

Analysis of Cenapred's Rainfall-Runoff methodology for the estimation of streamflow values in the Central Region of Veracruz, Mexico

GIS in Water Resources

Final Term Project Carlos Galdeano Alexandres Fall 2012

Contents

1. Project Scope	1
2. Background	2
2.1. Region 2.2. Maps of Location	
3. Methodology	4
 3.1 Streamflow Stations Methodology (Frequency Analysis) 3.2 GIS Streamflow Stations watersheds and slope 3.3 Cenapred's Rainfall-Runoff Methodology 	4 7 10
4. Results	12
4.1 Streamflow Stations Range 4.2 Cenapred's Methodology Results	12 13
5. Conclusions	14
6. References	16

1. Project Scope

Mexico's National Center for Disaster Prevention (Cenapred), suggests a Rainfall-Runoff Methodology in order to estimate the magnitude of a streamflow for any region in Mexico. The scope of this project is to evaluate Cenapred's Methodology in the central region of the estate of Veracruz, Mexico (Actopan, La Antigua and Jamapa Basin). For this, we will base our study with commonly used frequency analysis methods, and data from Mexico's National Water Commission (Conagua) and Mexico's National Institute of Geography and Statistics (Inegi).

After comparing Cenapred's Methodology with an estimated streamflow range from the frequency analysis methods, we will be able to see if Cenapred's Method is valid to determine, for several return periods (2,5,10,25,50 and 100 years), the streamflow value at any location in the Central Region of Veracruz.

2. Background

2.1. Region

The state of Veracruz is located at the eastern of Mexico. The state is a crescent-shaped strip of land wedged between the Sierra Madre Oriental to the west and the Gulf of Mexico to the east. Its total area is 78,815 km2 (30,430.6 sq mi), accounting for about 3.7% of Mexico's total territory. It stretches about 650 km (403.9 mi) north to south, but its width varies from between 212 km (131.7 mi) to 36 km (22.4 mi), with an average of about 100 km (62.1 mi) in width. Veracruz shares common borders with the states of Tamaulipas (to the north), Oaxaca and Chiapas (to the south), Tabasco (to the southeast), and Puebla, Hidalgo, and San Luis Potosí (on the west). Veracruz has 690 km (428.7 mi) of coastline with the Gulf of Mexico.

Approximately 35% of Mexico's water supply is found in Veracruz. More than 40 rivers and tributaries provide water for irrigation and hydroelectric power; they also carry rich silt down from the eroding highlands, which are deposited in the valleys and coastal areas. All of the rivers and streams that cross the state begin in the Sierra Madre Oriental or in the Central Meseta, following east to the Gulf of Mexico. The more important rivers in the state are the Actopan, Acuatempan, Blanco, Cazones, Coatzacoalcos, La Antigua, Hueyapan, Jamapa, Nautla, Panuco, Papaloapan, Tecolutla, Tonalá Tuxpan, Tonalá, Tuxpan, and the Xoloapa. Two of Mexico's most polluted rivers are the Coatzacoalacos and the Blanco. Much of the pollution comes from industrial sources, but the discharge of sewerage and uncontrolled garbage disposal are also major contributors. The state has very few waste water treatment plants, with only 10 of the waste water being treated before discharge.

2.2. Maps of Location

Mexico respect with United States of America

State of Veracruz respect with Mexico

Central Region of Veracruz respect with Veracruz

Central Region of Veracruz with the location of the 10 streamflow stations

3. Methodology

3.1 Streamflow Stations Methodology (Frequency Analysis)

To see if the Rainfall-Runoff Methodology proposed by Cenapred is effective, is important to obtain a range in which we can evaluate if the estimated streamflow from this method could be consider as valid. The approximation used to find this range was based on Conagua's data (mean annual data of the 10 streamflow stations from 1950-2006), and by using the Extreme Value Type 1 (EV1) distribution. The EV1 assist us to get the magnitude of the streamflow and the standard error (for return periods T= 2, 5, 10, 25, 50, and 100 years).

