GIS in Water Resources Exercise \#3 Solution

Part 1. Slope Calculations
1.1 Hand Calculation (Point A only):
(i) ESRI Slope

45.4	46.1	47	48.6	47.7
45	46.1	$46.4 ~ B$	47.9	47.4
45.1	45.8	46.8 A	48.6	47.6
47.5	48	47.7	50.6	48.3

Cell Referencing

a	b	c
d	e	f
g	h	i

Equations:
c_size $=10 \mathrm{~m}$
$\mathrm{dz} / \mathrm{dx}=((\mathrm{a}+2 \mathrm{~d}+\mathrm{g})-(\mathrm{c}+2 \mathrm{f}+\mathrm{i})) / 8^{*} \mathrm{c}$ _size
$=\left(\left(46.1+2^{*} 45.8+48\right)-\left(47.9+2^{*} 48.6+50.6\right)\right) /\left(8^{*} 10\right)=-0.125$
$\mathrm{dz} / \mathrm{dy}=((\mathrm{g}+2 \mathrm{~h}+\mathrm{i})-(\mathrm{a}+2 \mathrm{~b}+\mathrm{c})) / 8^{*}$ c_size

$$
=((46.1+2 * 46.4+47.9)-(48+2 * 47.7+50.6)) /(8 * 10)=0.09
$$

These represent the x and y components of the slope vector shortened as follows
$\Delta \mathrm{x}=\mathrm{dz} / \mathrm{dx}=-0.125$
$\Delta y=d z / d y=0.09$
slope $($ rise $/$ run $)=\operatorname{sqrt}\left(\Delta x^{\wedge} 2+\Delta y^{\wedge} 2\right)=\operatorname{sqrt}\left((-0.125)^{\wedge} 2+(0.09)^{\wedge} 2\right)=0.154$
slope $($ angle $)=\operatorname{atan}($ slope $($ rise $/$ run $))=\operatorname{atan}(0.154)=0.153$ rads $=8.76$ degrees
Note: degrees = rads * 180/ π. Calculators can be set to return rads or degrees. Excel and computer programs usually return rads.
aspect $=\operatorname{atan}(\Delta x / \Delta y)=\operatorname{atan}(-0.125 / 0.09)=-0.95$ rads $=-54.2$ degrees
This is an angle in the NW quadrant since x component is negative and y component positive. Add 360 degrees to get the angle clockwise from north
aspect $=360+(-54.2)=305.75$

The following Excel Object includes the formulae. You can double click on this to open this object in Excel.

(i) ESRI Standard Slope Function							
Grid size	10	m					
45.4	46.1	47	48.6	47.7	$d z / d x=$	-0.125	
45	46.1	46.4	47.9	47.4	$d z / d y=$	0.0900	
45.1	45.8	46.8	48.6	47.6			
47.5	48	47.7	50.6	48.3	rise/run=	0.154029	
					Slope=	0.152828	radians
						8.756408	degree
					Aspect	-0.94677	radians
						-54.2461	degree
			Result as angle clockwise from North			305.7539	degree
(This is an Excel Object so you can click on it to see the formulas)							

(ii) The 8 direction pour point model D8

Slope is calculated separately to each adjacent grid cell using the formula Slope $=($ Center elevation - Side elevation)/Distance
Distance to diagonal side cells is the diagonal distance $\sqrt{2} *$ cell size
The following Excel object includes these calculations.

ii) D8	Center cell	46.8						
Distances	Side	10	Diagonal	14.14214				
Direction	Value	Distance	Slope					
1	48.6	10	-0.180		Direction E	coding		
2	50.6	14.142	-0.269		32	64	128	
4	47.7	10	-0.090		16	-	1	
8	48	14.142	-0.085		8	4	2	
16	45.8	10	0.100	Maximum (positive down) slope to cell in direction 16				
32	46.1	14.142	0.049					
64	46.4	10	0.040					
128	47.9	14.142	-0.078					
(This is an Excel Object so you can click on it to see the formulas)								

Note that the steepest 8 direction pour point model slope in direction 16 is:

$$
\frac{\text { centercell }- \text { sidecell16 }}{\text { cellsize }}=\frac{46.8-45.8}{10}=0.10
$$

D8 Slope: 0.1
D8 Direction: 16

Differences

Represented as an aspect the D8 direction would be 270 degrees, but simply stating the direction as 16 or to the W is sufficient.

