Alternate item name: ~
COLUMN   ITEM NAME        WIDTH OUTPUT  TYPE N.DEC  ALTERNATE NAME
   30  TP_AVG                8   16     F     2
Enter item name:   ~

 Enter Command:  quit
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STATION_ID COUNT AVE_VALUE

12932 2 0.61
12933 5 6.60
12934 1 7.36
12935 6 6.28
12937 2 6.61
12938 2 5.94
12939 2 4.26
12940 2 4.22
12941 1 0.25
12942 1 0.16
12943 27 0.15
12944 75 0.06
12945 27 0.14
12946 1 0.28
12947 2 0.50
12948 39 1.09
12949 2 1.73
12950 1 2.19
12951 2 2.91
12952 3 4.47
12953 1 3.01
13030 1 0.14

: : :
: : :

Table 4.6 :  Summary Statistics for Total Phosphorus
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The procedure of using the ArcView Summary Statistics tool and attaching

average concentration values to the sanwq point attribute table is repeated for each

pollutant constituent of interest (i.e. those pollutants identified in Table 3.6).  Nitrogen,

however, is not sampled and reported as total nitrogen in the Surface Water Quality

Monitoring data set.  Instead, total kjeldahl nitrogen (organic plus ammonia nitrogen),

nitrate nitrogen, and nitrite nitrogen are reported separately.  These are the components

that total nitrogen is comprised of (American Public Health Association, American

Water Works Association and Water Environment Federation, 1992).  Each of the

three nitrogen components is summarized, averaged, and attached to the sanwq point

attribute table along with the other pollutant constituents from Table 3.6.  Then two

additional fields, tn_cnt and tn_avg, are added to the point attribute table using the

Joinitem command.  In the Tables module, the number of effective total nitrogen

measurements at each location is determined as the average of the number of

measurements for each component.  The average value for total nitrogen concentration

at each location is determined as the sum of the average values for each component.

Finally, X- and Y-coordinate values are added to each record in the sanwq point

attribute table through use of the Addxy command:

Arc:  additem sanwq.pat sanwq.pat tn_cnt 8 8 f 0
Arc:  additem sanwq.pat sanwq.pat tn_avg 8 8 f 2
Arc:  tables
Enter Command:  sel sanwq.pat
   105 Records selected
Enter Command:  calc tn_cnt = ( tkn_cnt + no2_cnt + no3_cnt ) / 3
Enter Command:  calc tn_avg = tkn_avg + no2_avg  + no3_avg
Enter Command:  quit
Arc:  addxy sanwq

Analyses of the Surface Water Quality Monitoring data at specific locations and

for specific pollutants reveal some interesting points.  Figure 4.18 shows all of the total

phosphorus measurements taken at station #12948 along the Aransas River about 15

kilometers upstream of Copano Bay.  By plotting these concentration levels against the

sampling dates, the variations in concentration magnitude are plainly seen.  A plot of

the average concentration overlaid on the data shows the effect of a few elevated

concentration measurements on the average value and suggests that consideration and
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possible removal of outlying data points may be appropriate for determination of a

revised average.

Figures 4.19 and 4.20 respectively show the nitrogen component measurements

made at the Aransas station and at station #12944 along the Mission River about 10

kilometers upstream of Mission Bay.  Each of these plots also shows the value for total

nitrogen, calculated as the sum of the average total kjeldahl, total nitrate, and total

nitrite levels.  Values for total kjeldahl and total nitrite nitrogen generally fall into fairly

well-bounded ranges, but nitrate nitrogen concentration values, particularly at the

Mission River station, show an occasional tendency to vary significantly from the

normal range.  These atypical measurements have a significant effect on the calculated

average total nitrate concentration which, in turn, affects the calculation of average

total nitrogen concentration.  In fact, the single outlying total nitrate concentration data

point observed at the Mission station (Figure 4.20) affects the calculated average total

nitrate concentration by almost 200%, increasing it from about 0.077 mg/L to 0.22

mg/L.  As a result, average total nitrogen calculated for the station is 18% higher than it

would be without inclusion of the anomalous data point.  This point emphasizes that

outlying data points should be considered when establishing averaged values for

pollutant concentration at a particular location.

A second point of interest regarding the Surface Water Quality Measurement

nitrogen data is illustrated in Figure 4.21, which shows the percentile distributions, for

both the Aransas and Mission stations, of the three components that contribute to the

calculated average total nitrogen concentrations.  The charts in this figure have been

determined using all data points from each of the stations, i.e. without consideration

and removal of outlying data points.  The chart shows that, for both locations, most of

the total nitrogen observed is of an organic nature.  The oxidized forms of nitrogen

account for only 25-30% of the total observed (before consideration of outlying

points).  Organic and ammonia nitrogen is typically associated with agricultural land

uses and the fact that kjeldahl nitrogen accounts for over 70% of the total nitrogen

measured in the two main streams of the basin indicates a significant contribution from

the local agricultural lands.
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Graphically Depicting Variations in the Frequency of Concentration Sampling

The average concentrations that are attached to the water quality measurement

points are calculated by averaging various numbers of measurements.  In fact, for total

phosphorus, Table 4.6 shows one average concentration derived from 75 measurements

while a number of locations have only one measurement defining average

concentration.  One would be correct in placing more statistical validity in those

averages derived from larger numbers of measurements.

A method of depicting this variation in the number of concentration

measurements is established by converting the water quality measurement point

coverage into a polygon coverage of circles, where each circle is centered about the

measurement location coordinates and each circle’s area is approximately proportional

to the number of measurements made at the station.  This is done by (1) adding a radius

field to each record in the sanwq point attribute table, (2) calculating values for radius

based on the number of measurements for the pollutant constituent of interest, (3)

creating a text-delimited data file from the station-id, x-coordinate, y-coordinate, and

radius fields, (4) generating a polygon coverage from the data file, and

(5) attaching the pollutant measurement data to the new polygon coverage.

The first three of these steps are performed in ArcView 2.0:  For the case of

total phosphorus measurements, the sanwq point attribute table is displayed and the

Properties feature in the Table menu is used to deselect all fields except for station_id,

x-coord, y-coord, and tp_cnt.  The Table menu is used once again to Start Editing of

the table.  The Add Field feature from the Edit menu is then invoked and the Radius

field is defined as an 8-character numeric item.

The Calculate feature of the Field menu is used to specify that values in the

Radius field are determined as the truncated square root of the tp_cnt field multiplied

by 200 meters, or

Radius = tp_cnt.sqrt.truncate * 200.     (4-10)

The value of 200 meters is selected, by trial and error, as the smallest radius that

produces a discernible circle for single measurement stations, while maintaining a

reasonably sized circle for locations with many measurements.  By taking the square
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root of the number of pollutant measurements, the area of the circle (π * radius2) is

made proportional to the number of measurements.  Once the values for the Radius

field are filled, the Stop Editing feature is selected from the Table menu.

The Properties feature in the Table menu is used to deselect the tp_cnt field

from the sanwq point attribute table, leaving only the station-id, x-coord, y-coord, and

radius fields displayed, in that order.  The Export feature from the File menu is then

invoked to create a text-delimited file containing the values of these four fields.  A

portion of this text-delimited file, called rad.txt, is shown in Figure 4.22.

A raw data file (rad.dat) is created from this text-delimited file by removing the

column labels in the header and appending the bottom of the file with an END

statement.  This raw data file is then used in conjunction with the Arc/Info Generate

command to create a coverage of circles at each measurement location.  Polygon

topology is created through use of the Clean command:

Arc:  generate phospts
Generate:  input rad.dat
Generate:  circles
   Creating Circles with coordinates loaded from rad.dat
Generate:  quit
   Externalling BND and TIC.......
Arc:  clean phospts phopts

Finally, water quality measurement data is attached to the phopts coverage by

adding an integer field called station_id to the phopts polygon attribute table, filling

those fields with the values from the phopts-id field, altering the station_id field to

character type, and performing a Joinitem command with the tp.dat file, using the

station_id field to join the two files.

Arc:  additem phopts.pat phopts.pat station_id 5 5 i
Arc:  tables
Enter Command:  sel phopts.pat
     24 Records selected
Enter Command:  calc station_id = phopts-id
Enter Command: alter
Enter item name: station_id
COLUMN   ITEM NAME        WIDTH OUTPUT  TYPE N.DEC  ALTERNATE NAME
  17         STATION_ID                5      5     I      -
Item name: station_id
Item output width: 5
Item type: c
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"Sanwq-id","X-coord","Y-coord","Radius"
12931,1253025.250,696013.875,0
12932,1222723.500,694795.125,200
13399,1321153.000,694116.750,0
12933,1223832.250,693739.500,400
12934,1224645.625,693725.188,200
12936,1223313.875,693697.688,0
12935,1225518.375,693651.250,400
12937,1226820.250,692784.062,200
12939,1226039.375,690734.125,200
12938,1226287.000,690616.125,200
13660,1282946.625,685779.625,800
12942,1225275.500,685540.438,200
12944,1266646.625,684073.938,1600
12940,1227986.625,682454.125,200
12952,1233187.250,682256.125,200
12953,1230096.875,681881.750,200
12941,1226212.125,681493.000,200
13398,1315794.250,678917.375,0
12951,1242619.250,676083.625,200
13401,1309669.875,673810.625,0
13406,1299136.750,672437.562,0
12943,1273454.375,672223.500,1000
13400,1307925.750,670925.375,0
12950,1242018.500,670924.062,200
12949,1249132.375,668866.188,200
13404,1292647.500,666251.562,0
12948,1252749.000,665714.812,1200
     :             :             :            :
     :             :             :            :
     :             :             :            :

Figure 4.22 :  Text-Delimited File of Water Quality Measurement Radii
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Alternate item name: ~
COLUMN   ITEM NAME        WIDTH OUTPUT  TYPE N.DEC  ALTERNATE NAME
   17         STATION_ID     5     5     C      -
Enter item name: ~
Enter Command:  quit
Arc:  joinitem phopts.pat tp.dat phopts.pat station_id station_id

This procedure is performed for each pollutant constituent of interest.

However, since no .dat file exists for total nitrogen, the polygon attribute table for that

coverage of circles is joined with the sanwq point attribute table, which contains the

average values for all pollutant constituents of interest.  The sanwq point attribute table

is actually an alternative source of average concentration data for all of the circle

coverages.

Figure 4.23 shows the predicted total phosphorus concentration data overlaid

with the phopts polygons.  For display purposes, these circles are provided with a label

of the average concentration at the location concatenated with the number of total

phosphorus measurements.  This label is created in ArcView 2.0 by adding a new

character field and, using ArcView’s internal Avenue programming language, defining

the contents of the character string as

[pho_tag] = [tp_avg].SetFormat(“d.dd”).AsString ++
”(“ ++ [tp_cnt].AsString ++ ”)”, (4-11)

where .AsString converts the value of the preceding variable to a character string and

.SetFormat(“d.dd”) specifies a floating point numeric format for the preceding variable.

Figure 4.23 also shows interesting trends in the comparison of predicted and

average observed values for total phosphorus concentration.  Using the same color

coding scheme to represent predicted and observed concentrations, it can be seen that,

within the Mission and Copano subwatersheds, estimated concentrations generally

match the minimal levels that have historically been recorded there, between 0.1 and

0.3 mg/L.  However, in the Aransas subwatershed, observed concentrations

significantly exceed predicted levels.  In particular, observed concentrations just

downstream from the city of Beeville (Figure 4.24) are seen to reach above 7 mg/L,

whereas predicted concentrations in the same reaches of the river are less than 1 mg/L.
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These discrepancies would tend to indicate a significant point source in the area

contributing to total phosphorus loads.  Consultation with TNRCC personnel have

identified that the data points in question were sampled to investigate suspected

effluent problems from a wastewater treatment plant in Beeville.  However, it should

also be noted that most of these measurements were made within a short period in the

early 1980’s and it is not known whether total phosphorus at the sampling locations has

remained at these elevated levels.

4.6  Considering and Simulating Point Sources

As can be seen from section 4.5, the characterization of nonpoint source

pollution for a particular region may not provide a complete representation of the

pollutant levels in that area.  Point sources along stream networks can contribute

significantly to the measured pollutant levels.  Pollutant level data for point sources in

the San Antonio-Nueces Coastal Basin were unavailable at the time of this study.

However, a method of simulating point sources is investigated by considering the

difference between predicted nonpoint source pollution concentration levels and

observed concentration levels at a specific location, and then accounting for the

difference with a single point load at the location.  The point source pollutant load is

then included in every downstream location in the digital basin.

Estimating an Annual Point Load

Figure 4.24 shows a number of measurement points just downstream of

Beeville, TX where observed total phosphorus concentrations significantly exceed the

values expected from nonpoint sources alone.  Assuming that the Beeville wastewater

treatment plant effluent enters the Aransas River at the furthest upstream location

where a significant concentration discrepancy exists, a point source phosphorus

contribution for that location is estimated to account for the discrepancy.

To establish the exact value of estimated nonpoint source total phosphorus

concentration at the location, the phosconc grid is displayed in the Grid tool, overlaid

with the phopts coverage, and queried at the suspected point source location, using
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the Cellvalue command.  Similarly, the annual cumulative runoff grid is displayed and

queried to determine cumulative runoff at the point source location.  By multiplying the

cumulative runoff by the difference between observed and estimated concentrations,

the amount of observed annual phosphorus load attributable to the point source is

calculated.

Grid:  gridpaint phosconc value linear nowrap gray
Grid:  polygonshades phopts 2
Grid:  cellvalue phosconc *

The cell containing point (1223830.414,693729.621) has value 0.621
Grid:  gridpaint runoffac value linear nowrap gray
Grid:  polygonshades phopts 2
Grid:  cellvalue runoffac *

The cell containing point (1223830.414,693729.621) has value 5467914

Noting that the average observed total phosphorus concentration at the point

source location is 6.6 mg/L, the amount of this concentration attributed to the point

source effluent is calculated as 6.6 mg/L - 0.621 mg/L  =  5.979 mg/L.  By multiplying

this value by the cumulative runoff at the point source, the total annual estimated

cumulative phosphorus point load is determined as

5.979 mg/L  *  5,467,914 m
3
/yr  *  1000 L/m

3
  *  10

-6
 kg/mg  =  32,694 kg/yr.       (4-12)

This value for estimated load is compared with an algorithm from Thomann and

Mueller (1987), where load is calculated as the product of daily per capita municipal

flow, population of the municipality, and typical effluent concentration.  For Beeville,

using the population data from Table 1.1, and Thomann and Mueller’s typical average

values for per capita flow (125 gallons/capita-day) and total phosphorus municipal

effluent concentration (7 mg/L), this algorithm results in an estimate of

125 gcd * 13547 pop. * 365 d/yr * 3.785 L/gal * 7 mg/L * 10
-6

 kg/mg  =  16,376 kg/yr.    (4-13)

According to the Beeville wastewater treatment plant chief operator, daily flow

at the facility, averaged over the year, is approximately 2,000,000 gallons per day

(Barrera, 1996).  Using this value for flow, instead of Thomann and Mueller’s typical

daily per capita flow value, estimated total phosphorus load is calculated as
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2,000,000 gal/d * 365 d/yr * 3.785 L/gal * 7 mg/L * 10
-6

 kg/mg  =  19,341 kg/yr.      (4-14)

This value represents 58% of the value calculated in equation 4-12.  The fact that these

other estimates are within the same order of magnitude show that this method of

estimating point loads has some validity.  However, the other estimates also indicate

that the additional phosphorus loads contributing to the measured concentrations at the

Beeville location are probably not from the wastewater treatment plant alone.

Considering Point and Nonpoint Sources Together 

In order to combine the point source load from equation 4-12 with the nonpoint

source load, the point source load value is added to the cell where the observed

concentration discrepancy exists.  First, the flow accumulation grid is displayed and

overlaid with the phosphorus measurement location point coverage.  Through visual

identification of the discrepant Beeville measurement location and use of the

Selectpoint command, a single-cell grid representing the location is established.  This

grid has values of NODATA in all other cells.  So that map algebra may be performed

with this grid, the NODATA cells are converted to zero-value cells through use of the

Isnull command and the Con statement.  The annual point load value is simultaneously

stored into the selected cell.

Grid:  gridpaint ditfac value linear nowrap gray
Grid:  points phopts
Grid:  beepoint = selectpoint(ditfac,*)
Grid:  beeload = con(isnull(beepoint),0,32694)

A new cell-based loading grid is established by adding the existing nonpoint

source cell-based load grid (phosrnof) and the Beeville point load grid.  However, since

the Beeville point load grid is in units of kg/yr, it must first be converted to the aerial

mg-mm/L-yr units of phornof.  As shown in equation 4-15, this is accomplished by

multiplying the point load grid by 100.