The EV1 distribution is given by:

$$F_{x}(x) = e^{-e^{-\widehat{\alpha}(x-\widehat{\beta})}}$$

Where $\hat{\alpha}$ (scale) and $\hat{\beta}$ (location) are the parameters of the distribution calculated by the Method of Moments (MOM):

$$\hat{\alpha} = \frac{1.2825}{S_x}$$
$$\hat{\beta} = \bar{x} - 0.45S_x$$

Where S_x : Standard Deviation of the data \bar{x} : Mean of the data

The procedure to estimate the magnitude of the streamflow, by using the data of each streamflow station with the EV1 distribution is as follows:

1. Check if the EV1 distribution fits.

In this project, we used the X_c^2 test and/or the Probability Plot Correlation Coefficients test (PPCC).

a) X_c^2 Goodness of fit test

Hypothesis 0: The distribution fits the data Hypothesis 1: The distribution doesn't fit

Computational steps:

i. Divide the observations in classes (equal length or equal probability)

ii. Compute the observed and expected number of observation in each class

Test statistic: $x_c^2 = \sum_{i=1}^k \frac{(o_i - e_i)^2}{e_i}$

Where: k: number of classes o_i : Observed in class i e_i : Expected in class i

iii. Decision rule: Reject Hypothesis 0 if $x_c^2 > x_{1-\alpha,\nu}$

Where: $x_{1-\alpha,\nu}$: from chi square table Haan (2002) α : Significance level (in this case 5%) $\nu = k - 1 - p$ p: Number of parameter obtained (For EV1 \rightarrow 2 parameters; $\hat{\alpha}$ and $\hat{\beta}$)

b) The Probability Plot Correlation Coefficients (PPCC test) is a test that uses correlation between observed values and the corresponding fitted quantities (x_i expected).

Hypothesis 0: The observations are drawn from the fitted distribution Hypothesis 1: The observations are not drawn from the fitted distribution

Computational steps:

- i. Rank the observations from largest to lowest value
- ii. Get the probability of exceedance (q_i) . As we fitted the EV1 distribution, we use the Gringorten expression:

$$q_i = \frac{i - 0.44}{N + 0.12}$$

Where *i*: Rank number i = 1, 2, 3, ... N*N*: Total number of observations

iii. Get x_i expected (W_i) from the probability of non exceedance $(1 - q_i)$. For EV1 is given by:

$$W_i = G_x^{-1}(1 - q_i) = \hat{\beta} - \frac{1}{\hat{\alpha}} \ln(-\ln(1 - q_i))$$

Where $\hat{\alpha}$ and $\hat{\beta}$: Parameters obtained by Method of Moments (MOM)

Compute the test statistic:

$$r = \frac{\sum (x_i - \bar{x})(W_i - \bar{W})}{\sqrt{\sum (x_i - \bar{x})^2 \sum (W_i - \bar{W})^2}}$$

Where \overline{W} : Mean of the series W_i \overline{x} : Mean of he data

iv. Decision rule: Reject Hypothesis0 if $r < r_{\alpha,N}$

Where $r_{\alpha,N}$: From table 18.3.3 of Stedinger, Vogel, Foufoula-Georgiou (Chapter 18) α : Significance level (in this case 5%) N: Total number of observations 2. In this particular case, since the distribution fitted in all cases, we get the magnitude of the streamflow (X_T) of a given frequency for several return periods by using the formula for the EV1 distribution.

Where: $\hat{\alpha}$ and $\hat{\beta}$: Parameters obtained by Method of Moments (MOM) *T*: Return Period (2, 5, 10, 25, 50, and 100 years)

Once having X_T for each streamflow station, we calculated the Standard Error ($S_{(XT)}$) for EV1 (MOM)

$$S_{(XT)} = \frac{\delta}{\sqrt{N}} S_X$$

Where: δ : parameter obtained from Table 8.4 of Kite's (1977)

N : Number or years of data

 S_X : Standard Deviation of data

3. We obtained the upper (X_T^{upper}) and lower (X_T^{lower}) values for magnimude of the streamflow (X_T) .

$$X_T^{upper} = X_T + S_{(XT)} Z_{1-\frac{\alpha}{2}}$$

$$X_T^{lower} = X_T - S_{(XT)} Z_{1-\frac{\alpha}{2}}$$

Where: $Z_{1-\frac{\alpha}{2}}$: Obtained from the normal table

 α : Significance level, in this case was used as 10%

3.2 GIS Streamflow Stations watersheds and slope

3.2.1 Watersheds

In order to follow Cenapred's Methodology, we need to establish the corresponding watersheds that are related to each streamflow station. For this, we followed the steps listed below using certain GIS tools.

