Exercise 5. Building ArcGIS Tools using Python
GIS in Water Resources, Fall 2014

Prepared by Anthony Castronova

Purpose

The purpose of this exercise is to illustrate how to build ArcGIS tools using the Python
programming language. This exercise will guide you through the processes of setting up
Python on your computer, installing required libraries, collecting data via ArcGIS
services, and building an ArcGIS tool. The purpose of the ArcGlIS tool is to provide you
with an example of how to manipulate shapefiles, iterate over raster datasets, execute
native ArcGIS tools, as well as define ArcGIS tool parameters. Overall, it will provide
guidance on how to build your own ArcGlIS tool. The tool outlined in this exercise will
trace a user-defined point downstream until it hits a watershed outlet.

Learning Objectives
* Understand how to setup and use Python on your own computer
* Students should be capable of basic shapefile and raster manipulation using the
Python programming language.
* The ability to extend ArcGIS tools to include custom algorithms
* Understand how to develop a Python script that operates within the ArcGIS
toolbox and utilizes input parameters from a user interface.

Computer and Data Requirements

To carry out this exercise, you need to have a computer that runs ArcGIS 10.2 or higher
and includes the Spatial Analyst extension. No data is required to start this exercise. All
the necessary data will be extracted from ArcGIS.com services. To use these services you
need an ArcGIS.com account that has been linked to an ArcGIS license.

This exercise is divided into the following activities:
1. Setting up Python and installing 3" party libraries
2. Data Collection
3. Model Building and Scripting

Part 1: Setting up Python and Installing 3" party libraries

If you have ArcGIS 10.2 installed on your computer, then you already have Python 2.7
installed as well. However, you PATH variables may also need to be adjusted so that
Python is recognized at the command-line. This is purely for running python outside of

ArcGIS, but it is useful for other applications such as integrated development

environments. Note: you will need administrative privileges to modify the PATH on you

computer.

Check to see if Python is already in your PATH by opening the command prompt and
typing python. If you get something like the following then you can skip down to

installing 3" party libraries.

® O 0O /3 tonycastronova — Python — 80x24

Last login: Mon Oct 27 16:13:53 on console

Tonys-MacBook-Pro-2:~ tonycastronova$ python

Python 2.7.6 (default, Nov 18 2013, 15:12:51)

[GCC 4.2.1 Compatible Apple LLVM 5.0 (clang-500.2.79)] on darwin

>>>

Type "help", "copyright", "credits" or "license" for more information.

Otherwise, click on the start menu, right click on Computer, and select Properties.

P
WL 1 Control Panel » System and Security » System

Control Panel Home . L. .
View basic information about your computer

®) Device Manager Windows edition

& Remote settings Windows 7 Professional

) System protection Copyright © 2009 Microsoft Corporation. All rights reserved.
#) Advanced system settings Service Pack 1

Get more features with a new edition of Windows 7

System
Rating: ?a Your Windows Experience Index needs to be refreshed
Processor: Intel(R) Core(TM) i7-4960HQ CPU @ 260GHz 2.59 GHz
Installed memory (RAM): 2,00 GB
System type: 64-bit Operating System
Pen and Touch: No Pen or Touch Input is available for this Display

Computer name, domain, and workgroup settings

Computer name: WIN-BJUSD315VD @ Change settings
Full computer name: WIN-BJUSD315VD
Computer description:
Workgroup: WORKGROUP

) Windows activation

See also
Windows is activated

Product ID: 00371-702-7581626-06912 Change product key

Action Center

Windows Update

Performance Information and Learn more online...
Tools

Next, select Advance System Settings. This will open the system properties
window (below).

System Properties [=]

I Computer Name] Hardware | Advanced lSystem Protection] Rematel

You must be logged on as an Administrator to make most of these changes.

Performance
Visual effects, processor scheduling, memory usage, and virtual memory

User Profiles
Desktop settings related to your logon

Startup and Recovery
System startup, system failure, and debugging information

OK | [Cancel || Apply

Click Environmental Variables. Find the variable labeled Path in the bottom
window and select edit. Proceed with caution: Deleting items from the variable
value field can effect your application and OS settings negatively.

Add the following paths at the end of the variable value textbox (replace with paths
on your computer!!!). Make sure you have semicolons between each path (including
the one in the front)

;C:\Python27\ArcGIS10.2\Scripts;C:\Python27\ArcGIS10.2;C:\Python27\ArcG
1S10.2\libs;

-~

Environment Variables Edit System Variable

U iables for Ti Castr
SEr vananes for fony Lastol Variable name: Path

Variable Value

TEMP %USERR
™P YUSERH [oK

Variable value: 7\ArcGIS10.2;C: \Python27\ArcGIS 10. 2\ibs

] [Cancel

| New.. || Edi..

