1. Problem 1

a. North American Datum of 1983
b. Albers Equal Area Conic
c. USA Contiguous Albers Equal Area Conic:

Note: Maps displayed using Web Mercator view are also acceptable.
USA Contiguous Albers Equal Area Conic Prepared by Paul Ruess, September 26, 2016

North American Albers Equal Area Conic:
North American Albers Equal Area Conic Prepared by Paul Ruess, September 26, 2016

d. Manual Calculation

i. South of the Latitude of Origin:
$\Delta L_{\text {lat }}=R_{e} \Delta \emptyset=6371.0 \mathrm{~km} *\left(37.5^{\circ}-30.2861^{\circ}\right) *\left(\frac{\pi}{180^{\circ}}\right)=802.149 \mathrm{~km}$
ii. West of the Central Meridian:
$\Delta L_{\text {lon }}=R_{e} \Delta \lambda \cos \emptyset=6371.0 \mathrm{~km} *\left(97.7394^{\circ}-96^{\circ}\right) *\left(\frac{\pi}{180^{\circ}}\right) * \cos \left(30.2861^{\circ} * \frac{\pi}{180}\right)=167.015 \mathrm{~km}$
e. UT Austin Point Feature

Projecting the UT Austin coordinates onto the NAD '83 Albers yields the following offset:
Latitudinal difference: 167062-167015 $=\sim 50$ meters
Longitudinal difference: 804122 - $802149=\sim \sim_{2} 200$ meters
This difference results from the assumption of a perfectly spherical Earth when completing the calculations by hand.
f.

North American Albers Equal Area Conic Projection

OBJECTID_1	Shape	HUC_8	Shape_Length	Shape_Area
1	Polygon 12100203	450392.442679	3519932197.027825	

USA Contiguous Albers Equal Area Conic Projection

OBJECTID_1	Shape	HUC_8	Shape_Length	Shape_Area
1	Polygon 12100203	451421.887569	3519932197.74058	

The basin's shape lengths and shape areas vary slightly in both projections. Differences to the length area greater due to area being preserved while length is not.

2. Manual Calculation

a. UT Austin Latitude:

$$
\begin{gathered}
\Delta L_{l a t}=R_{e} \Delta \emptyset \\
1 \mathrm{~km}=6371 \mathrm{~km} * \Delta \emptyset *\left(\frac{\pi}{180^{\circ}}\right) \\
\Delta \emptyset=\frac{1 \mathrm{~km}}{6371 \mathrm{~km} *\left(\frac{\pi}{180^{\circ}}\right)}=0.00899^{\circ}
\end{gathered}
$$

b. UT Austin Longitude:

$$
\begin{gathered}
\Delta L_{l o n}=R_{e} \Delta \lambda \cos \emptyset \\
1 \mathrm{~km}=6371 * \Delta \lambda * \cos \left(30.2861^{\circ} * \frac{\pi}{180}\right) \\
\Delta \lambda=\frac{1 \mathrm{~km}}{6371 \mathrm{~km} *\left(\frac{\pi}{180^{\circ}}\right) * \cos \left(30.2861^{\circ} * \frac{\pi}{180}\right)}=0.01041^{\circ}
\end{gathered}
$$

c. Logan, Utah Latitude:

Note: This is the same for UT Austin and all other locations, because the latitudinal distance depends only on the earth's radius and the distance (in this case 1 km).

$$
\begin{gathered}
\Delta L_{\text {lat }}=R_{e} \Delta \emptyset \\
1 \mathrm{~km}=6371 \mathrm{~km} * \Delta \emptyset *\left(\frac{\pi}{180^{\circ}}\right) \\
\Delta \emptyset=\frac{1 \mathrm{~km}}{6371 \mathrm{~km} *\left(\frac{\pi}{180^{\circ}}\right)}=0.00899^{\circ}
\end{gathered}
$$

d. Logan, Utah Longitude:

$$
\begin{gathered}
\Delta L_{l o n}=R_{e} \Delta \lambda \cos \emptyset \\
1 \mathrm{~km}=6371 * \Delta \lambda * \cos \left(41.7483^{\circ} * \frac{\pi}{180}\right) \\
\Delta \lambda=\frac{1 \mathrm{~km}}{6371 \mathrm{~km} *\left(\frac{\pi}{180^{\circ}}\right) * \cos \left(41.7483^{\circ} * \frac{\pi}{180}\right)}=0.01205^{\circ}
\end{gathered}
$$