1. From the Digital Elevation Model (DEM), remove the pits (GIS Tool \rightarrow Fill).

2. After removing the pits, we are able to get the flow direction of the basin (GIS Tool \rightarrow Flow Direction).

3. With the flow direction, we can estimate the flow accumulation (GIS Tool → Flow Accumulation). The result of this tool assists us to adjust the site locations to the exact location of the flow.

4. Having the exact locations of flow for every streamflow station, and the flow direction, we are able to find the watershed of each station (GIS Tool → Watershed)

5. After getting the raster of the watersheds, we convert it to polygons (GIS Tool → Raster to Polygon). The attribute table of the watersheds includes the area of the corresponding watershed for the streamflow station. From this table, we estimated the area of influence for each streamflow station.

W	atersheds				
	OBJECTID *	Shape *	SiteCode	Shape_Length	Shape_Area
F	1	Polygon	28003	196131.279627	572898089.599963
	2	Polygon	28030	177426.749146	782095540.78854
	3	Polygon	28039	105897.547998	235961211.347522
	4	Polygon	28040	377895.164617	1915152427.409149
	5	Polygon	28069	304469.92102	1384677505.46297
	6	Polygon	28108	199088.280202	637575931.592866
	7	Polygon	28111	116472.63798	476044506.805215
	8	Polygon	28125	84724.613407	142979000.031882
	9	Polygon	28133	135091.961428	629148300.751151
	10	Polygon	28134	152700.45	791347326.890626

3.2.2 Slope

To obtain the slope in each watershed, we followed the next procedure.

1. Estimate the slope from the Digital Elevation Model (GIS Tool \rightarrow Slope)

2. As the values in the previous step are given in percentage (%), we divide them by 100 (GIS Tool → Raster Calculator).

3. For obtaining the slope in each watershed, we use the zonal statistic tool to obtain the slope value of the watersheds (GIS Tool → Zonal statistic). From the zonal statistic table, shown below, we estimate the weighted mean for the corresponding watershed taking into consideration the upstream values.

	Rowid	VALUE	COUNT	AREA	MIN	MAX	RANGE	MEAN	STD	SUM
Þ	1	28003	638149	646345900	0	1.684659	1.684659	0.172953	0.212014	110369.7
	2	28030	122417	123989400	0	1.364954	1.364954	0.250763	0.192015	30697.63
	3	28039	261693	265054400	0	0.38918	0.38918	0.01566	0.026408	4098.172
	4	28040	212732	2154649000	0	2.253618	2.253618	0.149319	0.207039	317649
	5	28069	153577	1555500000	0	5.007859	5.007859	0.166483	0.209563	255679.9
	6	28108	712518	721670100	0	1.878124	1.878124	0.1727	0.184871	123052
	7	28111	531448	538274300	0	1.214378	1.214378	0.140495	0.148195	74665.7
	8	28125	159408	161455600	0	1.333523	1.333523	0.185094	0.160343	29505.42
	9	28133	700816	709817800	0	1.935214	1.935214	0.376063	0.246647	263550.8
	10	28134	883123	894466500	0	1.62751	1.62751	0.240123	0.206874	212058.1

3.2.3 Length of the upstream for each watershed

Having the watersheds for each streamflow stations, we can get the length of the main stream for each station (upstream length; in meters). This length (L) is needed for Cenapred's Rainfall-Runoff Methodology.

3.3 Cenapred's Rainfall-Runoff Methodology

This methodology helps us to estimate the streamflow in the same location of the streamflow stations. The steps for this methodology are as follows.

