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Introduction 
 In recent decades, a significant manifestation of climate change has been warmer-
than-average alpine temperatures across the globe, from the Andes to the Himalaya. As a 
consequence, previously stable glaciers in affected alpine regions have begun to melt, the 
runoff pooling and giving rise to glacial lakes. As melt water accumulates and a glacial lake 
swells in size, the risk of the impounding structure experiencing a catastrophic failure 
increases rapidly. Such an event is known as a glacial lake outburst flood (GLOF) and can 
have devastating consequences for downstream communities. Research efforts are 
currently focused on modeling the evolution of glacial lakes and their parent glaciers, with 
the goal of providing predictive capacity and risk assessment in order to aid downstream 
communities with disaster preparation and planning. 
 This project focuses on Imja Tsho (or Imja Lake) in the Himalaya, shown both on the 
previous page and below in Figure 1. Imja Tsho has been identified as one of the fastest 
growing and most dangerous glacial lakes in the region1. It is perhaps not a coincidence, 
then, that Imja Tsho is also one of the most extensively studied glacial lakes in the 
Himalaya. The work performed herein is in collaboration with David Rounce, a PhD 
candidate at the University of Texas at Austin. Working under Dr. Daene McKinney, David’s 
doctoral research centers on Imja Tsho and its main contributing glaciers, Lhotse Shar and 
the Imja Glacier. One of the goals of his research is to develop an energy balance melt 
model for the Imja Glacier. Such a model will require, among other things, knowledge of the 
variation in debris thickness (non-ice materials covering the glacier) over the surface of the 
glacier.  
 

 
Figure 1: Google Earth image depicting an aerial view of Imja Tsho (center)  

and Imja Glacier (directly right of lake) 
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Data 
 David recently returned from a field expedition to Imja Tsho where he acquired 
twenty-two direct measurements of debris thickness from one area of the glacier. We are 
also is in possession of a 5-meter resolution digital elevation model (DEM) that was 
generated by D. Lamsal et. al. in 20112. Moreover, David wore a GPS tracking device 
throughout the duration of his fieldwork, providing geographic information about the 
surfaces he traversed. Taken together, these data may be used to paint a picture of the 
glacier surface. 
 

 
Figure 2: The 5m spatial resolution DEM of the Imja Tsho basin. This DEM was derived from the 

Advanced Land Observing Satellite’s Panchromatic Remote-sensing Instrument for Stereo Mapping 
(ALOS PRISM), by D. Lamsal et. al. 20112 
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Research Goals 
 The initial goal of this research was to attempt to use field data of debris cover 
thickness in conjunction with the fine scale DEM to derive a predictive relationship. Using 
this relationship, the debris thickness across the glacier surface could be inferred. 
Unfortunately, it quickly became obvious that the goal was not feasible – we lacked the 
volume of data sufficient to make meaningful spatial correlations. The analysis then turned 
towards developing other relationships between DEM-based spatial variables and debris 
thickness, identifying possible errors with the slightly outdated DEM, and generally to learn 
about the dynamic nature of the debris covered glacier surface.  
 
Methods & Results 
 
Attempts at Geostatistical Interpolation  

The first step in the analysis was to visualize the data with ArcGIS. For each 
sampling point, the latitude and longitude (m), GPS elevation (m), and debris thickness 
(cm) were known. These data were imported into ArcGIS as point features and overlain on 
top of the Lamsal DEM (Figure 3). Bilinear interpolation was used to enhance the display of 
the DEM. The sample points were displayed to take a size proportional to the debris 
thickness at that point. Debris thickness values ranged from less than 17cm to almost 
100cm. The elevation at Dave’s field site is roughly 5050m above sea level. 

 
 
 

 

 
The red circle indicates the general 

location of sampling within the 
basin. 

 
Figure 3: Map showing sample locations on the glacier surface 
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 Inspection of the map above (Figure 3) does not reveal any obvious spatial patterns 
between debris thickness (point size) and elevation (surface color). The relative sparseness 
of the dataset also becomes apparent when visualized in this manner. Despite reservations 
about having an insufficient sample size, an attempt was made to find a spatial relationship 
in the debris thickness by using a geostatistical technique known as kriging. Kriging is a 
method of interpolation whereby intermediate values are estimated based on the 
covariance of known points in the spatial field. The mathematics behind kriging can 
become quite sophisticated, but fortunately ArcGIS provides a kriging tool within the 
Spatial Analyst toolbox. The tool takes as inputs the point features containing the 
information to be interpolated and the field where the variable values are to be found. 
While there are a number of other optional inputs, the tool was run with the default 
settings: a spherical semivariogram-type model, default cell size, and default search radius. 
The output raster of the tool is shown below in Figure 4. 
 