System variables

Variable Value

0s Windows_NT

Path C:\Windows\system32;C:\Windows;C:\...
PATHEXT .COM; .EXE;.BAT;.CMD;.VBS;.VBE;.]S;....
PROCESSOR_A... AMD&4 N

| New.. || Edt. |[Deete |

[OK][Cancel]

Open an NEW command prompt, type python and enter. You should now see that
python has launched successfully.

Next, we can install a python package manager that will make installing 3" party
applications very easy. Navigate to https://pip.pypa.io/en/latest/installing.html and
download get-pip.py. Navigate to this directory using the command line.

Type python get-pip.py. This will install the pip application.

E¥ C:\Windows\system32\cmd.exe [~ ||-@ I@
Microsoft Windows [Uersion 6.1.760811] -

Copyright (c) 2009 Microsoft Corporation. All rights reserved.

m

C:\Users\Tony Castronova>cd C:\Users\Tony Castronova\Downloads

C:\Users\Tony Castronova\Downloads>

C:\Users\Tony Castronova\Downloads>c:\Python2?\ArcGIS168.2\python.exe get—pip.py
Downloading/unpacking pip

Downloading/unpacking setuptools

Installing collected packages: pip. setuptools

Successfully installed pip setuptools

Cleaning up...

C:\Users\Tony Castronova\Downloads>_

Install numpy using PIP: pip install numpy. Alternatively, you can download and install
it using an msi (http://sourceforge.net/projects/numpy/files/NumPy/) or bundled with
SciPY (http://www.scipy.org/Installing_SciPy).

xe

Microsoft Windows [Version 6.1.7601]
Copyright (c) 2009 Microsoft Corporation. All rights reserved.

C:\Users\Tony Castronova>pip install numpy

Requirement already satisfied (use --upgrade to upgrade): numpy in c:\python27\a
rcgis10.2\1lib\site-packages
Cleaning up...

4C:\Users\Tony Castronova>

Part 2: Data Collection

Connect to the ArcGIS hydrology server. We will use this to delineate a watershed.

Add ArcGIS Server

This wizard guides you through the process of
making a connection to an ArcGIS Server. You can
create a connection to use, publish, or administer
GIS services.

What would you like to do?
©) Use GIS services
(© Publish GIS services

(©) Administer GIS server

< Back

=

| ArcGIS Server User Connection Properties X
General
Server URL:
ArcGIS Server: http: //gisserver.domain.com:6080/arcgis
Authentication (Optional)
User Name: tcastronova
Password: ecocccoe
Save Username/Password
About ArcGIS Server connections

If added correctly, you should see the

following tools listed in ArcCatalog.

S| arcgis on hydro.arcgis.com_443 (user)

= E7 Tools

=9

Hydrology
% TraceDownstream
‘\ Watershed

Next, add a connection to the ArcGIS landscapel server. We will use this web service to

download and visualize National Hydrography Dataset (version 2) rivers. Use

https://landscapel.arcgis.com/arcgis/services as the URL. If added correctly, you will

see long list of datasets under the landscapel service in ArcCatalog.

EFCE] arcgis on landscapel arcgis.com 443 (usen)|
& £ Tools
& 7 Utilities
5@_ USA_Active_Quaternary_Faults
[2] USA_All_Fed_Lands
18] usa_Aquifers

ArcGIS Server User Connection Properties

General

2] usA_BLM_Lands
[2] USA_Coal_Bed_Methane _Basin

Server URL:

Authentication (Optional)

User Name: tcastronova

Password: bhdddd i
Save Username Password

About ArcGIS Server connections

ArcGIS Server: http: //gisserver.domain.com:6080/arcgis

(2] USA_Coal_Fields

2] USA_Critical_Habitat

@ USA_Earthquake_Risk

(2] USA_Flood_Risk

@ USA_Geology_Units

5@_ USA_Hazardous_Waste_Sites
(2] UsA_Historic_Sites

2] USA_NCED

(2] usa_NPDES

(2] UsA_NPS_Lands

(2] USA_Ntv_Lands

(2] USA_Oil_Shale_Basins
@ USA _Railroads

@ USA_Roads

(2 usa_Soils

(2 UsA_USFS_Lands

Cancel

Apply

12 USA_USFWS_Lands
2 USA_Wetlands
@_ USA_Wilderness_Areas

Finally, connect to the ArcGIS elevation web service. This will be used to downloading

elevation data for the exercise. Use http://elevation.arcgis.com/arcgis/services as the

URL. If added correctly, you will see a short list of tools and data available under the

elevation service in ArcCatalog.

ArcGIS Server User Connection Properties
General
Server URL:
ArcGIS Server: http: //gisserver.domain.com:6080/arcgis
Authentication (Optional)
User Name: tcastronova
Password: R
Save Username/Password
About ArcGIS Server connections

Cancel

Apply

B d] arcgis on elevation.arcgis.com (user)

= £ Tools
§ Elevation
§ ElevationSync
= EJ WorldElevation
@ DataExtents
@ Terrain

@ TopoBathy
B neD30m

Add some template data so that we can zoom into the location that we would like to
download data. Select the Add Data button:

DS @& L 58 x o B

e—

Navigate to the ArcGIS template data directory (C:\Program Files

(x86)\ArcGIS\Desktop10.2\TemplateData\TemplateData.gdb\USA) and add US cities,
interstates, and states.