- 1. Select 15 precipitation stations in the basin we are analyzing.
- 2. With the average daily data and following the same procedure as for X_T (described in 3.1), we estimate the magnitude of the precipitation with a return period of two years (P_2 , in mm).
- 3. Obtain the precipitation value for duration of 1 (hp_T^1) and 24 (hp_T^{24}) hours for several return periods (T= 2, 5, 10, 25, 50, and 100 years).

$$h_T^d = (0.35 ln(T) + 0.76)(0.54 d^{0.25} - 0.5)P_{2\nu}^{60}$$

Where *d*: Duration in minutes (1hour=60 min; 24 hours=1,440 min) *T*: Return period in years $P_{2\nu}^{60}$: Is given by the expression (in mm)

$$P_{2\nu}^{60} = RP_2$$

Where *R*: Value between 0.1 (dry) and 0.8 (humid). In this region, the coefficient is 0.4. P_2 : The daily magnitude calculated for a return period of 2 years (step 2 of 3.3)

4. For this step, we made a tool for GIS (Precipitation Values Tool) that assists us by following the next procedure:

Estimate hp_T^1 and hp_T^{24} mean for each watershed of the streamflow stations (delineated in step 4 of 3.2.1) for all the return periods.

- a) Interpolate (GIS Tool \rightarrow Empirical Bayesian Kriging) the precipitation values (hp_T^1 and hp_T^{24}) obtained in step 3 of 3.3.2.
- b) Compute the precipitation mean values $(hp_T^1 \text{ and } hp_T^{24})$ for each watershed (GIS tool \rightarrow zonal statistics).

- 5. To calculate the runoff coefficient (C), the procedure is as follows
 - a) From the soil map of the region, obtained from Mexico's authorities (INEGI), and the book of Breña and Jacobo (2006), we get the value of the coefficient for each type of soil in the region. This coefficient has to be between 0 and 1 depending of the type and use of the soil.
 - b) With a tool we adapted (Soil Values Tool); we estimate the mean runoff coefficient for each watershed (GIS tool → zonal statistics).
- 6. Finally, to be able to compute the streamflow from the precipitation data at each streamflow station, we made a GIS tool (Compute Flow Rates Tool) that follows the next procedure:
 - a) From hp_T^1 and hp_T^{24} mean values for each watershed, calculate the precipitation with duration equal to the time of concentration in the watersheds for all the return periods.

$$hp_{tc} = \frac{hp_T^1 - hp_T^{24}}{3.1781} (\ln(t_c)) + hp_T^1$$

Where: t_c : Time of concentration in each watershed, given by:

$$t_c = 0.000325 \frac{L^{0.77}}{S^{0.385}}$$

- Where: *L*: Upstream length for each station, obtained in 3.2.3 (meters) *S*: Slope calculated in 3.2.2 (dimensionless)
- b) Compute the intensity (*i*) in each watershed for all the return periods. The intensity is the amount of precipitation water per unit of time.

$$i = \frac{hp_{tc}}{t_c}$$

c) Estimate the Flow rates for all the return periods

$$Q_p = 0.278CiA$$

Where *A*: Area of influence (km²) for each streamflow station (upstream)

4. Results

4.1 Streamflow Stations Range

Actopan River Streamflow Stations

Actopan II Streamflow Station (No. 28030)						
Magnitude I	Freq. Ana	XT ^{Lower} m ³ /s	XT ^{upper} m³/s			
$XT_{2years} =$	16.687	m³/s	15.957	17.417		
$XT_{5years} =$	19.894	m³/s	18.604	21.184		
XT _{10years} =	22.018	m³/s	20.250	23.785		
XT _{25years} =	24.700	m³/s	22.285	27.116		
XT _{50years} =	26.691	m³/s	23.803	29.579		
XT _{100years} =	28.666	m³/s	25.294	32.039		

El Naranjillo Streamflow Station (No. 28108							
Magnitude	Freq. Ana	XT ^{Lower} m ³ /s	XT ^{upper} m³/s				
XT _{2years} =	14.052	m³/s	12.775	15.330			
$XT_{5years} =$	19.091	m³/s	16.816	21.366			
XT _{10years} =	22.427	m³/s	19.301	25.552			
XT _{25years} =	26.642	m³/s	22.463	30.820			
XT _{50years} =	29.768	m³/s	24.652	34.885			
XT _{100years} =	32.872	m³/s	26.896	38.849			