 
Figure 4: The result of applying the kriging method to debris thickness data in ArcGIS 

 
 While there is an obvious complexity to the kriging solution, closer inspection 
reveals the result to be garbage. The kriging raster does not accurately capture the range of 
samples points (compare the high and low extents of the two layers in the legend). The 
explanation is that there is simply not enough data to produce a meaningful result. 
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Exploration of DEM-based Correlations 
 The failed attempt to utilize kriging suggested that interpolation by any method was 
unlikely to produce favorable results. Instead, other relationships to debris thickness were 
sought. The idea came that perhaps by integrating the information contained within the 
DEM, a useful correlation could be found. In a physical sense, one would not expect debris 
thickness to be correlated with elevation. However, it seemed at least somewhat feasible 
that slope, aspect, or surface curvature may have some relationship to debris thickness: a 
steeper slope may be less able to hold thick layer of debris than a flatter surface; the 
direction a slope faced may affect differential melting or debris deposition on the surface; 
upwardly concave surfaces could conceivably act as debris traps, while convex surfaces 
might shed debris. 
 Subsequently, the ArcGIS tools Slope, Aspect, and Curvature were employed to 
calculate slope, aspect, and curvature rasters of the Imja Tsho basin. These maps are shown 
below in figures 5, 6, and 7, respectively. 
 

 
Figure 5: Slope raster of the Imja Tsho basin. 
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 The units of the slope were specified to be percent rise when the Slope tool was run. 
The legend display, showing a maximal value of 1223.1, is probably the result of an error 
within the DEM. 
 

 

 
Figure 6: Aspect raster for the Imja Tsho basin. 

 

 In Figure 6, the legend gives surface aspect in degrees from north, where north is 
indicated on the map as being towards the top of this page. Flat surfaces or those with 
indeterminate aspect appear to be given a value of 0 as well – i.e., Imja Lake in the center of 
the map is white. 
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Figure 7: Curvature raster for the Imja Tsho basin. 

 

 Curvature is the derivative of slope, or the second surface derivative of elevation at a 
point. Because it is a surface vector, there are two orthogonal components to curvature: 
profile curvature and plan curvature. The profile curvature is oriented in the direction of 
maximum slope, and the plan curvature is oriented perpendicular to the direction of 
maximum slope. The default, primary output of the curvature tool (displayed above) is the 
cell-by-cell curvature, computed by using the curvatures of 8 adjacent cells (in a similar 
manner as R8 flow direction determination). Large positive curvature values indicate an 
upwardly convex surface, like the top of a hill, while large negative values indicate the 
opposite: a downwardly convex surface, like a bowl. ESRI advises that curvature values will 
seldom exceed |4|, but here they are around |500|. The source of this error may be the 
same issue that resulted in unreasonably high slope values in Figure 5. A closer view of the 
curvature raster, with sample locations overlain, is given below in Figure 8. 
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 Having now calculated three new raster layers, we sought to compare this 
information with the debris thickness data. The values of each raster surface at the points 
sampled were extracted using the ArcGIS tool Sample (Figure 9). The tool allows the 
capability to sample from multiple rasters at once and collate the information in a table. 
The resultant table was exported to Microsoft Excel, where the data pairs were plotted 
against one another in search of any kind of correlative relationship. These charts are 
shown below (Figure 10). 
 

 
Figure 8: Sample points overlain on the surface curvature raster 

 

 
Figure 9: Screenshot of the Sample tool 
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Figure 10: Debris thickness plotted against slope, aspect, and curvature at each sample point 
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 Unfortunately, we can see no meaningful correlation between any of the variables 
analyzed. Perhaps there is some semblance of a negative trend in the Debris Thickness vs. 
Slope plot, but remove the high slope point and the trend turns to noise. We might again 
blame the small sample size for the lack of meaningful results, but the possibility exists that 
there is in fact no meaningful correlation between any of these variables and debris 
thickness, no matter how large the sample.  
 