 Add Data (23]
Look in: [‘E‘leSA v]%{bu‘}|§'|ﬂ|&lfj&

&) counties
1~ landbnds
B neighcountry

1B us_lakes
) us_rivers
“J usabln

Name: cities; intrstat; states

Show of type:

Datasets, Layers and Results v] [Cancel]

The map should now look like this:

Zoom into Logan, UT. Use the Identify tool to determine which of these dots is Logan.
This will give us an idea of where we are, before we start loading ArcGIS web service

datasets.

Identify

Identify from:

[=-U.S. Cities
Logan

Location:

I <Top-most layer>

-109.527213 40.319706 Decimal Degrees

Field

OBJECTID
Shape
CITY_FIPS
CITY_NAME
STATE_FIPS
STATE_NAME
STATE_CITY
TYPE
CAPITAL
ELEVATION
POP1990

Value

712
Point
45860
Logan
49
Utah
4945860
dty

N
4535
32762

Add the NHDPIlus (version 2) data set from the landscapel.arcgis.com web service.

(@ ysa_NCED
]

[E usa_NPDES

(B ysA_NPS_Lands

(Bl usA_Ntv_Lands

(Bl usA_0il_Shale_Basins

We are only interested in the stream data, so turn off all NHD layers except Streams.
This will help speed up the data load time. The layers in your table of contents should
look like this:

= £ My Data
= USA_NHDPlusV2
D Sinks
[0 NHD Waterbodies
[0 NHD Areas
NHD Streams Mean Annual Flow
= U.S. Cities
o
= U.S. National Transportation Atlas Interstate

=] U.S. States (Generalized)
]

10

Now that we have the NHD rivers loaded, we can zoom into Right Hand Fork.

Identify
- Identify from: | <Top-most layer> R ~ o
' =) NHD Streams Mean Annual Flow — T~ 7" “ N
- Right Fork Logan River -
Em|
Location: -111.633275 41.780751 Decimal Degrees =
] i .

| Field Value = oy

OBJECTID Null =

ComID 664348 L

GNIS Name Right Fork Logan River

Length (km) 1.958

Reach Code 16010203000538
L Flow Direction With Digitized

To delineate a watershed at Right Hand Fork, we will use the ArcGIS online watershed
delineation tool. Double click on the ArcGIS server watershed tool.

= &7 arcgis on hydro.arcgis.com_443 (user)
= £ Tools

= Q Hydrology
‘(\ TraceDownstream

g \Vatershed

11

Select an input point near the outlet of Right Hand Fork (see green dot on map). Don’t
get too close to the Logan river (downstream), or the delineation tool will snap the

outlet to the wrong reach. To ensure that this does not happen, you may have to adjust
the snap distance (try 100 meters)

) %

‘\ Watershed

Input Points

l Watershed:InputPoints
¢ InputPoints

Point Identification Field (optional)
Snap Distance (optional)
Snap Distance Units (optional)

Meters
Data Source Resolution (optional)

[7] Generalize Watershed Polygons (optional)

Retum Snapped Points (optional)

-

[ok

] [Cancel] [Environments...] [Show Help >>]

N

X

7

A~~~

12

This operation will result in the Right Hand Fork watershed. Go ahead and turn off all
unnecessary layers and change the watershed color to something more meaningful.

Right Hand Fork

13

Add NED30m elevation from the elevation.arcgis.com server.

= & arcgis on elevation.arcgis.com (user)
= £ Tools
g Elevation
g ElevationSync
= EJ WorldElevation
DataExtents

@ Terrain

@ TopoBathy

Right Hand Fork

14

Next we want to extract the elevation data within the boundary of our watershed. This
will make future data processing faster since we will be using a small subset of the
national elevation dataset. In addition, this file will be stored locally so we won’t need
an Internet connection to perform our processing tasks. To do this, open the search
menu and enter “Extract”. Make sure to choose the search by “Tools” option above the
search textbox. This will limit the search results ArcGIS tools. Since we are dealing with
elevation data from an ArcGIS server, we want to select the “Extract Data (server)” tool.