La Antigua River Streamflow Stations

Amatitla II Streamflow Station (No. 28133)							
Magnitude	Freq. A	nalysis	XT ^{Lower} m³/s	XT ^{upper} m³/s			
XT _{2years} =	24.137	m³/s	22.875	25.400			
$XT_{5vears} =$	28.893	m³/s	26.636	31.150			
XT _{10vears} =	32.042	m³/s	28.938	35.145			
XT _{25years} =	36.020	m³/s	31.771	40.269			
$XT_{50years} =$	38.972	m³/s	33.886	44.057			
XT _{100vears} =	41.901	m³/s	35.960	47.843			

Idolos Streamflow Station (No. 28111)						
Magnitude	Freq. An	XT ^{Lower} m ³ /s	XT ^{upper} m³/s			
XT _{2years} =	4.269	m³/s	3.875	4.663		
XT _{5years} =	5.788	m³/s	5.085	6.491		
XT _{10years} =	6.794	m³/s	5.828	7.760		
XT _{25years} =	8.065	m³/s	6.598	9.532		
XT _{50years} =	9.008	m³/s	7.426	10.590		
XT _{100years} =	9.944	m³/s	8.095	11.792		

Jalcomulco Streamflow Station (No. 28134)						
Magnitude F	Freq. Ana	lysis	XT ^{Lower} m³/s	XT ^{upper} m ³ /s		
XT _{2vears} =	48.132	m³/s	46.022	50.242		
$XT_{5vears} =$	56.178	m³/s	52.409	59.948		
XT _{10vears} =	61.506	m³/s	56.323	66.688		
XT _{25years} =	68.237	m³/s	60.830	75.644		
XT _{50vears} =	73.230	m³/s	64.741	81.720		
XT _{100vears} =	78.187	m³/s	68.269	88.106		

Carrizal Streamflow Station (No. 28125)						
Magnitude F	Freq. Ana	XT ^{Lower} m³/s	XT ^{upper} m³/s			
XT _{2vears} =	44.480	m³/s	41.786	47.174		
XT _{5vears} =	54.508	m³/s	49.686	59.329		
XT _{10years} =	61.147	m³/s	54.514	67.779		
XT _{25years} =	69.535	m³/s	60.662	78.409		
XT _{50vears} =	75.759	m³/s	64.889	86.629		
XT _{100years} =	81.936	m³/s	69.235	94.636		

Cardel Streamflow Station (No. 28003)						
Magnitude	Freq. And	alysis	XT ^{Lower} m³/s	XT ^{upper} m³/s		
$XT_{2years} =$	53.686	m³/s	50.895	56.477		
$XT_{5years} =$	65.841	m³/s	60.906	70.775		
XT _{10vears} =	73.888	m³/s	67.124	80.652		
XT _{25vears} =	84.056	m³/s	75.024	93.089		
XT _{50vears} =	91.599	m³/s	80.545	102.653		
XT _{100vears} =	99.087	m³/s	86.179	111.995		

Jamapa River Streamflow Stations

El Tejar Streamflow Station (No. 28040)						
Magnitude	Freq. Ana	lysis	XT ^{Lower} m³/s	XT ^{upper} m³/s		
$XT_{2years} =$	16.907	m³/s	15.618	18.196		
$XT_{5years} =$	22.520	m³/s	20.241	24.799		
XT _{10years} =	26.237	m³/s	23.113	29.361		
XT _{25years} =	30.933	m³/s	26.761	35.105		
$XT_{50years} =$	34.417	m³/s	29.312	39.522		
XT _{100years} =	37.875	m³/s	31.913	43.837		

Capulines Streamflow Station (No. 28069)						
Magnitude	Freq. Ana	XT ^{Lower} m³/s	XT ^{upper} m³/s			
XT _{2vears} =	39.979	m³/s	34.897	45.062		
XT _{5years} =	61.508	m³/s	52.505	70.511		
XT _{10vears} =	75.763	m³/s	63.413	88.112		
XT _{25vears} =	93.773	m³/s	77.306	110.239		
XT _{50vears} =	107.134	m³/s	86.943	127.324		
XT _{100years} =	120.396	m³/s	96.816	143.976		