Q * EMC (mg-mm/L-yr)  =  kg/yr * 10
6
 mg/kg * .0001 cells/m

2
 * .001 m

3
/L * 1000 mm/m  (4-15)

A new total phosphorus load grid is created as the weighted flow accumulation

of the new cell-based loading grid divided by 100, as per equation 4-6.  The
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phosphorus concentration grid is then recalculated as the new total phosphorus load

grid divided by the accumulated runoff grid.  A factor of 1000 included in this product

produces concentration in units of mg/L, as per equation 4-9.  As in section 4.5, a grid

of concentration values specific to the basin stream network is established using the

Con statement with the introfac grid.  The stream concentration grid is multiplied by

1000 to retain significant figures, the product is truncated to create the integer grid, and

the resulting grid is converted to a coverage, using the Streamline command.  The

mainland coverage is then used to clip the concentration coverage so that concentration

streams end exactly at the shores of the bay network.

Grid:  beernof = phosrnof + (beeload * 100)
Grid:  totpload = flowaccumulation(mainfdr,beernof) / 100
Grid:  totpconc = totpload / runoffac * 1000
Grid:  tophostr = con(introfac >= 1,totpconc)
Grid:  topholin = streamline(int(tophostr * 1000),mainfdr,grid-code)
Arc:  clip topholin mainland tophocon line

Since the beeload point source pollutant grid only affects load values along the

Aransas River, the only differences between this new concentration coverage and the

one created in section 4.5 occur along the Aransas.  Figure 4.25a shows the Beeville

portion of the newly calculated concentration coverage with the observed

concentration circles overlaid.  Likewise, figures 4.25b and 4.25c show portions of the

Aransas River between the Beeville area and the Copano Bay outlet.  A review of the

newly calculated concentrations in these three figures shows better agreement with the

average observed concentrations along the length of the Aransas River.  However, it

should be re-emphasized that this new concentration coverage is derived with the

assumption that the Beeville wastewater treatment plant effluent accounts for the

difference between observed concentrations and estimated nonpoint source

concentrations.  In fact, there may be a number of point sources along the Aransas

River that contribute to the total phosphorus concentration profile there.

For more accuracy, this method of simulating point sources should be

implemented with values of reported annual loads or permitted average concentrations

for all of the permitted point source effluents in the basin.
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4.7  Using an Optimization Routine to Provide Estimates of EMC Values

The land use expected mean concentration values included in Table 3.6 are

integral to this assessment of nonpoint source pollution.  As outlined in section 3.2,

these data are literature-based values used and published in a previous study (Baird, et

al., 1996).  Even though the agriculture and rangeland expected mean concentrations in

this study were established empirically from measurements made near the San Antonio-

Nueces coastal basin, it is desirable to establish a full set of expected mean

concentration data that fits local conditions in the basin and does not necessarily rely

on literature-based values.

One alternative method of determining expected mean concentration values for

each land uses involves the use of a computer-based optimization routine.  The input

data required for this routine are (1) average observed pollutant concentrations at

significant sampling locations, (2) all upstream pollutant point loads, (3) total annual

cumulative runoff at the sampling locations, and (4) the annual cumulative runoff

occurring from each land use upstream of each sampling location.

Determination of Optimization Routine Inputs

Average observed pollutant concentrations are established from the methods

discussed in section 4.5 and upstream point load data should be acquired from

reported or permitted values, as identified in section 4.6.  However, for this analysis,

the total phosphorus point load data estimated in section 4.6 is used.

Total annual cumulative runoff and land use-based cumulative runoff are

established for the TNRCC sampling sites where significant numbers (more than 15) of

historical phosphorus measurements exist.  There are five such locations in the San

Antonio-Nueces coastal basin; two along the Aransas River, two on the Mission River,

and one on Copano Creek.  Upon further review, one of these sampling locations, in

Copano Bay a few kilometers east of the Aransas River outlet, is rejected since

pollutant transport to the location does not follow a strict linear path along the stream

network and is assumed to have a significant dispersion component.

Determination of total annual cumulative runoff is accomplished by displaying

the cumulative runoff grid of the basin, overlaying the phosphorus sampling locations,
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and querying the locations of significant phosphorus measurements.  These steps are

performed using the Gridpaint, Points, and Cellvalue commands.  For a sampling site

along the Aransas River, the procedure is as follows:

Grid:  gridpaint runoffac value linear nowrap gray
Grid:  points phopts
Grid:  cellvalue runoffac *

The cell containing point (1252520.808,665484.913) has value 94664336.000

The cumulative runoff values for each land use upstream of a sampling location

are determined by first delineating a subwatershed from the sampling site, using the

Gridpaint, Points, Selectpoint, and Watershed commands along with the basin flow

accumulation grid, flow direction grid, and sampling sites coverage.  An equivalent

polygon coverage of the subwatershed grid is created, using Gridpoly.  The polygon

coverage is then used to clip the basin land use coverage, so that only those land uses

occurring upstream of the sampling location are retained.

Grid:  gridpaint ditfac value linear nowrap gray
Grid:  points phopts
Grid:  aranpt = selectpoint(ditfac,*)
Grid:  arptarea = watershed(clipfdr,aranpt)
Grid:  araptcov = gridpoly(arptarea)
Arc:  clip sanlu araptcov aranlu poly

The clipped land use coverage is converted back to a grid, using Polygrid.  Cells

in the land use grid are filled with land use category values (lusecat).  Finally,

cumulative runoff from each land use is established by using the Zonalsum command

with the land use grid and the cell-based runoff grid.  This command sums the grid cell

values from a target grid (runoff) based on regions of equal value defined in a zone grid

(land use category).  The result of this Zonalsum is multiplied by 10, as per equation 4-

1, in order to convert cumulative runoff to units of m3/yr.  The product is then

converted to an integer grid, so that a value attribute table may be subsequently created

for the grid.

Grid:  arlugrid = polygrid(aranlu,lusecat,#,#,100)
Grid:  arrunoff = int(zonalsum(arlugrid,runoff) * 10)
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By listing the value attribute tables (vat) of the land use grid and the cumulative

runoff grid, cumulative runoff values from each land use category in the subwatershed

are established by matching the values from the two tables, based on the count of cells

in each grid.

Grid:  list arlugrid.vat
Record VALUE COUNT
         1         11        1312
         2         12       1229
         3         13              6
         4         14        437
         5         16          25
         6         17          30
         7         20    65400
         8         30    25711
         9         40    35419
       10         50          19
       11         60          97
       12         70        866
Grid:  list arrunoff.vat
Record VALUE COUNT
         1      6730           6
         2    14420          19
         3    15100          25
         4    18450          30
         5  117060          97
         6  256980        437
         7  752240        866
         8  785360        1312
         9  906050      1229
       10            25114850    25711
       11              25536140    35419
       12            41141650    65400

Once this procedure is performed for each of the four significant sampling

locations in the basin, mass balance equations are set up for each subwatershed.  These

mass balances equate the total measured load (total cumulative runoff at the sampling

location multiplied by the observed concentration) with the sum of the loads from each

land use and point source.  The loads from each particular land use are denoted by

taking the product of the cumulative runoff from that land use and an expected mean

concentration variable associated with the land use.  Known point sources upstream of
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the sampling location are also included in the sum.  Mathematically, the mass balance

equation for each subwatershed is written as

     n      m
Co * Qa  =  Σ (Ci * Qi)  +  Σ Ptj (4-16)

       i=1        j=1

where Co is the average observed concentration at the sampling location, Qa is the total

cumulative runoff at the sampling location, n is the number of subwatershed land uses,

Ci is the expected mean concentration for each land use, Qi is the cumulative runoff

from each land use, m is the number of subwatershed point sources, and Ptj is the load

from each point source.

Execution of the Optimization Routine

The four mass balance equations are entered into the Microsoft Excel Solver

optimization routine and solved simultaneously to establish the best fit values for the

land use-based expected mean concentration variables.  Initially, the optimization

routine does not converge to a solution since, for the four subwatershed mass balance

equations, a total of 12 expected mean concentration variables exist.  In order to solve

for 12 variables in four equations, additional constraints on the variables are

introduced.  These constraints are derived from observations about the literature-based

event mean concentration data in Table 3.6 and are outlined below:

-  All phosphorus EMC’s are limited to within +/-50% of their initially entered 
value.

-  No pollutant contribution is expected from water and wetland land uses (i.e. 
phosphorus EMC’s for those land uses are set to 0)

-  Phosphorus EMC’s for mixed urban and other urban land uses are assumed 
to be equal to the linear average of the phosphorus EMC’s for
residential, commercial, industrial, and transportation land uses.

The constraints do provide some bounds for the solution of the 12 variables, but

still do not amount to 12 unique equations.  However, the solution is further

constrained by entering the total phosphorus data from Table 3.6 as the initial set of

values for the expected mean concentration variables.  Unfortunately, this limits the
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function of the routine to that of an adjustment algorithm, rather than an independent

method of establishing expected mean concentration values.

In order to run the optimization routine, all terms from equation 4-16 are placed

on one side of the equation and are divided by total cumulative runoff at the sampling

location, Qa.  Mathematically, this manipulation appears as

       n       m
Co  -  [ Σ (Ci * Qi)  +  Σ Ptj ] / Qa =  CB,       (4-17)

        i=1                   j=1

where CB is the concentration balance, which should equal zero when the appropriate

values for the land use-based expected mean concentrations are entered.

The concentration balances for each subwatershed are established and

optimized solutions for the land use expected mean concentrations are calculated in

two different ways.  First, the sum of the absolute values of the concentration balances

for each subwatershed is minimized.  This optimization produces the expected mean

concentration values shown in the fourth column of Table 4.7.  A second optimization

of the land use expected mean concentrations is performed by minimizing the

maximum absolute value of the concentration balances for each subwatershed.  This

optimization method results in the recalculated expected mean concentration values

shown in the fifth column of Table 4.7.  Both of these methods have the effect of

minimizing each of the individual subwatershed concentration balance values.
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         EMC Values (mg/L)

Land Use Land Use From Minimized Minimized
Code Table

3.6
Conc Bal

SUM
Conc Bal

MAX

Urban Residential 11 0.57 0.332 0.609
Urban Commercial 12 0.32 0.228 0.327

Urban Industrial 13 0.28 0.14 0.269
Urban Transportation 14 0.22 0.33 0.226

Mixed Urban 16 0.35 0.257 0.358
Other Urban 17 0.35 0.257 0.358
Agricultural 20 1.3 1.424 1.306
Range Land 30 0.005 0.0025 0.0047
Forest Land 40 0.005 0.0036 0.0035

Water 50 0 0 0
Wetlands 60 0 0 0

Barren Lands 70 0.12 0.18 0.123

Table 4.7 :  Expected Mean Concentration Values Calculated Using the Microsoft

Excel Solver Optimization Routine
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5 RESULTS

The nonpoint source pollution methodology outlined in sections 4.1 through

4.5 has been performed for four of the pollutant constituents included in Table 3.6.

Results of these analyses are discussed in this section.  In addition, the point source

simulation discussed in section 4.6 is performed for both phosphorus and nitrogen.

Finally,  results of the optimization runs for estimation of phosphorus expected mean

concentration values are analyzed.

5.1 Nonpoint Source Pollution Assessment

The original intent of this research was to provide an assessment of nonpoint

source pollution in the San Antonio-Nueces Coastal Basin, using GIS.  The method of

associating pollutant expected mean concentrations with land use and accumulating

pollutant loads along flow direction paths in the basin shows that, for subbasins where

few or no point sources are suspected, predicted pollutant concentrations match well

with average measured concentrations.  The results of the nonpoint source pollution

assessment for total phosphorus, total nitrogen, total cadmium, and fecal coliform are

included below.

Total Phosphorus

The aerial distribution of total phosphorus expected mean concentrations in

the San Antonio-Nueces basin is shown in Figure 4.14.  This map shows that most of

the total phosphorus contribution comes from the southern and western portions of

the basin, where agricultural land uses are prevalent.  The expected mean

concentration value for range land uses (from Table 3.6) is <0.01 mg/L, which

indicates that all or most of the concentrations observed during the establishment of

expected mean concentrations were below the reporting limit for total phosphorus

(Baird, et al.. 1996).  This entry is interpreted as 0 mg/L for assignment to the range

land use polygons.  Also, since no expected mean concentration values for forest land

uses exist in Table 3.6, the values for range land uses are assigned as approximations.

As a
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result of these two interpretations, a value of 0 mg/L is assigned to all of the range and

forest land use polygons, which occupy a significant portion of the north and central

portions of the basin.

The geographic differential between assigned expected mean concentration

values also reveals itself through the assessment of annual cumulative loads in the

basin, as seen in Figure 4.15.  As one might anticipate from the expected mean

concentration map, total loads to Copano Bay from stream networks in the southern

agricultural part of the basin (Aransas River, Chiltipin Creek, Taft drainage ditch) are

significantly greater than loads from the Mission River or Copano Creek.  When loads

from the three major streams in the southern basin are combined, the total annual

phosphorus load is estimated in excess of 138,000 kilograms, more than twice the

predicted load from the Mission subbasin.  Table 5.1 summarizes the predicted annual

loads to Copano Bay for each of the five major stream network outlet points.

Total phosphorus concentrations predicted for the stream networks of the San

Antonio-Nueces basin also indicate a heavier contribution of phosphorus from the

southern agricultural region, as seen in Figure 4.23.  Concentrations throughout the

length of Chiltipin Creek, which drains an almost exclusively agricultural area near

Sinton, TX, are predicted to be between 1.0 and 1.3 mg/L.  For the main stem of the

Aransas River, phosphorus concentrations expected from nonpoint sources fall in the

range between 0.5 and 1.0 mg/L, and a general dilution effect is expected as

tributaries of higher phosphorus concentration mix with the increased flows of the

larger stream.

Observed concentrations along the Aransas River are consistently higher than

the predicted values but, as is discussed in section 5.2, this is attributed to the

additional phosphorus contribution from point sources.  The average measured

concentrations at two locations along the Mission River (in the 0 - 0.2 mg/L range)

are actually lower than the predicted values (between 0.2 and 0.5 mg/L).  As most of

the upstream phosphorus contributing land uses in this subbasin are also agricultural,

this trend indicates that either (a) the expected mean concentration assigned to those

specific land use polygons is too high or (b) there is some loss of phosphorus that

occurs along the length of the Mission River, possibly as the result of sedimentation or

decay.
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Stream Outlet Total Total Total Fecal
Point Phosphorus Nitrogen Cadmium Coliform

(kg/yr) (kg/yr) (kg/yr) (trillion col./yr)

Copano Creek 9320 67,152 45.4 941
Mission River 60,594 369,122 173.5 1469
Aransas River 57,781 239,843 76.8 550
Chiltipin Creek 60,900 213,314 56.1 506
Taft Drainage 19,524 66,252 15.3 43

Aransas Subbasin 138,205 519,409 148.2 1099

Copano Bay 208,119 955,683 367 3509

Table 5.1 : Predicted Annual Pollutant Loads to Copano Bay

Total Nitrogen

Figure 5.1 shows the expected mean concentration values for total nitrogen

assigned to land use polygons in the San Antonio-Nueces basin.  As for phosphorus,

the highest nonpoint source derived concentrations of total nitrogen (4.4 mg/L) are

expected from agricultural land uses.  However, the contributions of total nitrogen

from range and forest land uses are not negligible (0.7 mg/L).

The average annual cumulative loads of total nitrogen are shown in Figure 5.2.

In contrast to the loadings of total phosphorus, the largest single cumulative load of

nitrogen in the basin is predicted at the outlet of the Mission River.  This is due to the

non-zero value of concentration associated with the range and forest land uses in the

drainage area and the larger runoff from the subbasin.  When the loads from the three

major streams in the southern basin are combined, however, the total annual

estimated nitrogen load exceeds 519,000 kilograms, which is 41% more than the load

estimated from the Mission River subbasin.

In general, annual nonpoint source nutrient loads in the San Antonio-Nueces

coastal basin are seen to be predominantly from the agricultural areas there.  Even at

the Mission River outlet, the predicted loads of phosphorus and nitrogen are strongly

influenced by agricultural land uses in that subbasin.  Table 5.1 includes the predicted
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annual nitrogen loads to Copano Bay for each of the five major stream network outlet

points.

Figure 5.3 shows the total nitrogen concentrations predicted for the stream

networks of the San Antonio-Nueces basin.  As for the phosphorus concentrations in

Figure 4.23, the highest concentrations of nitrogen are expected from the southern

agricultural region of the basin.  Concentrations along the main stem of the Aransas

River are predicted to be between 2.0 and 4.0 mg/L.  Observed concentrations along

the river are consistently higher than predicted values.  As with the phosphorus

concentrations, this is attributed to additional nitrogen loads from point sources along

the river.