Search 2
€% @ 2 |E -~ [Locsl Search

ALL Maps Data Tools Images

o]
g
]

3 Extract Data

Layers to Clip

>
IExtract | Q E
Any Extent v <»NED30m
Search returned 33 items v SortBy v

@ Server (Toolbox)
The Server toolbox contains tools to manage ArcGI...
toolboxes\system toolboxes\server tools.tbx

CIEEIE IR

@ Data Interoperability (Toolbox)
The Data Interoperability toolbox contains a set of t...
toolboxes\system toolboxes\data interoperability to...
Area of Interest
& Extract (Toolset)

Summary: not available. | ﬂ
toolboxes\system toolboxes\analysis tools.tbx\extr... watershed (=)
Area_of_Interest|
& Extract (Toolset) [l "
Summary: not available.
toolboxes\system toolboxes\coverage tools.tbx\ana...
2\ Feature Format
§ Extraction (Toolset) Fie Geodatabase - GDB - .gdb
Summary: not available.
toolboxes\system toolboxes\spatial analyst tools.tb... Raster Format
ESRI GRID - GRID
& Data Extraction (Toolset) Spatial Reference
Summary: not available.
. . Same As Input
toolboxes\system toolboxes\server tools.tbx\data e...
Custom Spatial Reference Folder (optional)
& Extract Data (Server) (Tool)
Extracts selected layers in the specified area of int...
toolboxes\system toolboxes\server tools.tbx\data e... Output Zp Fie
Z:\windows_s cse 10_28_14\example_data\el zip
Spa Extract Data Task (Server) (Tool)
Extracts the selected layers in the specified area o...
toolboxes\system toolboxes\server tools.tbx\data e...
}u Extract Data and Email Task (Server) (Tool) -
ok | cancel | [Environments... | [Show Help >>

Extracts the data in the specified layers and area ...
toolboxes\system toolboxes\server tools.tbx\data e...

Select the NED 30m elevation raster as the layer to clip. The Area of Interest that will be
used to extract the data (i.e. cookie cutter) should be the watershed that you delineated
in previous steps. Leave the default options for Feature Format, Raster Format, Spatial
Reference, and Custom Spatial Reference Folder. Specify an output ZIP file where the
extracted data will be saved.

15

Open Windows Explorer and navigate to the directory of your output ZIP. Extract the
contents, and you should now have an elevation dataset that covers only the watershed
area.

Part 3: Model Building and Scripting

The goal of our scripting tool is to trace any point within the watershed downstream to
the watershed outlet. This can later be modified to provide statistics regarding the flow
path. This example will demonstrate (1) how ArcGIS tools can be used to create a
custom model, (2) how to include custom data processing and functionality, and (3) how
to build the ArcGIS tool interface for a custom tool.

Activate the ArcToolbox by clicking E . Create a new toolbox by right clicking inside
the window and selecting Add Toolbox from the context menu. This will open a dialog
for you to search for an existing toolbox. Instead, navigate to any directory that you like

&

and select the create New Toolbox button in the top right corner

16

Add Toolbox

Look in:

| Home - Exercise 10_28_14¥xar v & fr (@ | E

[elevation

Name:

Show of type:

Toolbox. thx

Toolboxes

i

After creating your toolbox (i.e. Exercise 5), right click on it and select New -> Model.

[l ArcToolbox

& 3D Analyst Tools

&3 Analysis Tools

&3 Cartography Tools

° Conversion Tools

&) Data Interoperability Tools

&) Data Management Tools

&3 Editing Tools
oEEE

& Geocoding Tools

&) Geostatistical Analyst Tools

&3 Linear Referencing Tools

° Multidimension Tools

& Network Analyst Tools

&3 Parcel Fabric Tools

&3 Schematics Tools

° Server Tools

&) Spatial Analyst Tools

&) Spatial Statistics Tools

&3 Tracking Analyst Tools

You will end up with an empty model. Drag and drop the Fill tool onto the canvas, along

with the clipped elevation raster.

p
43 Model
Model

Edit Insert View Windows Help

ES SAB X9 DB RO RSP

e ==]

>

m

n

»

17

From the menu, select Model -> Export -> To Python Script. Open the export Python file
to view the code that was written for us by ArcGIS. This is an easy way to extend a
model that you have already created.

—%- coding: utf-8 —*-

trace_point_douwnstream.py

Created on: 2014-10-27 14:23:28.00000

(generated by ArcGIS/ModelBuilder)

Description:

—— s e o e o - ————

Import arcpy module
import arcpy

Check out any necessary licenses
arcpy.CheckOutExtension("spatial™)

Local wvariables:
ned30m = "ned30m"
Fill_ned30mil = "C:\\Users\\Tony Castronova\\Documents\\ArcGIS\\Default.gdb\\Fill_ned30mi"

Process: Fill
arcpy.gp.Fill_sa(ned30m, Fill_ned30mi, "")

Notice that there are some strange variable names. Lets modify this code so that the
variable names make a little more sense and fix the file paths. Also import the numpy,
and math libraries which we will need later.

