1. Problem 1

- a. North American Datum of 1983
- b. Albers Equal Area Conic
- c. USA Contiguous Albers Equal Area Conic: Note: Maps displayed using Web Mercator view are also acceptable.

North American Albers Equal Area Conic:

d. Manual Calculation

i. South of the Latitude of Origin:

$$\Delta L_{lat} = R_e \Delta \phi = 6371.0 km * (37.5^{\circ} - 30.2861^{\circ}) * \left(\frac{\pi}{180^{\circ}}\right) = 802.149 km$$

ii. West of the Central Meridian:

 $\Delta L_{lon} = R_e \Delta \lambda \cos \phi = 6371.0 km * (97.7394^\circ - 96^\circ) * \left(\frac{\pi}{180^\circ}\right) * \cos\left(30.2861^\circ * \frac{\pi}{180}\right) = 167.015 km$

e. UT Austin Point Feature

Projecting the UT Austin coordinates onto the NAD '83 Albers yields the following offset:

Latitudinal difference: 167062 – 167015 = ~50 meters	
Longitudinal difference: 804122 – 802149 = ~2000 met	ers

This difference results from the assumption of a perfectly spherical Earth when completing the calculations by hand.

f.

North American Albers Equal Area Conic Projection

⊿	OBJECTID_1	Shape	HUC_8	Shape_Length	Shape_Area
	1	Polygon	12100203	450392.442679	3519932197.027825

USA Contiguous Albers Equal Area Conic Projection

⊿	OBJECTID_1	Shape	HUC_8	Shape_Length	Shape_Area
	1	Polygon	12100203	451421.887569	3519932197.74058

The basin's shape lengths and shape areas vary slightly in both projections. Differences to the length area greater due to area being preserved while length is not.

2. Manual Calculation

a. UT Austin Latitude:

$$\Delta L_{lat} = R_e \Delta \phi$$

$$1km = 6371km * \Delta \phi * \left(\frac{\pi}{180^\circ}\right)$$

$$\Delta \phi = \frac{1km}{6371km * \left(\frac{\pi}{180^\circ}\right)} = 0.00899^\circ$$

b. UT Austin Longitude:

$$\Delta L_{lon} = R_e \Delta \lambda \cos \phi$$

$$1km = 6371 * \Delta \lambda * \cos \left(30.2861^\circ * \frac{\pi}{180} \right)$$

$$\Delta \lambda = \frac{1km}{6371km * \left(\frac{\pi}{180^\circ}\right) * \cos \left(30.2861^\circ * \frac{\pi}{180} \right)} = 0.01041^\circ$$

c. Logan, Utah Latitude:

Note: This is the same for UT Austin and all other locations, because the latitudinal distance depends only on the earth's radius and the distance (in this case 1km).

$$\Delta L_{lat} = R_e \Delta \emptyset$$

$$1km = 6371km * \Delta \emptyset * \left(\frac{\pi}{180^\circ}\right)$$

$$\Delta \emptyset = \frac{1km}{6371km * \left(\frac{\pi}{180^\circ}\right)} = 0.00899^\circ$$

d. Logan, Utah Longitude:

$$\Delta L_{lon} = R_e \Delta \lambda \cos \emptyset$$

$$1km = 6371 * \Delta \lambda * \cos \left(41.7483^\circ * \frac{\pi}{180}\right)$$

$$\Delta \lambda = \frac{1km}{6371km * \left(\frac{\pi}{180^\circ}\right) * \cos \left(41.7483^\circ * \frac{\pi}{180}\right)} = 0.01205^\circ$$