The average measured nitrogen concentrations at two locations along the

Mission River (in the 0 - 1.0 mg/L range) are lower than the predicted values

(between 1.0 and 2.0 mg/L).  This trend was also observed for phosphorus, but no

load contributions from range and forest land uses exist for that nutrient.  The lower

observed nitrogen concentrations may be due to elevated expected mean

concentration values assigned to either the range, forest, or agriculture land uses in

the basin.  Alternatively, the fact that no loss of pollutant is included in the assessment

may account for the elevated predicted concentrations in this subbasin.

Total Cadmium

Table 3.6 includes expected mean concentration data for six heavy metal

pollutants.  Cadmium is chosen as a representative metal with which to perform the

nonpoint source pollution assessment.  Figure 5.4 shows the aerial distribution of total

cadmium expected mean concentrations in the San Antonio-Nueces coastal basin.

Expected mean metal concentrations are three orders of magnitude lower than for the

nutrients, and are measured in micrograms per liter (µg/L).  Unlike for the nutrient

concentrations, the highest levels of cadmium (2.0 µg/L) are expected from urban

industrial land uses, rather than agricultural land uses (1.0 µg/L).  Cadmium

concentrations from range and forest land uses are expected to be 0.5 µg/L.  Actual

metal contributions from urban industrial land uses are expected to vary with the

particular industries that occupy each specific land use area.  Closer review of Figure

5.4
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shows the largest patch of urban industrial land uses exists in the northern central part

of the basin.  These areas depict the boundaries of existing oil fields in the region.

Figure 5.5 shows the predicted annual cumulative cadmium loadings to stream

networks in the San Antonio-Nueces basin.  The largest cumulative cadmium load

(173.5 kg/yr) is expected at the outlet of the Mission River subbasin, which drains the

largest area in the coastal basin and includes part of the oil field land use area

discussed above.  The magnitudes of the cumulative loads are significantly smaller

than those for the nutrients, as a result of the smaller expected mean concentrations

assigned to the land use polygons.  Table 5.1 shows that, unlike for the nutrient loads,

total annual cumulative cadmium load from the Mission River subbasin exceeds the

sum of the loads from the three major streams in the Aransas River subbasin (148.2

kg/yr).  This corresponds to a lower relative level of cadmium contribution from

agricultural land uses.

A review of the predicted cadmium concentrations from Figure 5.6 shows that

concentrations in the San Antonio-Nueces coastal basin are almost universally

expected to be in the 0.5 - 1.0 µg/L range.  There are a few small tributaries in the

Copano and Mission subbasins where concentrations are expected to exceed 1.0

µg/L.  These are the tributaries draining the oil fields in the north central part of the

basin.  One small tributary to Chiltipin Creek that passes through an urban industrial

area also includes a reach where concentrations are expected to be higher than 1.0

µg/L.  Finally, there are some small reaches in the southern part of the basin that drain

agricultural land use regions, only.  Concentrations along these reaches are expected

to be exactly 1.0 µg/L, but are identified as being in the 1.0 - 2.0 µg/L range.  Due to

the rounding associated with the division of cumulative load by the integer values of

cumulative runoff, the calculated values for predicted cadmium concentration are

slightly higher than the expected 1.0 µg/L.

Figure 5.6 also includes four measurement locations where values for

observed cadmium concentrations were recorded.  A review of the TNRCC Surface

Water Quality Monitoring (SWQM) data for these locations shows only one location

(Mission River) where more than a single measurement exists.  A comparison of the

TNRCC recorded concentrations for other heavy metal pollutants with the

measurements for cadmium shows that the exact same values are recorded for all

heavy metal measurements at each location.  This fact leads to the conclusion that the
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TNRCC SWQM data for heavy metals is questionable and more data are needed to

judge the accuracy of the nonpoint source pollution assessment.

Fecal Coliform

Fecal coliform bacteria are present in the feces of warm blooded animals and

are indicators of bacteriological water quality.  Concentrations of fecal coliform are

measured in number of bacteria colonies per 100 milliliter sample.  The fecal coliform

expected mean concentration data from Table 3.6 only includes values for urban land

uses and range/forest land uses.  The urban land use concentrations are established

from concentrations measured as part of the Dallas-Ft. Worth National Pollutant

Discharge Elimination System (NPDES) study and the range land expected mean

concentrations are established from measured concentrations at the USGS stream

gauge #08201500 on Seco Creek near Utopia, TX (Baird, et al., 1996).  No expected

mean concentration value for agricultural lands is provided in Table 3.6.  Preliminary

copies of this table actually included agricultural expected mean concentration values

in the range of 20,000 - 30,000 colonies per 100 milliliters but, ultimately, the

variability observed in the unpublished editions of the table persuaded the authors to

exclude any official value for agricultural lands.  In accordance with this lack of

actual published data, no fecal coliform concentration is assumed from agricultural

land uses.

Figure 5.7 shows the aerial distribution of the available expected mean

concentration data in the San Antonio-Nueces coastal basin.  As is the case with

Table 3.6, the most significant concentration values are associated with urban land

uses in the basin.  A value of 200 colonies per 100 milliliters is assigned to the range

and forest land use regions in the basin.

Average annual fecal coliform loads in the San Antonio-Nueces coastal basin

are calculated using the procedure outlined in section 4.5.  However, due to the

uncommon units of the fecal coliform expected mean concentrations and the

magnitude of the cumulative loads, the cumulative load equation for this calculation is

modified to

L  = Q (mm/yr) * EMC (colonies/100 mL) * A (10,000 m
2
/cell) * 10

-9
 trillion mL-m/mm-m

3,  (5-1)
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where load (L) is determined in units of trillion colonies per year.  Figure 5.8 shows

the average annual cumulative loadings in the San Antonio-Nueces coastal basin.

Due to the zero value of expected mean concentration assigned to the agricultural

land use areas, streams that exclusively drain agricultural regions accumulate no loads

and, hence, are absent from this figure.

The largest predicted cumulative load in the San Antonio-Nueces basin occurs

at the outlet of the Mission River subbasin and is almost 1.47 x 1015 colonies per year.

As can be seen from Table 5.1, this value exceeds the sum of the loads from the three

major streams of the Aransas River subbasin (1.1 x 1015 colonies per year) and the

fecal coliform average annual load from Copano Creek (941 x 1012 colonies).

Figure 5.9 shows predicted fecal coliform concentrations in the San Antonio-

Nueces coastal basin stream network.  These values range up to almost 9000 colonies/

100 milliliter sample.  The largest concentrations occur immediately downstream of

the locations of various urban land uses in the basin.  Average observed fecal coliform

concentrations throughout the basin are consistently lower than the predicted values,

although, for most of the sampling locations, only one measurement specifies the

average observed value.  The trend of predicted concentration values exceeding

average measured values indicates that the fecal coliform expected mean

concentration values assigned to urban land uses are probably too high.  Given the

magnitudes of these expected mean concentration values and the large degree of

variability between measurements, the nonpoint source pollution assessment for this

constituent (and fecal streptococci) needs further investigation and data collection to

be reliable.

5.2 Assessment of Basin Pollution Including Point Sources

Section 4.6 describes a method of estimating point source loads by considering

the difference between calculated nonpoint source pollution concentration levels and

observed concentration levels at a specific location, and then accounting for that

difference with a single point load at the location.  This method is employed for both

total phosphorus and total nitrogen, since nutrients are of particular interest to the

TNRCC.  Also, since there are significant numbers of  TNRCC Surface Water Quality

Monitoring data measurements for phosphorus and nitrogen, the average of the







147

observed concentrations for these pollutants is considered more representative of

actual conditions within the stream networks.  Hence, comparison of predicted and

average observed concentrations is considered more significant for these constituents.

Total Phosphorus

As discussed in section 4.6, the phosphorus point load established by this

method, estimated at the furthest upstream location where a significant concentration

discrepancy exists, is approximately 100% higher than an equivalent load estimated

using the methods of Thomann and Mueller (1987) and approximately 69% higher

than a load estimated using the current average daily flow reported by the Beeville

wastewater treatment plant (Barrera, 1996).

The discrepancy between the point load estimation and these other methods of

calculating point loads could be explained by the existence of additional point sources

in close proximity to or somewhere upstream from the location of the Beeville

wastewater treatment plant.  Alternatively, the effluent phosphorus concentration

from the plant may have been higher than Thomann and Mueller’s typical estimate of

seven mg/L during the period when phosphorus measurements were recorded at the

location.  Regardless of whether this method accurately represents the phosphorus

point load from the Beeville wastewater treatment plant, the method does illustrate a

method of  simulating a conservative point load and applying the corresponding

increase in mass load to all downstream locations.

Figure 4.25 (a-c) shows the modified in-stream phosphorus concentrations

compared with the average observed phosphorus concentrations at measurement

locations along the Aransas River.  As a result of the point source addition at Beeville,

the dilution effect of the higher concentration tributaries mixing with the larger flows

of the Aransas main stem is more pronounced.  Also, while the chosen predicted and

observed concentration ranges still do not match up exactly at all downstream

locations, the differential at each location is made smaller and, in fact, predicted

concentration ranges do match the observed ranges in the lower reaches of the

Aransas River (Figure 4.25c).
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Total Nitrogen

For total nitrogen, a nonpoint source pollution concentration grid, nitconc, is

created as per the procedure outlined in section 4.5.  The predicted nonpoint source

nitrogen concentration at the point where the Beeville wastewater treatment plant

effluent is estimated (from the total phosphorus analysis) is queried, using the

Gridpaint and Cellvalue commands, as in section 4.6.

Grid:  gridpaint nitconc value linear nowrap gray
Grid:  polygonshades nitpts 2
Grid:  cellvalue nitconc *

The cell containing point (1223830.414,693729.621) has value 2.434

Noting that the average observed total nitrogen concentration at the point

source location is 15.51 mg/L, the amount of this concentration attributed to the point

source effluent is calculated as 15.51 mg/L - 2.434 mg/L  =  13.076 mg/L.  By

multiplying this value by the cumulative runoff at the point source established from

the total phosphorus analysis in section 4.6, the total annual estimated cumulative

nitrogen point load is determined as

13.076 mg/L  *  5,467,914 m
3
/yr  *  1000 L/m

3
  *  10

-6
 kg/mg  =  71,498 kg/yr.       (5-2)

Thomann and Mueller’s estimate for a typical mean value of total nitrogen

concentration in the effluent of a conventional secondary treatment facility is 18

mg/L (Thomann and Mueller, 1987).  Using this value, along with the other

parameters from equation 4-13, an alternative value for total nitrogen load is

estimated as

125 gcd * 13547 pop. * 365 d/yr * 3.785 L/gal * 18 mg/L * 10
-6

 kg/mg  =  42,110 kg/yr.    (5-3)

Finally, using the average daily flow from the Beeville wastewater treatment

plant to replace the population-derived flow, a third estimate of annual total nitrogen

load is calculated as

2,000,000 gal/d * 365 d/yr * 3.785 L/gal * 18 mg/L * 10
-6

 kg/mg  =  49,735 kg/yr.      (5-4)
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The total nitrogen point load calculated in equation 5-2, estimated by

accounting for the complete difference in predicted nonpoint source concentration

and average observed concentration with a single point source, exceeds the value

estimated using Thomann and Mueller’s method by approximately 70%.

Alternatively, the load of equation 5-2 is only 44% greater than a load calculated

using the current average daily flow at the Beeville wastewater treatment plant.

As for the estimate of annual total phosphorus point load, the fact that the

estimate from equation 5-2 is within the same order of magnitude as the other

estimates is encouraging, but also indicates that there may be additional point sources

in close proximity to the location of the Beeville wastewater treatment plant.

Alternatively, if the effluent nitrogen concentration from the plant was as high as 26

mg/L during the period when nitrogen measurements were recorded at the location,

instead of Thomann and Mueller’s typical estimate of 18 mg/L, then the difference

between predicted and observed total nitrogen concentrations would be explained by

the single point source.

Figure 5.10 (a-c) shows the in-stream predicted total nitrogen concentrations,

determined with the point source at Beeville included and compared with the average

observed total nitrogen concentrations at measurement locations along the Aransas

River.  As for the similar total phosphorus comparison in Figure 4.25 (a-c), the

predicted and observed concentration ranges do not match exactly throughout the

length of the river, but do agree quite well, particularly in the reaches immediately

downstream of the suspected point source at Beeville.  In the lower reaches of the

Aransas River, where the defined concentration ranges are smaller, predicted

concentrations typically fall within 1-2 mg/L of the average observed concentrations.

5.3 Expected Mean Concentration Values from the Optimization Routine

Table 4.7 shows the results from the Microsoft Excel Solver optimization

program runs.  As identified is section 4.7, the original intent of using this routine was

to establish a method of estimating pollutant expected mean concentration values

rather than having to rely on literature-based values.  However, since there are only

four useable Surface Water Quality Measurement stations with a significant number

of
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measurements (more than 15) for total phosphorus concentration, only four

concentration balance equations are established for those sampling locations.  The

fact that there are 12 different land uses in the four subbasins draining to these

sampling locations necessitates that 12 expected mean concentration variables are

included in the four concentration balance equations.

With only four equations and 12 variables, additional constraints on the

variables are required to limit the number of possible solutions.  By constraining the

water and wetland expected mean concentrations to a value of zero and by making

the values of other urban and mixed urban expected mean concentrations dependent

on the residential, commercial, industrial and transportation expected mean

concentration values, the number of variables in the four equations is effectively

reduced to eight.  However, four equations with eight variables can still be solved

with an infinite number of solutions.  The initial values entered for each expected

mean concentration value have a definite impact on the final values established by the

optimization routine.  Hence, for these runs, the optimization routine does not provide

an independent method of determining expected mean concentration values.  Rather,

it provides a method of adjusting initial values until a more optimum solution is

established.

The two methods used to establish optimum expected mean concentration

values for the subbasin land uses are (1) minimization of the sum of the absolute

values of each concentration balance and (2) minimization of the maximum

concentration balance absolute value.  With only four equations and eight effective

variables, the concentration balance equations do not converge to zero for either

method.

Using the first optimization method, the routine converges to a solution that

includes a negative concentration balance of 0.184 mg/L at the Mission River station.

This negative value of concentration balance represents an overestimation of the

predicted concentration at that location.  The same method underestimates the

predicted concentration at the Aransas station by 0.117 mg/L.  An additional

observation with the use of this optimization method is that, for urban industrial,

urban transportation, range, and barren land uses, the final optimized expected mean

concentrations are equal to the +/- 50% constraint value imposed on each variable.

This indicates that the optimization routine stops because it reaches the constraint

values and doesn’t necessarily find the most optimum solution.
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Minimization of the maximum concentration balance absolute value converges

to a solution that overestimates the predicted concentration at the Mission River

station by only 0.165 mg/L, but also underestimates the predicted concentration at the

Aransas River station by 0.165 mg/L.  Interestingly, no constraint value is reached

when using this optimization method.  In fact, only the optimized expected mean

concentration value for forest land is more than 7% greater than the initial value

entered from Table 3.6.  Since this optimization method produces adjusted results that

are closer to the empirically established expected mean concentration values of Table

3.6, and since the optimization converges to a solution without reaching any of the

constraint values, this method is preferred to the minimization of the concentration

balance sum as the means to adjust expected mean concentration values.

For future investigations, this optimization method may be used to

independently establish land use-based expected mean concentration values by

including additional measurement locations in or near the basin of interest.  For this

study, no additional measurement locations with more than six total phosphorus

concentration measurements exist in the basin.  However, by including additional

measurement locations in close proximity to the basin, more concentration balance

equations could be added to the optimization without adding more expected mean

concentration variables.  By simultaneously solving a number of concentration

balance equations with the same number of expected mean concentration variables,

an unique solution should  be achievable.
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6 CONCLUSIONS AND LIMITATIONS

The GIS nonpoint source pollution assessment method discussed in the

preceding chapters has been shown to present a viable technique of characterizing the

nonpoint source contributions to pollution within a watershed or geographic region.

Advantages of the method are outlined below:

• By virtue of the fact that values for predicted and observed concentrations are

comparable, the GIS nonpoint source assessment method is seen to provide relatively

accurate estimates of pollutant loads and concentrations throughout the stream

network of a hydrologic unit.  Particularly along smaller streams, where few or no

point sources exist (e.g. Copano Creek), concentrations predicted via the assessment

method match quite well with average observed concentration values.