Paso del Toro Streamflow Station (No. 28039)					
Magnitude F	req. Anal	ysis	XT ^{Lower} m ³ /s	XT ^{upper} m ³ /s	
XT _{2years} =	39.717	m³/s	37.359	42.074	
XT _{5years} =	49.015	m³/s	44.816	53.213	
XT _{10years} =	55.171	m³/s	49.403	60.938	
XT _{25years} =	62.949	m³/s	55.238	70.659	
$XT_{50years} =$	68.719	m³/s	59.277	78.161	
XT _{100years} =	74.447	m³/s	63.417	85.476	

4.2 Cenapred's Methodology Results

Actopan River Streamflow Stations

Streamflow from Cenapred's Methodology				
Return Period	Actopan II m³/s	El Naranjillo m³/s	ldolos m³/s	
T =2 years	32.391	32.786	18.690	
T =5 years	42.752	43.273	24.668	
T =10 years	50.590	51.207	29.191	
T =25 years	60.951	61.694	35.169	
T =50 years	68.789	69.627	39.692	
T =100 years	76.627	77.561	44.214	

La Antigua River Streamflow Stations

Streamflow from Cenapred's Methodology						
Return Period	Cardel m³/s	Carrizal m ³ /s	Amatitla II m³/s	Jalcomulco m³/s		
T =2 years	44.881	41.335	22.594	46.176		
T =5 years	59.237	54.556	29.821	60.946		
T =10 years	70.097	64.558	35.288	72.119		
T =25 years	84.453	77.780	42.515	86.889		
T =50 years	95.313	87.782	47.982	98.062		
T =100 years	106.172	97.783	53.449	109.236		

Jamapa River Streamflow Stations

Streamflow from Cenapred's Methodology					
Return Period	Paso del Toro m ³ /s	El Tejar m³/s	Capulines m³/s		
T =2 years	20.626	28.589	28.140		
T =5 years	27.223	37.734	37.141		
T =10 years	32.214	44.652	43.950		
T =25 years	38.812	53.797	52.951		
T =50 years	43.803	60.714	59.760		
T =100 years	48.794	67.632	66.569		

5. Conclusions

Actopan River

In the Actopan River, the values estimated with Cenapred's methodology are much higher than the range obtained from the Frequency Analysis. For this, is important to reconsider the values used for the Runoff coefficient in order to state if this method is valid or not in this area of the central region of Veracruz.

La Antigua River

In the streamflow stations of La Antigua River, we can see that nearly all the values estimated by Cenapred's Methodology are practically in range. In other words, we can conclude that for this particular area of the central region of the estate of Veracruz, is valid to use this method to calculate the magnitude of the streamflow.

Jamapa River

satellite image analysis of the region.

Return Period

using the frequency analysis. This might be an indicator that there is a dam upstream of these stations. In this case, it is necessary to make a

In the other tributary, we can see that the values from Cenapred's Methodology at El Tejar station are higher than the range obtained from the Frequency Analysis methodology. For this, is important to reconsider the values used for the Runoff coefficient in order to state if this method is valid or not in this area.

6. References

- Kite, G. W., Frequency and Risk Analyses in Hydrology, Water Resources Publications, Fort Collins, CO, 1977.
- Haan, C. T., Statistical Methods in Hydrology, Iowa State Press, Ames, 1974 (First edition), 2002 (Second edition)
- Stedinger, J.R, Vogel, R., Foufoula-Georgiou, E., Frequency Analysis of Extreme Events, Chapter 18
- Salas Salinas, M.A, Metodología para la Elaboración de Mapas de Riesgo por Inundaciones en Zonas Urbanas, Centro Nacional de Prevención de Desastres y Secretaria de Gobernación, July 2011
- Breña Puyol, A.F., Jacobo Villa M.A, Principios y Fundamentos de la Hidrología Superficial Universidad Autónoma Metropolitana, 2006
- Comisión Nacional del Agua (CONAGUA)
- Instituto Nacional de Estadística y Geografía (INEGI)