18

Import arcpy module

print ’importing arcpy (this takes a while)...’
import arcpy

from arcpy import env

from arcpy.sa import *

import numpy

import math

Check out any necessary licenses
arcpy.CheckOutExtension("spatial™)
env.overwriteOutput = True

Local wvariables:
ned30m = "Z:/windows_shared/exercise 10_28_14/example_data/elevation/zipfolder/ned30m"
fill_outpath = "Z:/windows_shared/exercise 10_28_14/example_data/fill"

Process: Fill

print ’Run Fill!’

outFill = Fill(ned30m, "")
outFill.save(fill_outpath)
#arcpy.gp.Fill_sa(ned30m, fill_outpath, "")

print ’done’

Lets run this code and see what kind of output we get. If the script ran successfully, we
should have a new raster called fill that can be opened in ArcMap. Note: the original
script used the gp.Fill_sa tool whereas the documentation states that we should use the
arcpy.sa.Fill tool. If you encounter this, | suggest that you use the tools outlined in the
ArcGIS documentation.

Next, lets calculate flow direction. To determine the syntax for this operation we can
google “ArcGlIS Flow Direction”:
http://help.arcgis.com/en/arcgisdesktop/10.0/help/index.html#//009200000052000000
.htm

19

Import arcpy module

print ’importing arcpy (this takes a while)...
import arcpy

from arcpy import env

from arcpy.sa import *

import numpy

import math

Check out any necessary licenses
arcpy.CheckOutExtension("spatial")

env.overwriteOutput = True

Local wvariables:

ned30m = "Z:/windows_shared/exercise 10_28_14/example_data/elevation/zipfolder/ned30m"

f£ill_outpath = "Z:/windows_shared/exercise 10_28_14/example_data/fill"
fdr_outpath = "Z:/windows_shared/exercise 10_28_14/example_data/fdr"

Process: Fill

print ’Run Fill!’

outFill = Fill(ned30m, "")
#outFill.save(fill_outpath)

Prcess: FDR

print ’Run FDR!’

outFlowDirection = FlowDirection(outFill, "NORMAL")
outFlowDirection.save(fdr_outpath)

print ’done’

Added

Modified

Added
Added
Added

Notice that the output from the fill operation was not Saved, but it can still be used in
the following step! This is because it is saved temporarily in memory. We can utilize
this feature to “hide” intermediary processing outputs. Lets look at the output from the

flow direction process.

20

Now that we have some of the basic raster processing done, lets create a point that can
be traced to the outlet. This will be hardcoded for now, but we can change it to a user
input later.

Import arcpy module

print ’importing arcpy (this takes a while)...’
import arcpy

from arcpy import env

from arcpy.sa import *

import numpy

import math

Check out any necessary licenses
arcpy.CheckOutExtension("spatial")
env.overwriteOutput = True

Local wvariables:

ned30m = "Z:/windows_shared/exercise 10_28_14/example_data/elevation/zipfolder/ned30m"
£ill_outpath = "Z:/windows_shared/exercise 10_28_14/example_data/fill"

fdr_outpath = "Z:/windows_shared/exercise 10_28_14/example_data/fdr"

create a point object # Added
my_x = -1216071.141 # Added
my_y = 307660.098 # Added
pnt = arcpy.Point(my_x, my_y) # Added

Process: Fill

print ’Run Fill!’

outFill = Fill(ned30m, "")
#outFill.save(fill_outpath)

Prcess: FDR

print ’Run FDR!’

outFlowDirection = FlowDirection(outFill, "NORMAL")
outFlowDirection.save(fdr_outpath)

In order to relate this point coordinate with the raster data, we need to do two things:
(1) represent the raster grids as arrays of data, and (2) convert the x,y point coordinate
into array indices. To convert the raster grids (i.e. fill and fdr) into arrays, we use the
numpy library, specifically RastertoNumPyArray.

21

Import arcpy module

print ’importing arcpy (this takes a while)...’
import arcpy

from arcpy import env

from arcpy.sa import *

import numpy

import math

Check oul any necessary licenses
arcpy.CheckOutExtension("spatial™)
env.overwriteOutput = True

Local wvariables:

ned30m = "Z:/windows_shared/exercise 10_28_14/example_data/elevation/zipfolder/ned30m
f£ill_outpath = "Z:/windows_shared/exercise 10_28_14/example_data/fill"

fdr_outpath = "Z:/windows_shared/exercise 10_28_14/example_data/fdr"

create a point object

my_x = -1216071.141

my_y = 307660.098

pnt = arcpy.Point(my_x, my_y)

Process: Fill

print ’Run Fill!’

outFill = Fill(ned30m, "")
#outFill.save(fill_outpath)

Prcess: FDR

print ’Run FDR!’

outFlowDirection = FlowDirection(outFill, "NORMAL")
outFlowDirection.save(fdr_outpath)

convert rasters to arrays # Added
fdr = arcpy.RasterToNumPyArray(outFlowDirection, nodata_to_value=0) # Added
fill = arcpy.RasterToNumPyArray(outFill, nodata_to_value=0) # Added

print ’done’

If you print the value of the fdr value you will see this:

>>> fdr

array([[0, 0,0, ..., 0,0, 0],
[0,00,..,00,0],
[0,00,..,00,0],

[0,0,0,..,00,0],

[0,00,..,00,0],

[0,0,0,...,0,0, 0]], dtype=uint8)

22

It looks like there are lots of O’s, however this is just because we are seeing a small
subset of the data. In fact most of the cells near the edge of the raster will be zero. Lets
look at some values elsewhere:

>>>fdr[100:110, 100:110]

array([[2, 4, 8, 4, 4, 4, 4, 4, 8,16],
[1, 4,16, 4, 4, 4, 4, 4, 8, 4],
[1, 2, 4, 4, 4, 4, 4, 8, 8, 4],

[2, 1,2, 2 4 4, 4,8, 4, 8],

[2,1,2, 2, 2 4 4,8, 8, 8],

[1, 2,2, 1,2, 4, 8,16, 8, 16],

[1, 2, 1,2, 2, 4, 8,16, 16,32],

[2, 2, 4, 2, 4, 8,16, 16, 16, 32],

[2, 1,2, 2, 4, 8,16, 16,32, 16],

[1, 1, 2, 1, 4, 16, 16, 32, 32, 16]], dtype=uint8)

Before we do anymore processing of the raster data, we need to extract some metadata
that will enable us to loop over the raster cells. The numpy arrays only contain raster
values, so we will need to use the ArcGIS Raster type to retrieve this information.

convert rasters to arrays
fdr = arcpy.RasterToNumPyArray(outFlowDirection, nodata_to_value=0)
fill = arcpy.RasterToNumPyArray(outFill, nodata_to_value=0)

create raster object to get metadata
upperLeft = outFill.extent.upperLeft
ux = upperlLeft.X

uy = upperlLeft.Y

cell_width = outFill.meanCellWidth
cell_height = outFill.meanCellHeight

23

We can transform our point coordinates into array indices, now that we have the upper

left (x,y), cell width, and cell height. This will enable us to access the raster value of the

cell associated with our point.

convert rasters to arrays

fdr = arcpy.RasterToNumPyArray(outFlowDirection, nodata_to_value=0)

fill = arcpy.RasterToNumPyArray(outFill, nodata_to_value=0)

create raster object to get metadata
upperLeft = outFill.extent.upperLeft
ux = upperLeft.X

uy = upperLeft.Y

cell_width = outFill.meanCellWidth
cell_height = outFill.meanCellHeight

convert point coordinates into raster indices

¢ = abs(int((ux - pnt.X) / cell_width))
r = abs(int((uy - pnt.Y) / cell_height))

Lets see where our point lives in the raster array:

>>> (pnt.X,pnt.Y), '--->',(c,r)
((-1216071.141, 307660.098), '--->', (62, 210))

Now we are ready to start moving our point around within the raster. Specifically, we

want to move our point from its current location (62,210) to the next downstream cell.
In order to accomplish this, we need to add a function at the top of our script to check
the value of our flow direction grid and move the point accordingly. Place this function

right below the import statements.

24

def move_to_next_pixel(fdr, row, col):

get the fdr pizel value (z,y)
value = fdr[row, coll]

#
32 | 64 | 128 |
#/ 16 | x | 1 |
#/ 81 4 | 2 |
#

move the pizel

if value == 1:
col += 1

elif value == 2:
col += 1
row += 1

elif value == 4:
row += 1

elif value == 8:
row += 1
col =1

elif value == 16:
col =1

elif value == 32:
row -= 1
col =1

elif value == 64:
row -= 1

else: #value == 128:
row -= 1
col += 1

return (row, col)

This function takes in three arguments: fdr (flow direction array), row (current row
index), col (current col index). The first thing that it does is extract the value of the flow
direction grid at the current (row, col) location. It then checks this value against all the
possible flow direction combinations to determine the next downstream neighbor. It
increments the current (row, col) pair and returns the result.

25

Lets pass in the coordinates of our point and see which direction our cell will flow.

>>>r,C
(210, 62)

>>> move_to_next_pixel(fdr, r, c)

(210, 63)

We can verify this by loading the flow direction raster into ArcMap.

GoToXY (Meters)
0@+ e85

X: -1,216,071.141

Y:

307,660.098

26

GoToXY (Meters)
NE e g =

X: -1,216071.141

v

307,660.098

Identify

Identify from: | <Top-most layer>
- fr
1

Location: -1,215,678.974 307,404.166 Meters

Field Value
pixel value 1
Rowd 0
COUNT 10187

Identified 1 feature

27

Lets can modify our code to repeat this process until the point moves beyond the extent
of our raster grid (e.g. through the outlet). In order do so, we need to create a loop that

will run until the value at location (r,c) is equal to NoDATA (in this case 0).

convert rasters to arrays

fdr = arcpy.RasterToNumPyArray(outFlowDirection, nodata_to_value=0)

fill = arcpy.RasterToNumPyArray(outFill, nodata_to_value=0)

create raster object to get metadata
upperLeft = outFill.extent.upperLeft
ux = upperLeft.X

uy = upperLeft.Y

cell_width = outFill.meanCellWidth
cell_height = outFill.meanCellHeight

convert point coordinates into rastier indices

¢ = abs(int((ux - pnt.X) / cell_width))
r = abs(int((uy - pnt.Y) / cell_height))
z = fill[r,c]
while (z != 0):

pass

This loop will continue to run while the value of z does not equal O (i.e. no data value).