• The method also provides an efficient way to identify specific locations or

regions where elevated levels of pollutant concentrations may be expected.  In

particular, this study has shown that the Aransas River watershed, with a large

percentage of its area occupied by agricultural lands, includes locations where

elevated nutrient levels are expected.  More sampling is warranted in this subbasin,

particularly downstream from Beeville, where the partitioning between nonpoint and

point source nutrient loading is still unclear.

• Use of the GIS nonpoint source pollution assessment method also has some

logistical advantages that allow for adaptation to other study areas.  This method

makes use of all recorded streamflow and pollutant concentration data available in the

basin and synthesizes the data in a consistent and logical way across the basin.  Most

of the data sources used for this study are publicly available in a digital format and the

data pertinent to the study area are easily extractable from each database.

• Also, the procedures used for this method employ standard Arc/Info and

ArcView GIS commands and routines and the necessity for external programming

scripts is limited to data reformatting routines.

• By including estimated point source loads as per the simulation method

described in sections 4.6 and 5.2, predicted concentration levels in larger streams,

where point sources are known to exist, are more closely correlated with average

observed concentrations.  The practice of accounting for the full difference between
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predicted and observed pollutant concentrations with a single point load, however, is

not expected to represent actual conditions in a watershed the size of the San

Antonio-Nueces coastal basin.  Optimally, point loads should be accounted for with

values of reported annual loads or permitted average concentrations for all of the

permitted point source effluents within the basin.

• The use of the optimization routine, intended for explicit determination of

land use-based expected mean concentration values, became a method of adjusting

the literature-based expected mean concentrations, due to the lack of sufficient

Surface Water Quality Monitoring stations with significant numbers of pollutant

measurements in the basin.  For future nonpoint source pollution assessments, an

equal number of  concentration balance equations and land use expected mean

concentration variables are recommended, along with a fully documented set of point

source loads.

While the advantages of the GIS nonpoint source pollution assessment method

described in this report are plainly evident, there are also a number of limitations with

this application of the method that should be addressed for future assessments:

• Since the assessment is performed for average annual conditions, results are

given for mean annual flow and average annual cumulative load.  These steady state

results do not consider variations within years or from year to year.  Figure 4.9 shows

that recorded streamflows are highly correlated in space throughout the basin.  One

way to model temporal variations in flow would be to use the Mission River gauge as

an index defining temporal flow variations throughout the basin and use the method

illustrated through equation 4-2 to infer temporal flows at other locations in the basin.

This would provide approximate flow profiles for other locations and would facilitate

the performance of event-based nonpoint source analyses.

• The literature-based expected mean concentrations assume constant values

associated with each land use and are not considered to vary from event to event or

between different land use subcategories.  This assumption might be relaxed by

considering constituent event mean concentrations (Huber, 1993) instead of expected

mean concentrations.  By considering a series of runoff events and the measured

pollutant event mean concentrations associated with each event, a distribution of

event mean concentrations can be established and a representative concentration can
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be determined and applied to all cells upstream of the particular measurement

location.  These values could then be used in an event-based nonpoint source

pollution assessment.

• Transport of pollutants is considered to be conservative throughout this study,

i.e. no loss or decay of pollutants is considered.  In the future, this limitation may be

addressed through use of a water quality simulation model, such as the EUTRO5

module of WASP5, which includes a kinetics option for the modeling of nutrient

concentrations.

• For comparison purposes, representative observed pollutant concentrations are

established by averaging all observed pollutant concentrations at a particular sampling

location.  This averaging is done without consideration of flow conditions at the time

each measurement.  A more detailed study might classify the observed concentrations

according to whether the corresponding streamflow is high, intermediate, or low.  In

this way, more appropriate values for average observed pollutant concentration can

be established for an event-based assessment.  Additionally, consideration and

exclusion of outlying data points might be included as a method to refine the observed

pollutant concentration values.

• The rainfall/runoff relationship established in section 4.2 is determined from

 the streamflow data of just five gauges.  The runoff grid shown in Figure 4.12

represents an extrapolation across the basin of the best linear fit for the five data

points.  As a result, the rainfall/runoff relationship, while applied to the whole

basin, is only valid for the precipitation range between 783 and 924 mm/yr.  Actual

precipitation in the San Antonio-Nueces coastal basin ranges from 739 to 985 mm/yr.

By including additional USGS streamflow gauges in watersheds immediately adjacent

to the San Antonio-Nueces basin, a rainfall/runoff relationship can be established for

a wider range of precipitation values.  By ensuring that two of the additional gauges

drain areas receiving less than 739 mm/yr and more than 985 mm/yr of rain,

respectively, a rainfall/runoff relationship that is valid for the complete basin can be

established.  This would also resolve the issue of having to redefine the runoff for

cells receiving less than 759 mm of rain per year with values of zero.

The GIS nonpoint source pollution assessment method is a useable, reliable,

and repeatable means of establishing nonpoint source pollution estimates in a
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watershed or geographic region.  Consideration of the above limitations for future

applications of the method will provide for a more comprehensive analysis.  In time,

an equivalent vector-based procedure may be developed completely within the

Avenue object-oriented programming environment of ArcView so that a stand-alone

model may allow for even wider use of the method.
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Appendix A :   Data Dictionary
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Data Feature Class Attribute Value Description Page #

allyn1 15-minute Allyns' Bight Digital Line Arc none (37)
Graph map #1 w/ meridians and parallels
removed.  UTM projection.

allynf01 Original Arc/Info coverage converted from Arc none (37)
15-minute Allyns' Bight Digital Line Graph
map #1.  UTM projection.

aranarea Grid of subwatershed delineated from the Grid none integer 63,291 cells 70
Aransas River USGS gauge (drainpt1)
using the clipfdr flow direction grid.

arancov Equivalent polygon coverage of the Polygon none 70
aranarea grid.  Created using gridpoly

aranlu Land Use coverage specific to the Polygon lusecat same as lusecat for sanlu coverage. 126
subwatershed delineated from the
Aransas River TNRCC SWQM gauge.
Created by clipping the sanlu coverage
with the araptcov coverage.

aranpt Single cell grid identifying the location of Grid none 126
the TNRCC SWQM station # 12948 on the
Aransas River.  All other cells have values
of NODATA.

aranrain Precipitation grid specific to the Grid Precip- varies Precipitation values in each grid-cell 81
subwatershed delineated from the depth are in units of millimeters/year.
Aransas River USGS gauge. 761 - 860 mm/year.

*  All arc, polygon, and point coverages and all grids are projected in TSMS-Albers coordinates unless otherwise

      specified.

**   The Page # field lists the location within the document where the data layer is first referenced.  Page #'s in

      parentheses ( ) indicate that the data are not explicitly called out on the page, but that the process described on

      the page has been performed in the creation of the data layer.
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Data Feature Class Attribute Value Description Page #

araptcov Equivalent polygon coverage of the Polygon none 126
arptarea grid.  Created using the gridpoly
command.

arlugrid Equivalent 100-meter cellsize grid of the Grid land use varies between the lusecat 12 values specifed 126
aranlu coverage.  Created using polygrid for the sanluse coverage.
with the lusecat attribute specified for grid-
cell values.

arptarea Grid of subwatershed delineated from the Grid none 126
Aransas River TNRCC SWQM station
(aranpt) using the clipfdr flow direction grid.

arrunoff Grid of cumulative runoff from each land Grid runoff varies Cumulative runoff values in each grid- 126
use specified in the arlugrid grid.  Created volume cell are in units of cubic meters / year.
using the zonalsum command, summing 6730 - 41,141,650 cub. meters/yr.
values from the runoff grid based on
zonal regions specified in arlugrid.

attrib.dat Arc/Info file of expected mean INFO lusecat same as lusecat for sanluse coverage 93
concentration data.  Created from the tn 0 - 4.4 (mg/L) total nitrogen emc
emc3a.dat text file. Used to assign EMC tkn 0 - 1.7 (mg/L) total kjeldahl nitrogen emc
attributes to the land use coverage, sanlu. nn 0 - 1.6 (mg/L) nitrate + nitrite emc

tp 0 - 1.3 (mg/L) total phosphorus emc
dp 0 - 0.48 (mg/L) dissolved phosphorus emc
ss 0 - 107 (mg/L) total suspended solids emc
ds 0 - 1225 (mg/L) total dissolved solids emc
pb 0 - 15 (ug/L) total lead emc
cu 0 - 15 (ug/L) total copper emc
zn 0 - 245 (ug/L) total zinc emc
cd 0 - 1.05 (ug/L) total cadmium emc
cr 0 - 10 (ug/L) total chromium emc
ni 0 - 11.8 (ug/L) total nickel emc

bod 0 - 25.5 (mg/L) biological oxygen demand emc
cod 0 - 116 (mg/L) chemical oxygen demand emc
o&g 0 - 9 (mg/L) oil & grease emc
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Data Feature Class Attribute Value Description Page #

fcol 0 - 53,000 (col/100 mL) fecal coliform emc
fstr 0 - 56,000 (col/100 mL) fecal streptococci emc

attribut.dat Arc/Info table, built from a text file, INFO stations- integer 1-5 48
including USGS gauge station-id number id
and name.  Used to add attributes to the stat-num 08189200 USGS stream gauge station
stations coverage. 08189300 identification number.

08189500
08189700
08189800

stat-nam Copano Stream or Creek that gauge is located
Medio on.

Mission
Aransas
Chiltipin

balugrid Equivalent 100-meter cellsize grid of the Grid land use varies between the lusecat 12 values specifed (126)
bayptlu coverage.  Created using polygrid for the sanluse coverage.
with the lusecat attribute specified for grid-
cell values.

barriers Polygon coverage of the barrier islands Polygon none 67
included in the final digital line graph
hydrography coverage.  Converted from
ArcView shapefile and sanpolys coverage.

barunoff Grid of cumulative runoff from each land Grid runoff varies Cumulative runoff values in each grid- (126)
use specified in the balugrid grid.  Created volume cell are in units of cubic meters / year.
using the zonalsum command, summing 35,530 - 106,393,580 cub. meters/yr.
values from the runoff grid based on
zonal regions specified in balugrid.

basin Appended coverage of the covsheds, Polygon none 76
covtrim, baybuff, and barriers coverages.

bayarea Grid of subwatershed delineated from the Grid none (126)
Copano Bay SWQM station # 12945
(baypt) using the clipfdr flow direction grid.
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Data Feature Class Attribute Value Description Page #

baybuff One cell (100 meter) buffer around the Polygon inside 0 outside of buffer boundary 67
bays coverage.  Used to eliminate 1 insider buffer boundary
shorelines from the final stream
hydrography coverage.

baycov Combined (unioned) polygon coverage of Polygon none 67
the sqcov and baybuff coverage.  Used to
trim out subsequent coverages local to
the bay network.

bayfil A redefined version of the ditfil DEM with Grid elevation varies elevation values in each grid-cell are 69
zero values for elevation replacing the in units of meters above sea level.
NODATA values occuring in the bay
network.  Required to avoid errors in
subsequent flow direction computations.

baygrid Equivalent 100 meter cell size grid of the Grid none 67
baycov coverage.  Used to isolate other
grid features specific to the bay network.

baypt Single cell grid identifying the location of Grid none (126)
the TNRCC SWQM station # 12945 in the
Copano Bay.  All other cells have values
of NODATA.

bayptcov Equivalent polygon coverage of the Polygon none (126)
bayarea grid.  Created using the gridpoly
command.

bayptlu Land Use coverage specific to the Polygon lusecat same as lusecat for sanlu coverage. (126)
subwatershed delineated from the
Copano Bay SWQM gauge # 12945.
Created by clipping the sanlu coverage
with the bayptcov coverage.

bays Polygon coverage of the ICWW bay network Polygon none 67
included in the final digital line graph
hydrography coverage.  Converted from
ArcView shapefile and sanpolys coverage.
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Data Feature Class Attribute Value Description Page #

bcdem Merged grid of the the 4 Beeville and Grid elevation varies elevation values in each grid-cell are 41
Corpus Christi Digital Elevation Model in units of meters above sea level.
mapsheets.  Geographic coordinates

bcdemalb Reprojected version of the merged Digital Grid elevation varies elevation values in each grid-cell are 41
Elevation Model . in units of meters above sea level.

bee1 15-minute Beeville Digital Line Arc none 37
Graph map #1 w/ meridians and parallels
removed.  UTM projection.

bee2 15-minute Beeville Digital Line Arc none (37)
Graph map #2 w/ meridians and parallels
removed.  UTM projection.

bee3 15-minute Beeville Digital Line Arc none (37)
Graph map #3 w/ meridians and parallels
removed.  UTM projection.

bee4 15-minute Beeville Digital Line Arc none (37)
Graph map #4 w/ meridians and parallels
removed.  UTM projection.

bee5 15-minute Beeville Digital Line Arc none (37)
Graph map #5 w/ meridians and parallels
removed.  UTM projection.

bee6 15-minute Beeville Digital Line Arc none (37)
Graph map #6 w/ meridians and parallels
removed.  UTM projection.

bee7 15-minute Beeville Digital Line Arc none (37)
Graph map #7 w/ meridians and parallels
removed.  UTM projection.

bee8 15-minute Beeville Digital Line Arc none (37)
Graph map #8 w/ meridians and parallels
removed.  UTM projection.

beedeme Initial grid created from Beeville East 3" Grid elevation varies elevation values in each grid-cell are 41
Digital Elevation Model mapsheet. in units of meters above sea level.
Projected in Geographic coordinates.
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Data Feature Class Attribute Value Description Page #

beedemw Initial grid created from Beeville West 3" Grid elevation varies elevation values in each grid-cell are 41
Digital Elevation Model mapsheet. in units of meters above sea level.
Projected in Geographic coordinates.

beef01 Original Arc/Info coverage converted from Arc none 37
15-minute Beeville Digital Line Graph
map #1.  UTM projection.

beef02 Original Arc/Info coverage converted from Arc none (37)
15-minute Beeville Digital Line Graph.
map #2.  UTM projection.

beef03 Original Arc/Info coverage converted from Arc none (37)
15-minute Beeville Digital Line Graph.
map #3.  UTM projection.

beef04 Original Arc/Info coverage converted from Arc none (37)
15-minute Beeville Digital Line Graph.
map #4.  UTM projection.

beef05 Original Arc/Info coverage converted from Arc none (37)
15-minute Beeville Digital Line Graph.
map #5.  UTM projection.

beef06 Original Arc/Info coverage converted from Arc none (37)
15-minute Beeville Digital Line Graph.
map #6.  UTM projection.

beef07 Original Arc/Info coverage converted from Arc none (37)
15-minute Beeville Digital Line Graph.
map #7.  UTM projection.

beef08 Original Arc/Info coverage converted from Arc none (37)
15-minute Beeville Digital Line Graph.
map #8.  UTM projection.

beeload Point source phosphorus load grid for the Grid Load 32,694 Annual Point source phosphorus load 120
Beeville point source identified in the at the Beeville location in units of
beepoint grid.  All other cells have values kg/year.
of zero.
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beelu Cleaned version of the original Beeville Polygon none 44
land use coverage.  Standard Albers
projection.

beenit Point source nitrogen load grid for the Grid Load 71,498 Annual Point source nitrogen load (120)
Beeville point source identified in the at the Beeville location in units of
beepoint grid.  All other cells have values kg/year.
of zero.

beepoint Single cell grid identifying the presumed Grid none 120
location of a Beeville point source along
the Aransas River.  All other cells have
values of NODATA.

beernof Cell-based phosphorus loading grid Grid Load varies Cell-based load values in each grid 121
created by adding the nonpoint source cell are in units of mg-mm/L-year.
loading grid (phosrnof) and the Beeville 0 - 3,269,400 mg-mm/L-yr.
point source loading grid (beeload).

bord Border of the digitally delineated San Arc none 79
Antonio-Nueces Basin, created from an
ArcView shapefile by selecting only those
sanbasin polygons corresponding to the
basin, i.e. exluding the trimshed polygons.

border Cleaned version of the bord coverage. Polygon none 79
bordgrid Equivalent 100 meter cellsize grid of the Grid none 81

sanbord coverage.  Created using polygrid.
cadconc Grid of predicted cadmium concentrations Grid Concen- varies Concentration values in each grid-cell (102)

due to nonpoint sources.  Created by tration are in units of micrograms/Liter.
dividing the cumulative cadmium load grid 0 - 2.0 ug/L
(cadload) by the annual cumulative runoff
grid (runoffac).

cadgrid Initial 100-meter cellsize grid of total Grid Cd EMC 0 Barren/Water/Wetland EMC (95)
cadmium EMC values.  Created  by (ug/L) 0.75 Urban Residential EMC
converting the sanlu coverage (with the cd 0.96 Urban Commercial EMC
attribute specified) to a grid using polygrid. 2 Urban Industrial EMC
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0.5 Urban Transportation EMC
1.05 Mixed/Other Urban EMC

