
Report for Hydrodynamic Uncertainty in Oil Spill modeling Based on GIS

Status of the project:

I was in the process of looking for the proper wind and tide data, which are the most important factor that would lead to hydrodynamic Uncertainty in Oil Spill. For the reason that free wind and tide data is correspondingly not that easy to find through Internet, however, there might be some immediate data online that represents the moment of conditions.

Below is the research area of the certain Oil Spill by using ArcGIS.

Below is the wind data source.

http://www.winddata.com/

This database contains four different categories of wind data: time series of wind characteristics, time series of wind turbine responses, wind resource data and wind farm data. These time series are primarily intended for wind [turbine] design purposes and the resource data can be used for siting analysis.

Below is the tide source from NOAA. http://www.srh.noaa.gov/lch/?n=tides

	TEXAS	Mean		Mean Tic		
				Range	Range	Level
Predictions	Station	Latitude	Longitude	(ft)	(ft)	(ft)
Predictions	Sabine Bank Lighthouse	29° 28'	93° 43'		2.8	1.4
Predictions	-	29° 39'	93° 50'		2.5	1.2
Predictions	13 27		93° 52.2'	1.09	1.60	0.96
Predictions	Mesquite Point, Sabine Pass	29° 46'	93° 54'		1.3	0.6
Predictions	-	29° 20'			2.0	1.0
Predictions	GALVESTON, Galveston Channel		94° 47.6'	1.02	1.41	0.81
rrcarourons	Galveston Bay	25 10.0	31 17.0	1.02		0.01
Predictions	Port Bolivar	200 21 0	94° 46.8'	1.13	1.40	0.85
Predictions	Texas City, Turning Basin	29° 23'			1.4	0.03
Predictions	Eagle Point		94° 55.1'		1.09	0.60
Predictions	Clear Lake		95° 04.0'	1.05	1.16	0.63
			94° 59.1'			0.63
Predictions	Morgans Point, Barbours Cut			1.14	1.31	
Predictions	Lynchburg Landing, San Jacinto River		95° 04.7'	1.21	1.48	0.78
Predictions	Manchester, Houston Ship Channel		95° 15.1'	1.27	1.64	0.90
Predictions	Round Point, Trinity Bay	29° 44'	94° 42'		1.0	0.5
Predictions	Point Barrow, Trinity Bay	29° 44'	94° 50'		1.1	0.5
Predictions	Gilchrist, East Bay	29° 31'	94° 29'		1.2	0.6
Predictions	Jamaica Beach, West Bay	29° 12'	94° 59'		1.0	0.5
Predictions	Alligator Point, West Bay	29° 10'	95° 8'		0.9	0.4
Predictions	Christmas Bay	29° 02.5	95° 10.5'	0.71	0.82	0.42
Predictions	Galveston Pleasure Pier	29° 17.1	94° 47.3'	1.46	2.04	1.12
Dradiationa	Can Inia Daga	200 61	050 71		1 2	0 6

As we can see, the above tide database contains Mean Range, Diurnal Range and Mean Tide Level of different gages in Texas.

2011 NOAA Tide Predictions: Alligator Point, West Bay

(Reference station: Galveston, Corrections Applied: Times: High +2 hr. 39 min., Low +2 hr. 33 min., Heights: High *0.64, Low *0.64)

January - Alligator Point, West Bay

ļ <u>.</u>															
Date	Day	Time		Heigl	ht	Time		Heig	ht	Time	Height	Time	Height	Time	Height
01/01/2011	Sat	10:21AM	LST	-0.5	L	07:02PM	LST	0.8	H						
01/02/2011	Sun	12:19AM	LST	0.6	L	02:26AM	LST	0.6	H	11:06AM LST	-0.5 L	07:43PM LST	0.8 H		
01/03/2011	Mon	12:40AM	LST	0.6	L	03:17AM	LST	0.6	H	11:48AM LST	-0.5 L	08:21PM LST	0.7 H		
01/04/2011	Tue	12:53AM	LST	0.6	L	04:05AM	LST	0.6	H	12:28PM LST	-0.5 L	08:54PM LST	0.6 H		
01/05/2011	Wed	01:07AM	LST	0.6	L	04:50AM	LST	0.6	H	01:05PM LST	-0.4 L	09:24PM LST	0.6 H		
01/06/2011	Thu	01:32AM	LST	0.5	L	05:35AM	LST	0.6	H	01:39PM LST	-0.3 L	09:50PM LST	0.6 H		
01/07/2011	Fri	02:14AM	LST	0.4	L	06:23AM	LST	0.5	H	02:11PM LST	-0.3 L	10:13PM LST	0.5 H		
01/08/2011	Sat	03:13AM	LST	0.4	L	07:24AM	LST	0.4	H	02:40PM LST	-0.1 L	10:34PM LST	0.5 H		
_															

More specifically in the certain location, like West Bay, we can check the immediate tide data every day at different time.

Future work:

- 1. Concentrate on these data to analysis the trends and changes of the data via time and spaces.
- 2. Make graphs of the results to indicate the wind and tide factors that would impact the uncertainty of Oil Spill.
- 3. Create a geodatabase which contains all of the results.