Currently, this loop will run indefinitely because z is not changing inside the loop. Lets

add some code to fix this by moving (r,c) to its downstream neighbor.

28

convert rasters to arrays
fdr = arcpy.RasterToNumPyArray(outFlowDirection, nodata_to_value=0)
fill = arcpy.RasterToNumPyArray(outFill, nodata_to_value=0)

create raster object to get metadata
upperLeft = outFill.extent.upperLeft
ux = upperLeft.X

uy = upperLeft.Y

cell_width = outFill.meanCellWidth
cell_height = outFill.meanCellHeight

convert point coordinates into raster indices

¢ = abs(int((ux - pnt.X) / cell_width))
r = abs(int((uy - pnt.Y) / cell_height))
z = fill[r,c]

while (z != 0):
r,c = move_to_next_pixel(fdr, r, c)

This code will move the point (r,c) to its downstream neighbor, and continue to do so
until we reach the watershed outlet. Unfortunately, we have no output to visualize.
Lets save these points in a list and then create a shapefile that we can visualize in
ArcMap.

29

convert rasters to arrays
fdr arcpy.RasterToNumPyArray(outFlowDirection, nodata_to_value=0)
fill = arcpy.RasterToNumPyArray(outFill, nodata_to_value=0)

create raster object to get metadata
upperLeft = outFill.extent.upperLeft
ux = upperLeft.X

uy = upperLeft.Y

cell_width = outFill.meanCellWidth
cell_height = outFill.meanCellHeight

convert point coordinates into raster indices

¢ = abs(int((ux - pnt.X) / cell_width))
r = abs(int((uy - pnt.Y) / cell_height))
z = fill[r,c]

while (z != 0):
move dounstream
last_ r = r
last_c = ¢
r,c = move_to_next_pixel(fdr, r, c)

adjust = and y

pntX += (last_c-c)*cell_width
patY += (last_r-r)*cell_height
z = fill[r,c]

save this coordinate
coords.append ((pntX,pntY,z))

write the output to tezt file
with open(’coords.txt’,’w’) as f:
for ¢ in coords:
f.write(’%5.5f, %5.5f, %5.5f\n’ % (c[0],c[1],c[2]))

To visualize our output in ArcMap, add the coords.txt file to an ArcMap document.
Right click on it and select Display X,Y data. Choose Field1 as the X field and Field 2 as
the Y field. You can also symbolize these points by their elevation, Field 3

Add Data @
Look in: [El scripting v‘ a" =
Name: coords. txt
Show of type: [Dataseﬁs, Layers and Results '] [Cancel]

Display XY Data

A table containing X and Y coordinate data can be added to the
map as a layer

Choose a table from the map or browse for another table:

I coords.txt

Specify the fields for the X, Y and Z coordinates:

X Field: Field1 -
vRed T -
Z Field: <None> v

Coordinate System of Input Coordinates
Description:

Projected Coordinate System: -
Name: NAD_1983_Albers

Geographic Coordinate System:
Name: GCS_North_American_1983

< »

Warn me if the resulting layer will have restricted functionality

[] show Details

==

About adding XY data [oK] [Cancel

]

oeee®®
1,216.071.141, 307 660.098

eses®
-1,216,071.141, 307,660.098

31

Since point text file is not an ideal output, lets format it as a PolyLine Shapefile,
http://help.arcgis.com/en/arcgisdesktop/10.0/help/index.html#//00170000002p00000
0. In the code snippet below, we first create the polyline feature class that will hold our

results. Next we loop over our coordinates are create line segments between each pair.
These line segments are then added to the feature class as a polyline.

create the output feature class
arcpy.CreateFeatureclass_management(’.’,’path.shp’, "POLYLINE")

define the point and line segment objects
point = arcpy.Point()
line_seg = arcpy.Array()

featureList = []
cursor = arcpy.InsertCursor(’path.shp’)
feat = cursor.newRow()

for i in range(1, len(coords)-1):
Set X and Y for start and end poinis
point.X = coords[i-1] [0]
point.Y = coords[i-1] [1]
line_seg.add(point)
point.X = coords[i] [0]
point.Y = coords[i] [1]
line_seg.add(point)

Create a Polyline object based on the array of points
polyline = arcpy.Polyline(line_seg)

Clear the array for future use
line_seg.removeAll()

Append to the list of Polyline objects
featureList.append(polyline)

Insert the feature
feat.shape = polyline
cursor.insertRow(feat)
del feat
del cursor

32

-1,216,071.141, 307,660.098

33

Now that we have some python code that traces a path downstream of any location, we
can add some ArcGlIS inputs so that it can be used easily.