1 Agriculture EMC
0.5 Range/Forest Land EMC

cadld Cummulative annual cadmium load grid Grid Load varies Cumulative load values in each grid (96)
created by performing a weighted flow cell are in units of g/year.
accumulation on the mainfdr grid, using the 0 - 173,535.844 g/yr
cadrunof grid as the weight grid.

cadline Equivalent line coverage of the cadload Arc grid-code varies Cumulative load values along each (97)
grid.  In-stream loads isolated through stream are in units of grams per year.
selection of a load threshold value = 1000 1000 - 173,535 g/yr
grams.  Grid-code integer load values
retained in the line coverage through use
of the streamline command.

cadload Equivalent integer grid of the cadld grid. Grid Load varies Cumulative load values in each grid (97)
cell are in units of grams/year.
0 - 173,535 g/yr

cadpts Polygon coverage of circles associated Polygon Radius varies in increments of 400 between 0 and (113)
with each total cadmium TNRCC 800 meters.
SWQM location.  Radius of each circle is
defined as a function of the square root of
the number of cd measurements at the
location.  Created using the generate
command with the cadrad.dat data file.

cadrad.dat Arc/Info data file created from the sanwq INFO sanwq-id varies 5-digit water quality station number (113)
point attribute table by defining a sanwq X-coord varies TSMS Albers x-coordinate of station
Radius field as a function of the cd_cnt Y-coord varies TSMS Albers y-coordinate of station
field, and then using the ArcView File Radius varies in increments of 400 between 0 and
Export feature to create a text-delimited 800 meters.
data file.
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cadrunof Cell-based total cadmium loading grid Grid Load varies Cell-based load values in each grid (95)
created by taking the product of the runoff cell are in units of ug-mm/L-year.
and cadgrid grids. 0 - 392.97 ug-mm/L-yr.

cc2 15-minute Corpus Christi Digital Line Arc none (37)
Graph map #2 w/ meridians and parallels
removed.  UTM projection.

cc3 15-minute Corpus Christi Digital Line Arc none (37)
Graph map #3 w/ meridians and parallels
removed.  UTM projection.

cc4 15-minute Corpus Christi Digital Line Arc none (37)
Graph map #4 w/ meridians and parallels
removed.  UTM projection.

ccf02 Original Arc/Info coverage converted from Arc none (37)
15-minute Corpus Christi Digital Line
Graph map #2.  UTM projection.

ccf03 Original Arc/Info coverage converted from Arc none (37)
15-minute Corpus Christi Digital Line
Graph map #3.  UTM projection.

ccf04 Original Arc/Info coverage converted from Arc none (37)
15-minute Corpus Christi Digital Line
Graph map #4.  UTM projection.

cclu Cleaned version of the original Corpus Polygon none (44)
Christi land use coverage.  Standard
Albers projection.

cd.dat Arc/Info data file of total cadmium INFO station-id varies 5-digit water quality station number (104)
water quality measurements.  Created from count varies between 0 - 4 (# of measurements)
cd.dbf using the dbaseinfo command. ave-value varies between 1 - 5 ug/L

cd.dbf Database file of total cadmium DBF station-id varies 5-digit water quality station number (104)
water quality measurements.  Created count varies between 0 - 4 (# of measurements)
from the TNRCC SWQM database using ave-value varies between 1 - 5 ug/L
ArcView Summary Statistics tools.
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cdcon Final nonpoint cadmium concentration Arc grid-code varies Concentration values along each (102)
coverage.  Created by clipping the cdline stream are in units of ug/L x 1000.
arc coverage with the mainland template. 0 - 1770

cdconstr Grid of predicted nonpoint cadmium Grid Concen- varies Concentration values in each grid-cell (102)
concentrations occuring in the stream tration are in units of micrograms/Liter.
network of the basin.  Created using the 0 - 1.77 ug/L
Con statement with the introfac and
cadconc grids.

cdline Equivalent line coverage of the cdconstr Arc grid-code varies Concentration values along each (102)
grid.  Concentrations multiplied by 1000 to stream are in units of ug/L x 1000.
retain significant figures.  Grid-code integer 0 - 1770
concentration values retained in the line
coverage through use of the streamline
command.

cdload Final total cadmium cumulative load Arc grid-code varies Cumulative load values along each (97)
coverage.  Created by clipping the cadline stream are in units of grams per year.
arc coverage with the mainland template. 1000 - 173,535 g/yr

cdpts Cleaned version of the cadpts coverage. Polygon Radius varies in increments of 400 between 0 and (113)
Joined with data from the cd.dat data file. 800 meters.

station-id varies 5-digit water quality station number
count varies between 0 - 4 (# of measurements)

ave-value varies between 0 - 5 ug/L
chilarea Grid of subwatershed delineated from the Grid none integer 32,233 cells (70)

Chiltipin Creek USGS gauge (drainpt5)
using the clipfdr flow direction grid.

chilcov Equivalent polygon coverage of the Polygon none (70)
chilarea grid.  Created using the gridpoly
command.

chilrain Precipitation grid specific to the Grid Precip- varies Precipitation values in each grid-cell (81)
subwatershed delineated from the depth are in units of millimeters/year.
Chiltipin Creek USGS gauge. 811 - 877 mm/year.
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clipfdr Flow direction grid with ditfdr values Grid direction same as for the sanfdr grid. 69
assigned to mainland cells and NODATA
values assigned to bays and islands.

colugrid Equivalent 100-meter cellsize grid of the Grid land use varies between the lusecat 12 values specifed (126)
copalu coverage.  Created using polygrid for the sanluse coverage.
with the lusecat attribute specified for grid-
cell values.

copacov Equivalent polygon coverage of the Polygon none (70)
coparea grid.  Created using the gridpoly
command.

copalu Land Use coverage specific to the Polygon lusecat same as lusecat for sanlu coverage. (126)
subwatershed delineated from the
Copano Creek SWQM gauge # 13660
(USGS flow gauge). Created by clipping the
sanlu coverage with copacov.

coparain Precipitation grid specific to the Grid Precip- varies Precipitation values in each grid-cell (81)
subwatershed delineated from the depth are in units of millimeters/year.
Copano Creek USGS gauge. 893 - 938 mm/year.

coparea Grid of subwatershed delineated from the Grid none integer 20,782 cells (70)
Copano Creek USGS gauge (drainpt3)
using the clipfdr flow direction grid.

corpdeme Initial grid created from Corpus Christi Grid elevation varies elevation values in each grid-cell are 41
East 3" Digital Elevation Model mapsheet. in units of meters above sea level.
Projected in Geographic coordinates.

corpdemw Initial grid created from Corpus Christi Grid elevation varies elevation values in each grid-cell are 41
West 3" Digital Elevation Model mapsheet. in units of meters above sea level.
Projected in Geographic coordinates.

corunoff Grid of cumulative runoff from each land Grid runoff varies Cumulative runoff values in each grid- (126)
use specified in the colugrid grid.  Created volume cell are in units of cubic meters / year.
using the zonalsum command, summing 196,200 - 21,440,430 cub. meters/yr.
values from the runoff grid based on
zonal regions specified in colugrid.
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covsheds Cleaned version of the subsheds Polygon none 76
coverage.

covstr Equivalent line coverage of the str1 grid. Arc none 63
Created using the Gridline command.

covstr1 Equivalent line coverage of the ditstr1 grid. Arc none 70
Created using the Gridline command.

covtrim Cleaned version of the trimshed coverage. Polygon none 76
ditacc8 Grid of accumulation zones in the region. Grid zone # same as for the ditlnk8 grid 75

Created using the zonlamax command with
the ditfac and ditlnk8 grids.  Assigns the
values of each ditlnk8 reach to all cells in
the associated accumulation zones.

ditfac Flow accumulation grid created from the Grid accumu- varies integer number of cells that fall 69
clipfdr flow direction grid. lation upstream of each cell.

ditfdr Flow direction grid built from the "burned Grid direction same as for the sanfdr grid. 69
in" bayfil DEM.

ditfil Processed Digital Elevation Model with all Grid elevation varies elevation values in each grid-cell are 69
"pits" of the ditstrm DEM filled to the level in units of meters above sea level.
of the lowest elevation neighboring cell.

ditlnk8 Grid of stream reaches in the San Antonio- Grid reach # varies 75
Nueces basin region, created using the
streamlink command with the clipfdr and
ditstr8 grids.

ditout8 Grid of outlet cells for each accumulation Grid outlet same as for the ditlnk8 grid 75
zone in the region.  Created using the Con cell #
statement with the ditacc8, ditlnk8, and
ditfac grids.
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ditshd8 Grid of subwatersheds in the San Antonio- Grid water- same as for the ditlnk8 grid 75
Nueces region.  Based on the selection of shed #
8000 cells for the ditstr8 grid, each of these
subwatersheds are at least 80 sq km in
area.  Created using the watershed
command with the clipfdr and ditout8 grids.

ditstr1 Grid of flow accumulation cells with value Grid accumu- varies from 1000 to the maximum value of 70
greater than a threshold of 1000.  Results lation the ditfac grid
in strings of cells that represent the larger
streams in the basin.

ditstr8 Grid of flow accumulation cells with value Grid accumu- varies from 8000 to the maximum value of 75
greater than a threshold of 8000.  Results lation the ditfac grid
in strings of cells that represent the largest
streams in the basin.

ditstrm "Burned-In" Digital Elevation Model created Grid elevation varies elevation values in each grid-cell are 69
by artificially raising the elevations of all in units of meters above sea level.
off-stream cells in the strmgrid grid by 5
meters and specifying in-stream grid cells
with a zero elevation value.

drainpt1 Single cell grid identifying the location of Grid none 70
the USGS Aransas River stream gauge.
All other cells have values of NODATA.

drainpt2 Single cell grid identifying the location of Grid none (70)
the USGS Mission River stream gauge.
All other cells have values of NODATA.

drainpt3 Single cell grid identifying the location of Grid none (70)
the USGS Copano Creek stream gauge.
All other cells have values of NODATA.

drainpt4 Single cell grid identifying the location of Grid none (70)
the USGS Medio Creek stream gauge.
All other cells have values of NODATA.
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drainpt5 Single cell grid identifying the location of Grid none (70)
the USGS Chiltipin Creek stream gauge.
All other cells have values of NODATA.

fec_col.dat Arc/Info data file of fecal coliform INFO station-id varies 5-digit water quality station number (104)
water quality measurements.  Created from count varies between 0 - 17 (# of measurements)
fec_col.dbf using the dbaseinfo command. ave-value varies between 0 - 462 colonies / 100 mL

fec_col.dbf Database file of fecal coliform DBF station-id varies 5-digit water quality station number (104)
water quality measurements.  Created count varies between 0 - 17 (# of measurements)
from the TNRCC SWQM database using ave-value varies between 0 - 462 colonies / 100 mL
ArcView Summary Statistics tools.

fecalpts Polygon coverage of circles associated Polygon Radius varies in increments of 300 between 0 and (113)
with each fecal coliform TNRCC 1200 meters.
SWQM location.  Radius of each circle is
defined as a function of the square root of
the number of fec_col measurements at
the location.  Created using the generate
command with the fecrad.dat data file.

feccon Final nonpoint fecal coliform Arc grid-code varies Concentration values along each (102)
concentration coverage.  Created by stream are in units of colonies per
clipping the feclin arc coverage with the 100 mL.
mainland template. 0 - 8996 colonies / 100 mL

fecconc Grid of predicted fecal coliform Grid Concen- varies Concentration values in each grid-cell (102)
concentrations due to nonpoint sources. tration are in units of colonies per 100 mL.
Created by dividing the cumulative fecal 0 - 8996 colonies/100 mL
coliform load grid (feclload) by the annual
cumulative runoff grid (runoffac).

fecld Cummulative annual fecal coliform load Grid Load varies Cumulative load values in each grid (96)
grid created by performing a weighted flow cell are in units of trillion colonies/year.
accumulation on the mainfdr grid, using the 0 - 1469.786 trillion colonies/year
feclrnof grid as the weight grid.

feclgrid Initial 100-meter cellsize grid of fecal Grid Fecal 0 Agricul/Barren/Water/Wetland EMC (95)
coliform EMC values.  Created  by Coliform 20,000 Urban Residential EMC
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converting the sanlu coverage (with the EMC 6,900 Urban Commercial EMC
fcol attribute specified) to a grid using (colonies 9,700 Urban Industrial EMC
polygrid. /100 mL) 53,000 Urban Transportation EMC

22,400 Mixed/Other Urban EMC
200 Range/Forest Land EMC

feclin Equivalent line coverage of the feconstr Arc grid-code varies Concentration values along each (102)
grid.  Grid-code integer concentration stream are in units of colonies per
values retained in the line coverage 100 mL.
through use of the streamline command. 0 - 8996 colonies/100 mL

fecline Equivalent line coverage of the feclload Arc grid-code varies Cumulative load values along each (97)
grid.  In-stream loads isolated through stream are in units of trillion colonies
selection of a load threshold value = 100 per year.
trillion colonies.  Grid-code integer load 100 - 1469 trillion colonies/yr.
values retained in the line coverage thru
use of the streamline command.

feclload Equivalent integer grid of the fecld grid. Grid Load varies Cumulative load values in each grid (97)
cell are in units of trillion colonies/year.
0 - 1469 trillion colonies/yr

fecload Final fecal coliform cumulative load Arc grid-code varies Cumulative load values along each (97)
coverage.  Created by clipping the fecline stream are in units of trillion colonies
arc coverage with the mainland template. per year.

100 - 1469 trillion colonies/yr.
feclrnof Cell-based fecal coliform loading grid Grid Load varies Cell-based load values in each grid (95)

created by taking the product of the runoff cell are in units of col-mm/100 mL-year.
and feclgrid grids. 0 - 10,413,663 colony-mm/100 mL-yr.

feconstr Grid of predicted nonpoint fecal coliform Grid Concen- varies Concentration values in each grid-cell (102)
concentrations occuring in the stream tration are in units of colonies per 100 mL.
network of the basin.  Created using the 0 - 8996 colonies/100 mL
Con statement with the introfac and
fecconc grids.

fecpts Cleaned version of the fecalpts coverage. Polygon Radius varies in increments of 300 between 0 and (113)
Joined with data from the fec_col.dat data 1200 meters.
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file. station-id varies 5-digit water quality station number
count varies between 0 - 17 (# of measurements)

ave-value varies between 0 - 462 colonies / 100 mL
fecrad.dat Arc/Info data file created from the sanwq INFO sanwq-id varies 5-digit water quality station number (113)

point attribute table by defining a sanwq X-coord varies TSMS Albers x-coordinate of station
Radius field as a function of the fec_cnt Y-coord varies TSMS Albers y-coordinate of station
field, and then using the ArcView File Radius varies in increments of 300 between 0 and
Export feature to create a text-delimited 1200 meters.
data file.

geobuff Equivalent of hucbuff coverage reprojected Polygon inside 0 outside of buffer boundary 53
to Geographic coordinates. 1 insider buffer boundary

goli5 15-minute Goliad Digital Line Arc none (37)
Graph map #5 w/ meridians and parallels
removed.  UTM projection.

goli6 15-minute Goliad Digital Line Arc none (37)
Graph map #6 w/ meridians and parallels
removed.  UTM projection.

goli7 15-minute Goliad Digital Line Arc none (37)
Graph map #7 w/ meridians and parallels
removed.  UTM projection.

goli8 15-minute Goliad Digital Line Arc none (37)
Graph map #8 w/ meridians and parallels
removed.  UTM projection.

golif05 Original Arc/Info coverage converted from Arc none (37)
15-minute Goliad Digital Line Graph map
#5.  UTM projection.

golif06 Original Arc/Info coverage converted from Arc none (37)
15-minute Goliad Digital Line Graph map
#6.  UTM projection.

golif07 Original Arc/Info coverage converted from Arc none (37)
15-minute Goliad Digital Line Graph map
#7.  UTM projection.
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golif08 Original Arc/Info coverage converted from Arc none (37)
15-minute Goliad Digital Line Graph map
#8.  UTM projection.

huc250 Original 1:250,000-scale HUC coverage of Polygon huc varies 8-digit Hydrologic Unit Code identifies 32
the U.S. imported from a .e00 file. water resources region, subregion,
Standard Albers projection. accounting unit, and cataloging unit.

hucbuff 5 kilometer buffer around the sanhucs Polygon inside 0 outside of buffer boundary 41
coverage.  Used as a coarse template to 1 insider buffer boundary
clip other coverages or trim grids.

hucs Intermediate coverage of the 5 HUCs Polygon huc 12100404 West San Antonio Bay HUC 32
representing the San Antonio-Nueces 12100405 Aransas Bay HUC
Basin.  Standard Albers projection. 12100406 Mission HUC

12100407 Aransas HUC
12110201 North Corpus Christi Bay HUC

hucsan Intermediate reprojected coverage of the Polygon huc same as huc for the hucs coverage 32
5 San Antonio-Nueces HUCs

introfac Equivalent integer grid of cumulative runoff Grid Runoff varies Cumulative runoff values in each grid- 100
in units of cubic feet per second. Flow cell are in units of cubic feet/second.