Comparison of GPS Tracker Elevation with DEM Elevation 
 One possible issue with the previous analysis is that Lamsal’s DEM dates to 2006, 
whereas the field data was collected very recently (September 2013). If the glacier surface 
changed appreciably in the interim, then the sample points (lat/long) cannot be reliably 
mapped to the DEM elevation values, and therefore the above analysis is invalid from the 
start. While we do not have access to a more recent, fine-scale DEM, we do have the GPS 
tracker data that recorded elevation measurements as Dave traversed the glacier surface. 
An analysis of the discrepancy between the GPS elevations and the DEM elevations would 
reveal to what extent the DEM misrepresents the glacier surface of today.  
 This task was accomplished first by importing the GPS tracker data from Excel into 
ArcGIS, creating a point feature class (Figure 11). Again using the Sample tool, DEM 
elevation values were extracted at the points defined by Dave’s trajectory over the glacier. 
This tabular data was exported back to Excel, at which point statistical analyses could 
begin. There were a total of 1324 locations sampled. 
 

 
Figure 11: The sequence of points shows Dave’s trajectory over the surface of the glacier 
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 First, the GPS elevation and the DEM elevation values were plotted in series, 
showing a profile view of Dave’s elevation during his trek (Figure 12). Dave took an out-
and-back path, hence the symmetry about the midpoint of the graph. 
 

 
Figure 12: Elevations passed through during the field campaign,  

according to GPS data and DEM information 

 
 Then, pairs were subtracted (GPS-DEM), resulting in the “Elevation Discrepancy”. 
With this data, summary statistics were calculated (Table 1) and a histogram was 
constructed to visualize the distribution of the discrepancy (Figure 13). Additionally, a 
normal probability plot was constructed for the discrepancy data (Figure 14). A normal 
probability plot is built by ranking a set of data, assigning quantiles to each rank according 
to a formula (in this case Blom’s plotting position was used), and then inverting the 
quantiles to derive normal z-scores. These standard normal variates are plotted against the 
z-scores of the original data, and the extent to which the plot follows the line y=x is an 
indication of the normality of the dataset. Conversely, the deviation from y=x, especially at 
the tails, can suggest non-normal distribution. 
 

Statistic GPS Elevation (m) DEM Elevation (m) Discrepancy (m) 

Average: 5051.00 5048.17 2.83 

Variance: 1300.47 1284.15 89.28 

Standard Dev: 36.06 35.84 9.45 

Skew: 0.42 0.12 -0.17 

Table 1: Summary Statistics for Elevation Discrepancy 

 
From this table we see that the discrepancy is centered on 2.8m with a standard 

deviation of 9.5m. The mean is positive, implying that on average the GPS elevation is 
greater than the DEM elevation.  
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Figure 13: A histogram showing the distribution of the discrepancy  

between GPS and DEM elevation values 

 
 Looking at the histogram, we observe a somewhat symmetric shape, although there 
appears to be a slight bimodal tendency, with a second peak at the upper (positive) end of 
the distribution. 
 
 

 
Figure 14: Normal Probability Plot for Elevation Discrepancy 

 

 The normal probability plot shows deviation from the line y=x at both the positive 
and negative tails in the same direction, indicating that the elevation discrepancy might not 
be normally distributed – there may be some trend or skew inherent in the difference 
between GPS and DEM elevations.  
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 The question arose: how significant is a 2m discrepancy in the context of this 
dataset? To answer this question, we can use hypothesis testing. Hypothesis testing 
facilitates quantitative comparisons between datasets. In our case, the null hypothesis 
would be that there is no difference between the two groups, whereas the alternative is 
that a difference does exist. Through the test, this statement would either be disproven or 
not disproven. There are a wide variety of tests to choose from, but an appropriate test in 
this case would be the Wilcoxon signed-rank test. This test does not require any 
assumptions about the normality of the dataset. Given what we know from the normal 
probability plot, assuming normality may not be a valid anyways. The test was performed 
in MATLAB and the results are shown below in Table 2. 
 

Wilcoxon Signed-Rank Test 

p-values: 
  

two-tail 8.75E-25 

right-tail 4.38E-25 

Table 2: Wilcoxon Signed-Rank Test results for Elevation Discrepancy 

 
 The p-value represents the probability that the given samples would be observed if 
the null hypothesis were true. Because it is so extremely small in this case, we reject the 
null hypothesis: the test says that there is a significant difference between the two groups. 
In other words, the 2.5 difference in level between the GPS elevation and the DEM elevation 
is real and significant, not just the product of random sampling errors. 
 