The main difference is that the ESRI slope considers all 8 surrounding grid cell values, and curiously, not the actual grid cell value. It represents the slope of a polynomial surface fit to all these grid cells. The D8 method only considers adjacent elevations lower than the center cell which is consistent with the assumption of where water would flow not being influenced by adjacent neighbors that are higher.

The D8 flow direction is to the W, while the ESRI slope aspect is to the NW significantly influenced by the cell with value of 50.6 to the SE. The ESRI slope is probably most appropriate for computation of quantities such as illumination due to sunlight in energy balance calculations where the slope of the surface fit based on all surrounding values seems best, but for the flow of water, the D8 method is better.
1.2 Verifying calculations using ArcGIS

The values at cell A of Slope $=15.4 \%$, Aspect $=305.8$ deg, PercDrop $=10 \%$ and FlowDir=16 correspond to the hand calculations

Cell A vs. Cell B (zoomed-in view of below identification in ArcGIS Pro):

CELL A

4 elev.asc
D 46.799999
4 slope
D 15,402920
4 aspect
D 305.753876
4 FlowDir
D 16
4 PercDrop
D 10.000000

CELL B

4 elevasc
D 46,400002
4 slope
D 11.159364
4 aspect
D 265.502838
4 FlowDir
D 8
4 PercDrop
D 3.333333

At cell A:

At cell B:

2. Summary of ArcGIS Calculated:

Point	Slope (\%)	Aspect (deg)	D8 Slope (\%)	Flow Dir (D8)
A	15.4	305.8	10	16
B	11.2	265.5	3.33	8

Note that if you look at the data underlying D8 slope at B you have

46.1	47	48.6
46.1	46.4	47.9
45.8	46.8	48.6

The percentage drop in direction 8 (indicated with arrow) should thus be (46.4-45.8)/(SQRT(2)*10) $=0.0424=4.24 \%$

The fact that the ArcGIS function is reporting 3.33% is, I believe, a bug. Buyer beware!

3. Model Builder Output

4. Table: Summary of Demo.asc Ouputs

Layer	Min	Max
Slope	0	149
Aspect	-1	360
Flow Dir	1	128
PercDrop	0.066	146.6

-1 for aspect is used to represent flat grid cells
5. DEM Summary (projdem.tif)

Rows: 2745
Columns: 4222
Cell Size: 30×30
Min: 69.7651
Max: 618.532
6.

7.

8. Subwatershed Elevation Summary

HydroID	SiteName	Elev. Range (m)	Elev Mean (m)
330	Plum Ck at Lockhart, Tx	137.72	189.86
331	Blanco Rv at Wimberley, Tx	372.98	418.48
332	Blanco Rv nr Kyle, Tx	215.84	288.57
333	San Marcos Rv at San Marcos, Tx	218.47	266.11
334	Plum Ck nr Luling, Tx	115.88	151.94
335	San Marcos Rv at Luling, Tx	311.96	183.53

Highest: Blanco Rv at Wimberley, TX
Largest Range: Blanco Rv at Wimberley, TX
9. Area Average Precipitation using Thiessen Polygons

HydroID	SiteName	SubW Precip (in)
330	Plum Ck at Lockhart, Tx	36.37
331	Blanco Rv at Wimberley, Tx	37.83
332	Blanco Rv nr Kyle, Tx	40.48
333	San Marcos Rv at San Marcos, Tx	40.48
334	Plum Ck nr Luling, Tx	36.52
335	San Marcos Rv at Luling, Tx	37.59

The highest mean precipitation is found for the San Marcos River at San Marcos and Blanco River near Kyle watersheds. These are identical, because they are both in the same polygon.

10. Area average mean annual precipitation using Spatial Interpolation/Surface fitting (Tension Spline Method)

HYDROID	SiteName	Precip (inches)
330	Plum Ck at Lockhart, Tx	36.22
331	Blanco Rv at Wimberley, Tx	37.89
332	Blanco Rv nr Kyle, Tx	39.79
333	San Marcos Rv at San Marcos, Tx	39.66
334	Plum Ck nr Luling, Tx	36.46
335	San Marcos Rv at Luling, Tx	37.99

Blanco Rv nr Kyle, TX has the highest mean precipitation estimated from Tension Spline Interpolation.