0 - 324 cfs
landuse Appended land use map of the Beeville Polygon landuse- 0 Unknown 44

and Corpus Christi mapsheets. id 11 Residential
Anderson Land Use Classification is used 12 Commercial Services
to distinguish between land use types. 13 Industrial
Standard Albers projection. 14 Transportation, Comunications

15 Industrial and Commercial
16 Mixed Urban or Built-Up Land
17 Other Urban or Built-Up Land
21 Cropland and Pasture
22 Orchards, Groves, Vineyards, Nursery
23 Confined Feeding Operations
31 Herbaceous Rangeland
32 Shrub and Brush Rangeland
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33 Mixed Rangeland
41 Deciduous Forest Land
42 Evergreen Forest Land
43 MIxed Forest Land
51 Streams and Canals
52 Lakes
53 Reservoirs
54 Bays and Estuaries
61 Forested Wetlands
62 Nonforested Wetlands
71 Dry Salt Flats
72 Beaches
73 Sandy Areas Other Than Beaches
74 Bare Exposed Rock
75 Strip Mines, Quarries, Gravel Pits
76 Transitional Areas
77 Mixed Barren Land

200000 Unknown
lanuse Reprojected version of the appended land Polygon lanuse-id same as landuse-id for landuse coverage 44

use coverage.  Includes the full Beeville
and Corpus Christi mapsheets.

lbe28096 Initial land use coverage of the Beeville Polygon none 44
1:250,000-scale mapsheet imported from
uncompressed .e00 file.  Standard Albers
projection.

lco27096 Initial land use coverage of the Corpus Polygon none (44)
Christi 1:250,000-scale mapsheet
imported from uncompressed .e00 file.
Standard Albers projection.

lonlat.dat Raw data file of longitude and latitude data, Text longitude varies between -97.1122 and -97.6564 47
in decimal degrees, used to build the latitude varies betweeen 28.0467 and 28.4828
stations coverage.
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luse Dissolved (no boundary lines) land use Polygon luse-id same as landuse-id for landuse coverage 44
coverage with Anderson classification.

m2lugrid Equivalent 100-meter cellsize grid of the Grid land use varies between the lusecat 12 values specifed (126)
mis2lu coverage.  Created using polygrid for the sanluse coverage.
with the lusecat attribute specified for grid-
cell values.

m2runoff Grid of cumulative runoff from each land Grid runoff varies Cumulative runoff values in each grid- (126)
use specified in the m2lugrid grid.  Created volume cell are in units of cubic meters / year.
using the zonalsum command, summing 31,260 - 109,195,880 cub. meters/yr.
values from the runoff grid based on
zonal regions specified in m2lugrid.

main Polygon coverage of the mainland basin Polygon none 96
region buffered by one cell width (100
meters). Created by buffering the coverage
called mainland

mainfdr Flow direction grid created by storing ditfdr Grid direction same as for the sanfdr grid. 96
values into the cells of the maingrid grid
and storing values of NODATA elsewhere.
This grid was created in order to correct
for an anomaly with the use of the
streamline command, so that arc
coverages converted from string grids
would extend for the full intended length.

maingrid Equivalent 100-meter cellsize grid of the Grid none 96
main coverage, created using the polygrid
command.

mainland Polygon coverage of the mainland basin Polygon none 96
region reselected from the baycov
coverage.

mediarea Grid of subwatershed delineated from the Grid none integer 52,708 cells (70)
Medio Creek USGS gauge (drainpt4)
using the clipfdr flow direction grid.
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medicov Equivalent polygon coverage of the Polygon none (70)
mediarea grid.  Created using the gridpoly
command.

medirain Precipitation grid specific to the Grid Precip- varies Precipitation values in each grid-cell (81)
subwatershed delineated from the depth are in units of millimeters/year.
Medio Creek USGS gauge. 739 - 826 mm/year.

mi2ptcov Equivalent polygon coverage of the Polygon none (126)
mis2area grid.  Created using the gridpoly
command.

milugrid Equivalent 100-meter cellsize grid of the Grid land use varies between the lusecat 12 values specifed (126)
misslu coverage.  Created using polygrid for the sanluse coverage.
with the lusecat attribute specified for grid-
cell values.

mirunoff Grid of cumulative runoff from each land Grid runoff varies Cumulative runoff values in each grid- (126)
use specified in the milugrid grid.  Created volume cell are in units of cubic meters / year.
using the zonalsum command, summing 19,330 - 93,565,590 cub. meters/yr.
values from the runoff grid based on
zonal regions specified in milugrid.

mis2area Grid of subwatershed delineated from the Grid none (126)
Mission River SWQM station # 12943
(mis2pt) using the clipfdr flow direction grid.

mis2lu Land Use coverage specific to the Polygon lusecat same as lusecat for sanlu coverage. (126)
subwatershed delineated from the
Mission River SWQM gauge # 12943.
Created by clipping the sanlu coverage
with the mi2ptcov coverage.

mis2pt Single cell grid identifying the location of Grid none (126)
the TNRCC SWQM station # 12943 on the
Mission River.  All other cells have values
of NODATA.
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missarea Grid of subwatershed delineated from the Grid none integer 176,619 cells (70)
Mission Creek USGS gauge (drainpt2)
using the clipfdr flow direction grid.

misscov Equivalent polygon coverage of the Polygon none (70)
missarea grid.  Created using gridpoly.

misslu Land Use coverage specific to the Polygon lusecat same as lusecat for sanlu coverage. (126)
subwatershed delineated from the
Mission River SWQM gauge # 12944
(USGS flow gauge). Created by clipping the
sanlu coverage with misscov.

missrain Precipitation grid specific to the Grid Precip- varies Precipitation values in each grid-cell (81)
subwatershed delineated from the depth are in units of millimeters/year.
Mission River USGS gauge. 739 - 945 mm/year.

niconstr Grid of predicted nonpoint nitrogen Grid Concen- varies Concentration values in each grid-cell (102)
concentrations occuring in the stream tration are in units of milligrams/Liter.
network of the basin.  Created using the 0 - 4.4 mg/L
Con statement with the introfac and
nitconc grids.

nitconc Grid of predicted nitrogen concentrations Grid Concen- varies Concentration values in each grid-cell (102)
due to nonpoint sources.  Created by tration are in units of milligrams/Liter.
dividing the cumulative nitrogen load grid 0 - 4.4 mg/L
(nitload) by the annual cumulative runoff
grid (runoffac).

nitgrid Initial 100-meter cellsize grid of total Grid Nitrogen 0 Water/Wetland EMC (95)
nitrogen EMC values.  Created  by EMC 1.82 Urban Residential EMC
converting the sanlu coverage (with the tn (mg/L) 1.34 Urban Commercial EMC
attribute specified) to a grid using polygrid. 1.26 Urban Industrial EMC

1.86 Urban Transportation EMC
1.57 Mixed/Other Urban EMC
4.4 Agriculture EMC
0.7 Range/Forest Land EMC
1.5 Barren Lands EMC
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nitld Cummulative annual nitrogen load grid Grid Load varies Cumulative load values in each grid (96)
created by performing a weighted flow cell are in units of kg/year.
accumulation on the mainfdr grid, using the 369,122.406 kg/yr
nitrunof grid as the weight grid.

nitline Equivalent line coverage of the nitload Arc grid-code varies Cumulative load values along each (97)
grid.  In-stream loads isolated through stream are in units of kg/year.
selection of a load threshold value = 1000 1000 - 369,122 kg/yr
kg.  Grid-code integer load values retained
in the line coverage through use of the
streamline command.

nitload Equivalent integer grid of the nitld grid. Grid Load varies Cumulative load values in each grid (97)
cell are in units of kg/year.
0 - 369,122 kg/yr

nitpts Cleaned version of the nitropts coverage. Polygon Radius varies in increments of 200 between 0 and (113)
Joined with data from the sanwq.pat data 1000 meters.
file. station-id same as for sanwq coverage

tn_cnt same as for sanwq coverage
tn_avg same as for sanwq coverage

nitrad.dat Arc/Info data file created from the sanwq INFO sanwq-id varies 5-digit water quality station number (113)
point attribute table by defining a sanwq X-coord varies TSMS Albers x-coordinate of station
Radius field as a function of the tn_cnt Y-coord varies TSMS Albers y-coordinate of station
field, and then using the ArcView File Radius varies in increments of 200 between 0 and
Export feature to create a text-delimited 1000 meters.
data file.

nitropts Polygon coverage of circles associated Polygon Radius varies in increments of 200 between 0 and (113)
with each total nitrogen TNRCC 1000 meters.
SWQM location.  Radius of each circle is
defined as a function of the square root of
the number of measurements at the
location.  Created using the generate
command with the nitrad.dat data file.
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nitrunof Cell-based total nitrogen loading grid Grid Load varies Cell-based load values in each grid (95)
created by taking the product of the runoff cell are in units of mg-mm/L-year.
and nitgrid grids. 0 - 1031.3 mg-mm/L-yr.

no2.dat Arc/Info data file of nitrite nitrogen INFO station-id varies 5-digit water quality station number (104)
water quality measurements.  Created from count varies between 0 - 19 (# of measurements)
no2.dbf using the dbaseinfo command. ave-value varies between 0 - 0.92 mg/L

no2.dbf Database file of nitrite nitrogen DBF station-id varies 5-digit water quality station number (104)
water quality measurements.  Created count varies between 0 - 19 (# of measurements)
from the TNRCC SWQM database using ave-value varies between 0 - 0.92 mg/L
ArcView Summary Statistics tools.

no3.dat Arc/Info data file of nitrate nitrogen INFO station-id varies 5-digit water quality station number (104)
water quality measurements.  Created from count varies between 0 - 39 (# of measurements)
no3.dbf using the dbaseinfo command. ave-value varies between 0 - 6.57 mg/L

no3.dbf Database file of nitrate nitrogen DBF station-id varies 5-digit water quality station number (104)
water quality measurements.  Created count varies between 0 - 39 (# of measurements)
from the TNRCC SWQM database using ave-value varies between 0 - 6.57 mg/L
ArcView Summary Statistics tools.

p_ann Original grid of annual precipitation for the Grid Precip- varies Precipitation values in each grid-cell 52
U.S.  Converted from the ASCII file depth are in units of millimeters/year.
prism_us.ann.  Geographic coordinates.

p_ann2 Precipitation grid for the San Antonio- Grid Precip- varies Precipitation values in each grid-cell 53
Nueces basin region.  Mapextent reduced depth are in units of millimeters/year.
from p_ann.  Geographic coordinates. 733 - 1010 mm/year.

phcon Final nonpoint phosphorus concentration Arc grid-code varies Concentration values along each 102
coverage.  Created by clipping the phline stream are in units of mg/L x 1000.
arc coverage with the mainland template. 0 - 1299

phconstr Grid of predicted nonpoint phosphorus Grid Concen- varies Concentration values in each grid-cell 102
concentrations occuring in the stream tration are in units of milligrams/Liter.
network of the basin.  Created using the 0 - 1.3 mg/L
Con statement with the introfac and
phosconc grids.
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phline Equivalent line coverage of the phconstr Arc grid-code varies Concentration values along each 102
grid.  Concentrations multiplied by 1000 to stream are in units of mg/L x 1000.
retain significant figures.  Grid-code integer 0 - 1299
concentration values retained in the line
coverage through use of the streamline
command.

phopts Cleaned version of the phospts coverage. Polygon Radius varies in increments of 200 between 0 and 113
Joined with data from the tp.dat data file. 1600 meters.

station-id varies 5-digit water quality station number
count varies between 0 - 75 (# of measurements)

ave-value varies between 0 - 7.36 mg/L
phosconc Grid of predicted phosphorus Grid Concen- varies Concentration values in each grid-cell 102

concentrations due to nonpoint sources. tration are in units of milligrams/Liter.
Created by dividing the cumulative 0 - 1.3 mg/L
phosphorus load grid (phosload) by the
annual cumulative runoff grid (runoffac).

phosgrid Initial 100-meter cellsize grid of total Grid Phos 0 Range/Forest/Water/Wetland EMC 95
phosphorus EMC values.  Created  by EMC 0.57 Urban Residential EMC
converting the sanlu coverage (with the tp (mg/L) 0.32 Urban Commercial EMC
attribute specified) to a grid using polygrid. 0.28 Urban Industrial EMC

0.22 Urban Transportation EMC
0.35 Mixed/Other Urban EMC
1.3 Agriculture EMC
0.12 Barren Lands EMC

phosld Cummulative annual phosphorus load grid Grid Load varies Cumulative load values in each grid 96
created by performing a weighted flow cell are in units of kg/year.
accumulation on the mainfdr grid, using the 0 - 60,926.4 kg/yr
phosrnof grid as the weight grid.

phosload Equivalent integer grid of the phosld grid. Grid Load varies Cumulative load values in each grid 97
cell are in units of kg/year.
0 - 60,926 kg/yr
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phospts Polygon coverage of circles associated Polygon Radius varies in increments of 200 between 0 and 113
with each total phosphorus TNRCC 1600 meters.
SWQM location.  Radius of each circle is
defined as a function of the square root of
the number of measurements at the
location.  Created using the generate
command with the rad.dat data file.

phosrnof Cell-based total phosphorus loading grid Grid Load varies Cell-based load values in each grid 95
created by taking the product of the runoff cell are in units of mg-mm/L-year.
and phosgrid grids. 0 - 304.7 mg-mm/L-yr.

rad.dat Arc/Info data file created from the sanwq INFO sanwq-id varies 5-digit water quality station number 113
point attribute table by defining a sanwq X-coord varies TSMS Albers x-coordinate of station
Radius field as a function of the tp_cnt Y-coord varies TSMS Albers y-coordinate of station
field, and then using the ArcView File Radius varies in increments of 200 between 0 and
Export feature to create a text-delimited 1600 meters.
data file.

rainbfcv Equivalent coverage of the rainbuff grid. Polygon grid-code varies Precipitation values in each polygon 53
Converted using the Gridpoly command. are in units of millimeters/year.