On-Glacier vs. Off-Glacier 
 Why would the elevation across the glacier have risen since 2006, given that the 
glacier is melting? One might expect the opposite to be true – that the elevations on the 
glacier are lower now than they were in 2006 due to underlying glacial ice melting and the 
glacier surface slowly lowering. Revisiting the trajectory Dave took to his field site, it 
became apparent that Dave was only on the actual glacier itself for a short part of that 
journey – the rest was presumably traversed on montainsides, trails, and other more 
stationary landscape features. Examining figure 15 below, it appears that as Dave 
approached his field site, he climbed to the crest of a moraine adjacent to the Imja Glacier 
before descending the slope and accessing the glacier. The points on glacier can be 
identified as those near to the sampling points, as well as those points leading up to the 
visible “edge” of the glacier. This edge is most clearly shown by the slope raster calculated 
earlier. Figure 16 depicts Dave’s path as moving down a long, consistent slope before 
finally meeting the edge of the glacier. Once on the glacier, Dave circled around as he 
sampled and eventually made it back to his entry point to the glacier, where presumably 
there is some sort of trail that he used to traverse back to his origin. 
 The same analysis performed above for Dave’s entire trek in the Imja Tsho basin 
was repeated, but this time only considering the subset of points corresponding the glacier 
surface.  The points that were selected for analysis are highlighted in Figure 17 below. The 
reduced dataset contained 618 points. The summary statistics are shown in Table 3. 
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Figure 15: View of Dave’s traverse overlain on the Imja Tsho basin slope raster 

 
 
 

 
Figure 16: Depiction of the edge of the glacier at where Dave’s path splits into a loop.  

Sample points are shown in purple. 
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Figure 17: Selected points for on-glacier analysis 

 
Statistic GPS Elevation (m) DEM Elevation (m) Discrepancy (m) 

Average: 5047.86 5050.37 -2.51 

Variance: 58.44 33.32 77.69 

Standard Dev: 7.64 5.77 8.81 

Skew: 1.74 -0.57 0.30 

Table 3: Summary Statistics for Elevation Discrepancy On-Glacier 

 
 Interestingly, with on-glacier points the elevation discrepancy average is -2.5m, 
indicating that the surface is lower as compared to the 2006 DEM. The on-glacier elevation 
profile, histogram, and normal probability plots are given below: 
 

 
Figure 18: Elevation profile, on-glacier 
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 The relationship between GPS elevation and DEM elevation is not as close as with 
the larger dataset. It does appear that for a significant portion of the points, the GPS 
elevation is below the DEM elevation, but there are some cases of the opposite scenario. 

 

 
Figure 19: On-glacier elevation discrepancy historgram 

 

 The histogram of elevation discrepancies has slight positive skewness, but appears 
more symmetric than the histogram of Figure 13. 
 

 
Figure 20: Normal Probability Plot for On-glacier Elevation Discrepancies 

 

 The normal probability plot shows significantly less deviation from y=x at the tails, 
suggesting that the distribution of the elevation discrepancies between these points on-
glacier is much more normal. Most of the points do lie below the line y=x, however, 
indicating perhaps some difference level. 
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 For consistency’s sake, the Wilcoxon signed rank test was applied to this dataset, 
despite possibly more normal distribution. The low p-value resulting from the left-tail test 
indicate that the difference is very significant between the two groups – GPS elevations are 
on average 2.5m lower than DEM elevations. The two elevation measurements do not likely 
come from the same population. 

 
Wilcoxon Signed-Rank Test 

p-values: 
  

two-tail 8.80E-12 

left-tail 4.41E-12 

Table 4: Wilcoxon Signed-Rank test results for on-glacier elevation discrepancy 
 

 
Summary of Results & Conclusions 
 The initial research goal for this project – interpolating debris thickness across the 
Imja glacier surface – quickly proved to be difficult to accomplish. Instead, the investigation 
was taken down a different path, a more exploratory path. Correlations were sought 
between DEM slope, aspect, curvature and debris thickness, but to no avail. Questions 
arose as to the validity of the methods and the accuracy of the DEM itself. 
 Through a selective comparison of GPS tracker recorded points and the Lamsal DEM 
from 2006, it can be concluded that there has been a significant decrease in the overall 
elevation of the Imja glacier surface since 2006 (at least in the area near Dave’s field site). 
Whether this is attributable to subsurface melting or some other factor is beyond the scope 
of this investigation. Additionally, the distribution of residuals between GPS measured 
elevations and DEM elevations has been determined to be approximately normal. This 
might facilitate predictive modeling of the elevation difference, hence allowing some coarse 
method of correction to the existing DEM. An assessment of the stationarity of this trend in 
time would first need to be made. 

While these results may not directly aid in the formulation of a melt model for the 
Imja glacier, understanding of the dynamics of the glacial surface is an important piece of 
modeling the dynamics of glacial lake formation. In this task, GIS has proven to be an 
indispensable tool. 
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