First create a symbolic layer, which will be used in the next step, to assign a theme to
one of our inputs. This will also allow us to incorporate an interactive point input
selection feature. To do this, right click inside ArcCatalog and select New -> Shapefile.
Set a name for this file (e.g. my_point.shp) and set the feature type to Point. Change
the symbology of this point however you would like. Lastly, right click on the
my_point.shp in the Table of Contents and select Save as Layer File.

Create New Shapefile @
Name: my_point
Feature Type: Point v]

Spatial Reference

Description:

Unknown Coordinate System -
4)

(] Show Details

(| Coordinates will contain M values. Used to store route data.
(| Coordinates will contain Z values. Used to store 3D data.

QK] [Cancel

34

Save Layer

Look in: [ﬁ data

[extract_by_mask_elevation
£ extract_elevation

v symbology.lyr

Save as type: [Layer files (%.lyr) v] [Cancel]

Now lets add our new script to the ArcGIS toolbox, so that we can run it like any other
tool. Right click on your toolbox (e.g. Exercise5) and select Add -> Script. Give it a name
and a label, then select next. Specify the location of the python file.

Script1 Properties @ Add Script
General | Source | P [Vaidation [Help_|
Script File:

Name:

TraceDownStream Z:\windows_shared\exercise 10_28_14\example_data\scrip’
Label: Show command window when executing script

TraceDownStream Run Python script in process
Description:

-

Stylesheet:

[store relative path names (instead of absolute paths)
Always run in foreground

< Back ” Next >][Cancel]

ok) [concel [emy |

35

Now lets add some input parameters. The first input parameter will be the start point

of the trace operation. Specify a Display Name (such as StartPoint) and set the datatype
to FeatureSet. Next select the Schema property and set its value to the symbology layer
that we created in the previous step. (e.g. symbology.lyr)

Lets also add parameters for Elevation (input), Fill (output), Flow Direction (output),

Add Script
Display Name Data Type
€ StartPoint Feature Set

Click any parameter above to see its properties

Parameter Properties

==
Look in: lif]data ']@{l}j‘g"ﬂ“;—lJ"

(=] extract_by_mask_elevation] watershed.shp
E5 extract_elevation

&) buffer_pt.shp

-7 Export_Output.shp

) my_point.shp
- pt.shp

Name: symbology.lyr -m

Show of type: [v} [Cancel]

Property
Type
Direction
Multivalue
Schema
Environment

Filter
Ahtzinad fram

Value
Required
Input
No

None

m

(P

To add a new parameter, type the name into an empty row in the
name column, dick in the Data Type column to choose a data type,

then edit the Parameter Properties.

< Back H Finish][Cancel

and Path (output). Make sure that the direction parameter for the last three are set to

Output.

36

TraceDownStream Properties @

Parancters |Vadaion | o

Display Name Data Type
Start Point Feature Set
€ Elevation Raster Dataset
Filled Elevation Raster Dataset
Flow Direction Raster Dataset
Path Shapefile

Click any parameter above to see its properties below.

Parameter Properties

Property Value ol
Type Required

Direction Input =
Multivalue No

Default

Environment bl
Filter None

Nhtsinad fram

To add a new parameter, type the name into an empty row in the
name column, dlick in the Data Type column to choose a data type,
then edit the Parameter Properties.

(_ok J[Cancel |[oy]

Now we need to add some code to our python script to utilize these parameters. We
use the arcpy.GetParameter(index) function to grab user inputs from the ArcGIS Ul.
The following snippet gets the first parameter (i.e. Start Point) as a feature set, and
extracts the (x,y) coordinates. This code should be placed directly under the
move_to_next_pixel(fdr, row, col) function.

fs = arcpy.GetParameter (0)
if fs == ’#’ or not fs:
fs = "in_memory\\{87AF799A-1608-483B-9022-3AA58EFEF329}" # provide a default value if unspecified

create feature set
f = arcpy.FeatureSet(fs)

parse out the geometry

geom = json.loads(f.JSON) [’features’] [0] [’geometry’]

pat = arcpy.Point(geom[’x’], geom[’y’])

arcpy.AddMessage(’Selected Point = (Y5.3f,%5.3f)’% (geom[’x’], geom[’y’]))

37

Next, lets add some code to get the rest of our inputs and outputs:

get elevation input
elevation = arcpy.GetParameterAsText (1)

get output fill path
fill_outpath = arcpy.GetParameterAsText(2)

get output fdr path
fdr_outpath = arcpy.GetParameterAsText(3)

get output trace path
trace_outpath = arcpy.GetParameterAsText(4)

Since we are getting these parameters from ArcGIS, we need to remove our old
har