733 - 1010 mm/year.
rainbuff Final reprojected precipitaton grid. Grid Precip- varies Precipitation values in each grid-cell 53

Converted from the p_ann2 grid. depth are in units of millimeters/year.
733 - 1010 mm/year.

rofaccfs Equivalent runoff grid in units of cubic feet Grid Runoff varies Typical runoff values in each grid- 100
per second.  Converted from the runoffac Flow cell are in units of cubic feet/second.
grid. 0 - 324.757 cfs

rofaccov Final typical streamflow coverage, created Arc grid-code varies Typical flow values along each 100
by clipping the rofaclin arc coverage with stream are in units of cubic feet / sec.
the mainland template. 1 - 324 cfs.

rofaclin Equivalent line coverage of the introfac Arc grid-code varies Typical flow values along each 100
grid.  In-stream flows isolated through stream are in units of cubic feet / sec.
selection of a flow threshold value = 1 cfs. 1 - 324 cfs.
Grid-code integer flow values retained
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in the line coverage through use of the
streamline command.

runoff Final runoff grid created by zero-filling the Grid Runoff varies Runoff values in each grid-cell are in 88
NODATA grid cells from runoffeq. depth units of millimeters/year.
Created using the isnull command. 0 - 248 mm/yr

runoffac Cumulative annual runoff grid.  Created by Grid Runoff varies Cumulative runoff values in each grid- 100
performing a weighted flow accumulation volume cell are in units of cubic meters/year.
on the mainfdr grid, using runoff as the 0 - 290,430,464 cubic meters/year
weight grid.

runoffcv Equivalent polygon coverage of the runoff Polygon Runoff varies Runoff values in each polygon are in 88
grid.  Converted using the Gridpoly and depth units of millimeters/year.
int commands. 0 - 248 mm/yr

runoffeq Original grid of cell-based runoff values Grid Runoff varies Runoff values in each grid-cell are in 88
created by applying the rainfall/runoff depth units of millimeters/year.
mathematical relationship to the sanpyr 0 - 248 mm/yr
precipitation grid.

sabay1 15-minute San Antonio Bay Digital Line Arc none (37)
Graph map #1 w/ meridians and parallels
removed.  UTM projection.

sabay5 15-minute San Antonio Bay Digital Line Arc none (37)
Graph map #5 w/ meridians and parallels
removed.  UTM projection.

sabayf01 Original Arc/Info coverage converted from Arc none (37)
15-minute San Antonio Bay Digital Line
Graph map #1.  UTM projection.

sabayf05 Original Arc/Info coverage converted from Arc none (37)
15-minute San Antonio Bay Digital Line
Graph map #5.  UTM projection.

sanbasin Cleaned version of the basin polygon Polygon none 79
coverage.  Includes all San Antonio-
Nueces subwatersheds plus 3 bordering
subwatersheds from trimshed.
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sanbord Final coverage of the San Antonio-Nueces Polygon none 79
border, created by reselecting only the
outside polygon from the border coverage.

sanfac Initial Flow Accumulation grid for the basin Grid accumu- varies integer number of cells that fall 63
built from the sanfdr grid.  Identifies the lation upstream of each cell.
total number of cells draining to each
cell in the grid.

sanfdr Initial Flow Direction Grid for the basin Grid direction 1 East 63
built from the sanfil grid identifying the 2 Southeast
predominant direction of the flow of runoff 4 South
from each grid cell. 8 Southwest

16 West
32 Northwest
64 North
128 Northeast

sanfil Processed Digital Elevation Model with all Grid elevation varies elevation values in each grid-cell are 63
"pits" filled to the level of the lowest in units of meters above sea level.
elevation neighboring grid cell.

sangages Final reprojected version of the USGS Point stat-num same as for the stations coverage 49
Stream gauge point coverage. stat-nam same as for the stations coverage

sanhucs Final cleaned and reprojected coverage of Polygon huc same as huc for the hucs coverage 32
the 5 San Antonio-Nueces HUCs

sanhyd Final hydrography digital line graph Arc none 79
coverage of the San Antonio-Nueces
basin, created by clipping the sanhydro
coverage with sanbord.

sanhydro Reprojected coverage of the appended Arc none 38
Digital Line Graph hydrography maps in
the region.

sanlu Final land use coverage of the San Polygon lusecat same as lusecat for sanluse coverage 79
Antonio-Nueces basin, created by clipping tn 0 - 4.4 (mg/L) total nitrogen emc
the sanluse coverage with sanbord. tkn 0 - 1.7 (mg/L) total kjeldahl nitrogen emc
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nn 0 - 1.6 (mg/L) nitrate + nitrite emc
tp 0 - 1.3 (mg/L) total phosphorus emc
dp 0 - 0.48 (mg/L) dissolved phosphorus emc
ss 0 - 107 (mg/L) total suspended solids emc
ds 0 - 1225 (mg/L) total dissolved solids emc
pb 0 - 15 (ug/L) total lead emc
cu 0 - 15 (ug/L) total copper emc
zn 0 - 245 (ug/L) total zinc emc
cd 0 - 1.05 (ug/L) total cadmium emc
cr 0 - 10 (ug/L) total chromium emc
ni 0 - 11.8 (ug/L) total nickel emc

bod 0 - 25.5 (mg/L) biological oxygen demand emc
cod 0 - 116 (mg/L) chemical oxygen demand emc
o&g 0 - 9 (mg/L) oil & grease emc
fcol 0 - 53,000 (col/100 mL) fecal coliform emc
fstr 0 - 56,000 (col/100 mL) fecal streptococci emc

sanlus Reselected land use coverage to eliminate Polygon sanlus-id same as luse-id for luse coverage except no value 44
the unknown category, which was seen to 200000 is included
define the Gulf of Mexico.

sanluse Redefined land use coverage, created by Polygon lusecat 0 Unknown 92
dissolving boundaries between 11 Residential
subcategory polygons for Agriulture, 12 Commercial Services
Rangeland, Forestland, Water, Wetland, 13 Industrial
and Barren land use categories of the 14 Transportation, Comunications
sanlus coverage. 16 Mixed Urban or Built-Up Land

17 Other Urban or Built-Up Land
20 Agriculture
30 Rangeland
40 Forest Land
50 Water Bodies
60 Wetlands
70 Barren Land Uses
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sanpolys Cleaned polygon coverage of sanrivs4 arc Polygon none 67
coverage.  Performed to isolate the bay
network & barrier islands in the coverage.

sanpyr Precipitation grid specific to the boundary Grid Precip- varies Precipitation values in each grid-cell 81
of the San Antonio-Nueces border. depth are in units of millimeters/year.
Created using the Con statement with the 739 - 985 mm/year.
rainbuff and bordgrid grids.

sanrivs4 Final edited digital line graph coverage of Arc none 67
hydrography in the San Antonio-Nueces
basin.  Created by using ArcEdit with the
sanhydro coverage to eliminate lakes and
disappearing streams.

sanutm Appended coverage of 15-minute Digital Arc none 38
Line Graph hydrography maps for the San
Antonio-Nueces region.  UTM projection.

sanwq Final reprojected point coverage of TNRCC Point station-id varies character representation of sanwq-id 56
SWQM stations.  Appended with average tp_cnt varies # of total phosphorus measurements
concentration values and # of samples between 0 - 75
for a number of pollutant constituents tp_avg varies between 0 - 7.36 mg/L

tkn_cnt varies # of total kjeldahl nitrogen measmts.
between 0 - 46

tkn_avg varies between 0 - 9.90 mg/L
no2_cnt varies # of total nitrate measurements

between 0 - 19
no2_avg varies between 0 - 0.92 mg/L
no3_cnt varies # of total nitrite measurements

between 0 - 39
no3_avg varies between 0 - 6.57 mg/L
tn_cnt varies "calculated" # of tot nitrogen measmts

= (tkn_cnt + no2_cnt + no3_cnt) / 3
between 0 - 31
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tn_avg varies "calculated" tot nitrogen avg conc
= tkn_avg + no2_avg + no3_avg
between 0 - 15.51 mg/L

cd_cnt varies # of cadmium measurements
between 0 - 4

cd_avg varies between 0 - 5 ug/L
fec_cnt varies # of fecal coliform measurements

between 0 - 17
fec_avg varies between 0 - 462 colonies / 100 mL
X-coord varies TSMS Albers x-coordinate of station
Y-coord varies TSMS Albers y-coordinate of station

shed8cov Equivalent polygon coverage of the Polygon none 75
ditshd8 grid.  Created using the gridpoly
command.

sndemalb Final Digital Elevation Model of the San Grid elevation varies elevation values in each grid-cell are 41
Antonio-Nueces basin area. in units of meters above sea level.

snrainyr Final precipitation coverage of the San Polygon grid-code varies Precipitation values in each polygon 79
Antonio-Nueces basin, created by clipping are in units of millimeters/year.
the rainbfcv coverage with sanbord. 739 - 985 mm/year.

sqcov Equivalent coverage of the grid sqgrid. Polygon none 67
Built in order to combine (union) with the
baybuff coverage.

sqgrid A single value grid spanning the extent Grid integer 1 67
of the other study area grids, defined by
the sanfil grid.

stations Point coverage of USGS Stream Gauges Point stat-num 08189200 USGS stream gauge station 47
built using the  lonlat.dat data file. 08189300 identification number.
Geographic Coordinates. 08189500

08189700
08189800

stat-nam Copano Stream or Creek that gauge is located
Medio on.
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Mission
Aransas
Chiltipin

storet.dbf Database file of TNRCC SWQM pollutant DBF param-id varies identifies the 5-digit numeric code of 56
constituent identification codes.  Used the pollutant being measured.
with the value.dbf and sanwq.pat tables to long- varies identifies full ASCII text description of
link water quality measurements to desc the pollutant being measured.
specific locations. short1- varies identifies the pollutant element or

desc constituent in one word, typically noun
short2- varies identifies descriptive words regarding
desc the pollutant.

short3- varies identifies units of the pollutant
desc constituent being measured.

Group-cd 1.0000
Max-val varies upper bound on possible values.
Min-val varies lower bound on possible values.

str1 Grid of flow accumulation cells with value Grid accumu- varies from 1000 to the maximum value of 63
greater than a threshold of 1000.  Results lation the sanfac grid
in strings of cells that represent the larger
streams in the basin.

strgrid Equivalent 100 meter cellsize grid of the Grid none 69
sanrivs4 hydrography coverage.  All off-
stream cells have zero value rather than
NODATA.

strmgrid Grid of stream hydrography cells particular Grid none 69
to the mainland of the region, i.e. excluding
cells in the bay network & barrier islands.

subsheds Polygon coverage of the shed8cov Arc none 76
subwatersheds that fall within the bounds
of the San Antonio-Nueces basin borders.
Created from an ArcView shapefile.
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tkn.dat Arc/Info data file of total kjeldahl nitrogen INFO station-id varies 5-digit water quality station number (104)
water quality measurements.  Created from count varies between 0 - 46 (# of measurements)
tkn.dbf using the dbaseinfo command. ave-value varies between 0 - 9.9 mg/L

tkn.dbf Database file of total kjeldahl nitrogen DBF station-id varies 5-digit water quality station number (104)
water quality measurements.  Created count varies between 0 - 46 (# of measurements)
from the TNRCC SWQM database using ave-value varies between 0 - 9.9 mg/L
ArcView Summary Statistics tools.

tncon Final nonpoint nitrogen concentration Arc grid-code varies Concentration values along each (102)
coverage.  Created by clipping the tnline stream are in units of mg/L x 1000.
arc coverage with the mainland template. 0 - 4400

tnline Equivalent line coverage of the niconstr Arc grid-code varies Concentration values along each (102)
grid.  Concentrations multiplied by 1000 to stream are in units of mg/L x 1000.
retain significant figures.  Grid-code integer 0 - 4400
concentration values retained in the line
coverage through use of the streamline
command.

tnload Final total nitrogen cumulative load Arc grid-code varies Cumulative load values along each (97)
coverage.  Created by clipping the nitline stream are in units of kg/year.
arc coverage with the mainland template. 1000 - 369,122 kg/yr

tnrnof Cell-based nitrogen loading grid Grid Load varies Cell-based load values in each grid (121)
created by adding the nonpoint source cell are in units of mg-mm/L-year.
loading grid (nitrunof) and the Beeville 0 - 7,149,842.5 mg-mm/L-yr.
point source loading grid (beenit).

tonitcon Final point + nonpoint nitrogen Arc grid-code varies Concentration values along each (121)
concentration coverage.  Created by stream are in units of mg/L x 1000.
clipping the tonitlin arc coverage with the 0 - 15,509
mainland template.

tonitlin Equivalent line coverage of the tonitstr Arc grid-code varies Concentration values along each (121)
grid.  Concentrations multiplied by 1000 to stream are in units of mg/L x 1000.
retain significant figures.  Grid-code integer 0 - 15,509
concentration values retained in the line
coverage through use streamline.
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tonitstr New grid of predicted nonpoint & point Grid Concen- varies Concentration values in each grid-cell (121)
nitrogen concentrations occuring in tration are in units of milligrams/Liter.
the stream network of the basin.  Created 0 - 15.51 mg/L
using the Con statement with the introfac
and totnconc grids.

tophocon Final point + nonpoint phosphorus Arc grid-code varies Concentration values along each 121
concentration coverage.  Created by stream are in units of mg/L x 1000.
clipping the topholin arc coverage with the 0 - 6600
mainland template.

topholin Equivalent line coverage of the tophostr Arc grid-code varies Concentration values along each 121
grid.  Concentrations multiplied by 1000 to stream are in units of mg/L x 1000.
retain significant figures.  Grid-code integer 0 - 6600
concentration values retained in the line
coverage through use of the streamline
command.

tophostr New grid of predicted nonpoint & point Grid Concen- varies Concentration values in each grid-cell 121
phosphorus concentrations occuring in tration are in units of milligrams/Liter.
the stream network of the basin.  Created 0 - 6.6 mg/L
using the Con statement with the introfac
and totpconc grids.

totnconc New grid of predicted nitrogen Grid Concen- varies Concentration values in each grid-cell (121)
concentrations from both nonpoint and tration are in units of milligrams/Liter.
point sources.  Created by dividing the new 0 - 15.51 mg/L
nitrogen load grid (totnload) by the
annual cumulative runoff grid (runoffac).

totnload New total nitrogen load grid created by Grid Load varies Cumulative load values in each grid (121)
performing a weighted flow accumulation cell are in units of kg/year.
on the mainfdr grid, using tnrnof as the 0 - 369,122.41  kg/yr
weight grid.

totpconc New grid of predicted phosphorus Grid Concen- varies Concentration values in each grid-cell 121
concentrations from both nonpoint and tration are in units of milligrams/Liter.
point sources.  Created by dividing the new 0 - 6.6 mg/L
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phosphorus load grid (totpload) by the
annual cumulative runoff grid (runoffac).

totpload New total phosphorus load grid created by Grid Load varies Cumulative load values in each grid 121
performing a weighted flow accumulation cell are in units of kg/year.
on the mainfdr grid, using beernof as the 0 - 90,479.46 kg/yr
weight grid.

tp.dat Arc/Info data file of total phosphorus INFO station-id varies 5-digit water quality station number 104
water quality measurements.  Created from count varies between 0 - 75 (# of measurements)
tp.dbf using the dbaseinfo command. ave-value varies between 0 - 7.36 mg/L

tp.dbf Database file of total phosphorus water DBF station-id varies 5-digit water quality station number 104
quality measurements.  Created from the count varies between 0 - 75 (# of measurements)
TNRCC SWQM database using ArcView ave-value varies between 0 - 7.36 mg/L
Summary Statistics tools.

tpline Equivalent line coverage of the phosload Arc grid-code varies Cumulative load values along each 97
grid.  In-stream loads isolated through stream are in units of kg/year.
selection of a load threshold value = 1000 1000 - 60,926 kg/yr
kg.  Grid-code integer load values retained
in the coverage through use of streamline.

tpload Final total phosphorus cumulative load Arc grid-code varies Cumulative load values along each 97
coverage.  Created by clipping the tpline stream are in units of kg/year.
arc coverage with the mainland template. 1000 - 60,900 kg/yr

trimshed Polygon coverage of those shed8cov Arc none 76
subwatersheds that, along with subsheds
and baybuff, completely enclose the
undelineated (near shore) portions of the
San Antonio-Nueces Coastal Basin.
Created from an ArcView shapefile.

value.dbf Database file of TNRCC SWQM pollutant DBF station-id varies 5-digit water quality station number 56
concentration measurement values.  Used on-seg- 0
with the storet.dbf and sanwq.pat tables to flg 1
link water quality measurements to seg-id varies identifies the 4-digit TNRCC segment
specific locations. where the sample was taken.
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enddate varies identifies last date of a series of
measurements

tag varies 7-character id with one letter and 6
numerals

storet- varies identifies the 5-digit numeric code of
code the pollutant being measured.
gtlt <  or  > flag that is set when measurement is

below or above a threshold value
value varies the measured value of the pollutant

constituent.
weighfac Weighted flow accumulation grid Grid potential varies from 0 - 2,244,562,432 cubic meters 80

representing potential runoff in the basin. runoff per year
Created with the clipfdr and rainbuff grids.

wqsites Original point coverage of TNRCC SWQM Point none 56
stations. Imported from the snwqsites.e00
file.  Projected in Albers with
measurement units of feet specified.
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Attrib.aml

/*    attrib.aml ------ to be run from the Arc prompt, this aml defines items for the
/*    attrib.dat data file and then fills them with raw expected mean concentration
/*    data from the emc3a.dat file.
/*
tables
define attrib.dat
/*
lusecat /*Item Name: land use category
8 /*Item Width: 8
8 /*Item Output Width: 8
i /*Item Type: integer
/*
tn /*Item Name: total nitrogen
5 /*Item Width: 5
5 /*Item Output Width: 5
n /*Item Type: numeric
2 /*Item Decimal Places: 2
/*
tkn /*Item Name: total kjeldahl nitrogen
5 /*Item Width: 5
5 /*Item Output Width: 5
n /*Item Type: numeric
2 /*Item Decimal Places: 2
/*
nn /*Item Name: nitrate + nitrite (mg/L as N)
5 /*Item Width: 5
5 /*Item Output Width: 5
n /*Item Type: numeric
2 /*Item Decimal Places: 2
/*
tp /*Item Name: total phosphorus
5 /*Item Width: 5
5 /*Item Output Width: 5
n /*Item Type: numeric
2 /*Item Decimal Places: 2
/*
dp /*Item Name: dissolved phosphorus
5 /*Item Width: 5
5 /*Item Output Width: 5
n /*Item Type: numeric
2 /*Item Decimal Places: 2
/*



197

ss /*Item Name: suspended solids
5 /*Item Width: 5
5 /*Item Output Width: 5
n /*Item Type: numeric
1 /*Item Decimal Places: 1
/*
ds /*Item Name: dissolved solids
4 /*Item Width: 4
4 /*Item Output Width: 4
i /*Item Type: integer
/*
pb /*Item Name: total lead
5 /*Item Width: 5
5 /*Item Output Width: 5
n /*Item Type: numeric
1 /*Item Decimal Places: 1
/*
cu /*Item Name: total copper
5 /*Item Width: 5
5 /*Item Output Width: 5
n /*Item Type: numeric
1 /*Item Decimal Places: 1
/*
zn /*Item Name: total zinc
5 /*Item Width: 5
5 /*Item Output Width: 5
n /*Item Type: numeric
1 /*Item Decimal Places: 1
/*
cd /*Item Name: total cadmium
5 /*Item Width: 5
5 /*Item Output Width: 5
n /*Item Type: numeric
2 /*Item Decimal Places: 2
/*
cr /*Item Name: total chromium
5 /*Item Width: 5
5 /*Item Output Width: 5
n /*Item Type: numeric
1 /*Item Decimal Places: 1
/*
ni /*Item Name: total nickel
5 /*Item Width: 5
5 /*Item Output Width: 5
n /*Item Type: numeric
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1 /*Item Decimal Places: 1
/*
bod /*Item Name: biological oxygen demand
5 /*Item Width: 5
5 /*Item Output Width: 5
n /*Item Type: numeric
1 /*Item Decimal Places: 1
/*
cod /*Item Name: chemical oxygen demand
5 /*Item Width: 5
5 /*Item Output Width: 5
n /*Item Type: numeric
1 /*Item Decimal Places: 1
/*
o&g /*Item Name: oil & grease
4 /*Item Width: 4
4 /*Item Output Width: 4
n /*Item Type: numeric
1 /*Item Decimal Places: 1
/*
fcol /*Item Name: fecal coliform
7 /*Item Width: 7
7 /*Item Output Width: 7
i /*Item Type: integer
/*
fstr /*Item Name: fecal streptococci
7 /*Item Width: 7
7 /*Item Output Width: 7
i /*Item Type: integer
/*
~ /*Item Name: <return>
/*
add from emc3a.dat
quit
&return
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Dlgmerge.aml

/*  An ARC AML FOR PREPARING DLG DATA FOR REGIONAL ANALYSIS
/*
/*  prepared by Bill Saunders, University of Texas at Austin
/*                             Center for Research in Water Resources
/*                             GIS in Water Resources Research group
/*
/*  AML NAME:  dlgmerge.aml (run from the "Arc" prompt)
/*  FUNCTION:  Prepares selected DLG data for analysis with respect to a
/*  particular hydrologic or political region.
/*  INPUTS:
/*      -all compressed ("zipped") DLG files corresponding to the region of
/*     interest.  These zipped files are downloaded from the USGS EROS Data
/*     Center at http://sun1.cr.usgs.gov/eros-home.html.  Alternatively the
/*     DLG files can be accessed from US Geodata 1:100,000-Scale DLG Data
/*     Compact Disc (USGS, 1993).
/*      -a projection file that will allow for conversion from utm map
/*    coordinates to whatever projection is desired.
/*      -a polygon coverage delineating the boundary of the hydrologic or
/*     political region of interest.
/*
/********************************************************************
/*  BEGIN AML EXECUTION
/*
/*  Assuming that zipped DLG files have been downloaded from CD-ROM (in this
/*  case, 5 hydro files using the following commands):
/*
/*  cp /cdrom/100k_dlg/beeville/be3hydro.zip ./
/*  cp /cdrom/100k_dlg/goliad/be1hydro.zip ./
/*  cp /cdrom/100k_dlg/allyns_b/cc2hydro.zip ./
/*  cp /cdrom/100k_dlg/corpus_c/cc1hydro.zip ./
/*  cp /cdrom/100k_dlg/sananbay/be4hydro.zip ./
/*
/*
/*  The first set of commands below MUST ALWAYS BE CHANGED by the user of the
/*  AML.  Store the number of zipped DLG files into the variable dlgnum.
/*  Then, for each zipped DLG file, define sequential variables called dlg# as
/*  the first 3 characters of each of the zipped files.
/*  Store the name of your projection file (in this case, utmtsms.prj) into
/*  the variable prjfname.
/*  Store the name of your hydrologic or political boundary coverage (in this
/*  case, sanbord) into the variable border.
/*  Finally, specify the type of files that you are using -- the only valid
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/*  entries for this variable (filetype) are hydro, roads, rail, and mtran.
/*
&sv dlgnum = 5
&sv dlg1 = be1
&sv dlg2 = be3
&sv dlg3 = be4
&sv dlg4 = cc1
&sv dlg5 = cc2
&sv prjfname = utmtsms.prj
&sv border = sanbord
&sv filetype = hydro
/*
/*
&if %filetype% eq hydro &then
  &sv abbr = hy
&if %filetype% eq roads &then
  &sv abbr = rd
&if %filetype% eq rail &then
  &sv abbr = rr
&if %filetype% eq mtran &then
  &sv abbr = mt
/*
/*  This part of the AML unzips all of the compressed files to create 15-minute
/*  map files.  Each 15-minute map file is first converted into an Arc/Info
/*  line coverage.  Then, the borders of each of the 15-minute map files are
/*  trimmed away from the coverage so that those 15-minute meridians and
/*  parallels will not appear in the final appended coverage.
/*
&sv count = 1
&do &while %count% le %dlgnum%
  &sv filename = [value dlg%count%]
  &sv count = %count% + 1
  &sys unzip %filename%%filetype%.zip
  &sv count2 = 1
  &do &while %count2% le 8
     &do &while [exists %filename%%abbr%f0%count2% -file]
       dlgarc optional %filename%%abbr%f0%count2% %filename%f0%count2%
       &sv x = [delete %filename%%abbr%f0%count2% -file]
       build %filename%f0%count2% line
       reselect %filename%f0%count2% %filename%0%count2% line # line
       res rpoly# > 1
       ~
       n
       y
       res lpoly# > 1
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       ~
       n
       n
       kill %filename%f0%count2% all
     &end
     &sv count2 = %count2% + 1
  &end
&end
/*
/*  This part of the AML merges, or "appends", all of the 15-minute map file
/*  coverages together and then builds line topology for the resultant coverage,
/*  called "bigmap".
/*
append bigmap
&sv count = 1
&do &while %count% le %dlgnum%
  &sv filename = [value dlg%count%]
  &sv count = %count% + 1
  &sv count2 = 1
  &do &while %count2% le 8
     &do &while [exists %filename%0%count2% -cover]
       %filename%0%count2%
       &sv count2 = %count2% + 1
     &end
  &sv count2 = %count2% + 1
  &end
&end
~
y
y
build bigmap line
/*
/*  Once "bigmap" has been created, each of the coverages that were merged to
/*  build it are no longer necessary.  This part of the AML kills off all of
/*  the intermediate level coverages used to append "bigmap".
/*
&sv count = 1
&do &while %count% le %dlgnum%
  &sv filename = [value dlg%count%]
  &sv count = %count% + 1
  &sv count2 = 1
  &do &while %count2% le 8
     &do &while [exists %filename%0%count2% -cover]
       kill %filename%0%count2% all
       &sv count2 = %count2% + 1
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     &end
  &sv count2 = %count2% + 1
  &end
&end
/*
/*  The "bigmap" coverage is then reprojected to the desired map projection
/*  and coordinates.  The projection file must be located in the same directory
/*  as the coverage being projected.
/*
project cover bigmap bigprj %prjfname%
/*
/*  Finally, a polgyon coverage of the hydrologic or political boundary of
/*  interest is used to "clip" out the hydrologic features specific to that
/*  region.  The final coverage is called "dlgcov".
/*
clip bigprj %border% dlgcov line
kill bigmap all
kill bigprj all
/*
&return
/******************************end of AML****************************
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Montflow.f

program monthflow

character script*13
integer month,day,year,mon,yr,yer(50)
real dayflow,volmo,monthflo(12),yrflo(50),totflo,avganl

open (unit = 20, file = 'chiltip.dat',status = 'old')

c ** input data file -- CHANGE NAME for new run

open (unit = 30, file = 'chilvmon.dat',status = 'unknown')

c ** output data file -- CHANGE NAME for new run

c ** the following are initial values for month, monthly volume, and
C ** counters.  CHANGE VALUE of mon to the first month of your data set

mon = 7
volmo = 0.0
i = 1
k = 1

10 read (20,15) month,day,year,dayflow

c ** Had to perform  (awk '{print $1,$2}' aransas.gage > arans.dat)
c ** because date and flow values were seperated by 1 tab and NOT 6
c ** SPACES.  My format statement originally had 6x for the spaces
c ** between the year and dayflow.  Resulted in values of 0.0 being
c ** read in for dayflow!!

15 format (i2,1x,i2,1x,i4,1x,f7.2)

c ** check for end-of-file

if (month .ne. 0) then

c ** when the month of the input data changes, write out the total cum
c ** volume for the previous month (volmo) and save the value in a matrix
c ** variable called monthflo(i)

if (month .ne. mon) then
write (30,16) mon,yr,volmo
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16 format (i2,2x,i4,2x,f11.1)
monthflo(i) = volmo
i = i + 1

c ** when mon=12 (i.e. at the end of a year), reset the i counter to 1.
c ** Also, if the i counter is in sequence with the mon counter, then a
c ** full year's worth of data has been accumulated, so sum all of the
c ** 12 values of monthflo and store them in a matrix variable called
c ** yrflo(k).

if (mon .eq. 12) then
if (i .eq. 13) then

yrflo(k) = 0
do 17, j = 1,i-1
yer(k) = yr
yrflo(k) = yrflo(k) + monthflo(j)

17 continue
k = k + 1

endif
i = 1

endif

c ** set mon = the value of month read in from the input table and define
c ** the first monthly value of volmo as the measured flow value (cfs)
c ** multiplied by 86400 sec/day and .028317 cub meters/cub ft.  The
c ** resulting volume has units of cubic meters.

mon = month
volmo = dayflow*.028317*86400
goto 10

endif

c ** when mon = the value of month from the input table, incorporate the
c ** new value of dayflow into the accumulating value of volmo.

volmo = volmo+dayflow*.028317*86400
yr = year
goto 10

endif
write (30,*)

c ** once all monthly values of volume have been calculated, print out the
c ** cumulative volumes for each FULL year (i.e. yrflo(l))

do 20, l = 1,k-1
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write (30,18) yer(l),yrflo(l)
18 format (i4,2x,f12.1)

totflo = totflo + yrflo(l)
20 continue

c ** once all yearly values of volume have been calculated, average them
c ** over the number of FULL years worth of data accumulated and establish
c ** an averge annual value for stream volume.

avganl = totflo / (k-1)
write (30,*)
script = 'Avg Annual = '
write (30,21) script,avganl

21 format (a13,f12.1)
write (*,*) 'Done'
stop
end
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al72tsms.prj

/*  This is a projection file to convert coverages from geographic coordinates (specified in
/*  decimal seconds with WGS72 datum) to the TSMS-Albers projection.
/*
input
projection geographic
datum WGS72
units ds
parameters
/*
output
projection albers
datum WGS84
units meters
parameters
27 25 00
34 55 00
-100 00 00
31 10 00
1000000.0
1000000.0
END
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alb-tsms.prj

/*  This is a projection file to convert coverages from the standard Albers projection to the
/*  TSMS-Albers projection.
/*
input
projection albers
units meters
datum NAD27
spheroid CLARKE1866
parameters
29 30 0.000
45 30 0.000
-96 00 0.000
23 00 0.000
0.00000
0.00000
/*
output
projection albers
units meters
datum NAD83
spheroid GRS1980
parameters
27 25 0.000
34 55 0.000
-100 0 0.000
31 10 0.000
1000000.00000
1000000.00000
end
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geotsms.prj

/*  This is a projection file to convert coverages from geographic coordinates (specified in
/*  decimal degrees with NAD83 datum) to the TSMS-Albers projection.
/*
input
projection geographic
units dd
datum NAD83
spheroid GRS1980
parameters
/*
output
projection albers
units meters
datum NAD83
spheroid GRS1980
parameters
27 25 00
34 55 00
-100 00 00
31 10 00
1000000.0
1000000.0
END
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tsmsgeo.prj

/*  This is a projection file to convert coverages from the TSMS-Albers projection to
/*  geographic coordinates (specified in decimal degrees with NAD83 datum).
/*
input
projection albers
units meters
datum NAD83
spheroid GRS1980
parameters
27 25 00
34 55 00
-100 00 00
31 10 00
1000000.0
1000000.0
/*
output
projection geographic
units dd
datum NAD83
spheroid GRS1980
parameters
END
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utmtsms.prj

/*  This is a projection file to convert coverages from the Universal Transverse Mercator
/*  projection (zone 14) to the TSMS-Albers projection.
/*
input
projection utm
units meters
datum NAD27
spheroid Clarke1866
zone 14
parameters
/*
output
projection albers
units meters
datum NAD83
spheroid GRS1980
parameters
27 25 00
34 55 00
-100 00 00
31 10 00
1000000.0
1000000.0
END
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wqtsms.prj

/*  This is a projection file written to convert TNRCC SWQM data from an Albers projection
/*  specified in units of feet and with specific latitude/longitude parameters to theTSMS-
Albers
/*  projection.
/*
input
projection albers
units feet
datum NAD27
spheroid Clarke1866
parameters
25 48 00
37 00 00
-99 00 00
31 24 00
0.0
0.0
/*
output
projection albers
units meters
datum NAD83
spheroid GRS1980
parameters
27 25 00
34 55 00
-100 00 00
31 10 00
1000000.0
1000000.0
END
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Appendix C :   List of Acronyms
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AGCHEM Agrichemical Soil Nutrient Model
AGNPS Agricultural Nonpoint Source Pollution Model
AML Arc Macro Language
ANSWERS Areal Nonpoint Source Watershed Environment Response Simulation
ARMSED U.S. Army Watershed Sediment Routine
CCBNEP Corpus Christi Bay National Estuary Program
CD-ROM Compact Disc-Read Only Memory
CHRIS Chemical-Hydrologic Resource Information System
CREAMS Chemicals, Runoff, and Erosion from Agricultural Management Systems
CWA Clean Water Act
DEM Digital Elevation Model
DLG Digital Line Graph
EMC Expected Mean Concentration
EPA Environmental Protection Agency
ERDAS Earth Resources Data Analysis System
EROS Earth Resources Observation Systems
ESRI Environmental Systems Research Institute
GBNEP Galveston Bay National Estuary Program
GIRAS Geographical Information Retrieval Analysis System
GIS Geographic Information Systems
GLEAMS Groundwater Loading Effects of Agricultural Management Systems
GRASS Geographic Resources Analysis Support System
GRS80 Geodetic Reference System of 1980
HSPF Hydrological Simulation Program - FORTRAN
HTML Hyper Text Markup Language
HUC Hydrologic Unit Code
IRIS Integrated River Information System
LOADSS Lake Okeechobee Agricultural Decision Support System
LULC Land Use/Land Cover
MULTSED Multiple Watershed Sediment Routine
MUSLE Modified Universal Soil Loss Equation
NAD27 North American Datum of 1927
NAD83 North American Datum of 1983
NEP National Estuary Program
NO2 Nitrite Nitrogen
NO3 Nitrate Nitrogen
NOAA National Oceanic and Atmospheric Administration
NPDES National Pollutant Discharge Elimination System
PAT Point (or Polygon) Attribute Table
PRISM Parameter-elevation Regressions on Independent Slopes Model
QUAL2E Enhanced Stream Water Quality Model
RUSLE Revised Universal Soil Loss Equation
SCS Soil Conservation Service
SIMPLE Spatially Integrated Model for Phosphorus Loading and Erosion
SLAMM Source Loading and Management Model
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SMoRMod Soil Moisture-based Runoff Model
SNOTEL Snowpack Telemetry
STORET Storage and Retrieval of U.S. Waterways Parametric Data
SWAT Soil Water and Assessment Tool
SWMM Stormwater Management Model
SWQM Surface Water Quality Monitoring
SWRRB Simulator for Water Resources in Rural Basins
TDWR Texas Department of Water Resources
TKN Total Kjeldahl Nitrogen
TNRCC Texas Natural Resource Conservation Commission
TSMS Texas State Mapping System
TWDB Texas Water Development Board
USA-CERL U.S. Army Construction Engineering Research Laboratory
USDA-NRCS U.S. Department of Agriculture Natural Resource Conservation Service
USGS United States Geological Survey
USLE Universal Soil Loss Equation
UTM Universal Transverse Mercator
VAT Value Attribute Table
VirGIS Virginia Geographic Information System
WAIS Wide Area Information Servers
WGEN Weather Generation Model
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