Name: \qquad
GIS in Water Resources Midterm Exam
Fall 2013
There are four questions on this exam. Please do all four.

Question 1

The table below gives the geographic location of two points.

A	$39^{\circ} 27^{\prime} 45^{\prime \prime} \mathrm{N}, 111^{\circ} 30^{\prime} 0$ " W
B	$40^{\circ} 20^{\prime} 0 " \mathrm{~N}, 111^{\circ} 30^{\prime} 0 " \mathrm{~W}$

Note that the "W" coordinates are the same.
a) Calculate the latitude and longitude of each point in decimal degrees.
b) Calculate the distance from A to B in km. For these calculations assume a spherical earth with radius 6371 km .

Now consider the location of these points in the Utah North State Plane Coordinate System with the following attributes from ArcGIS.


```
Current coordinate system:
NAD_1983_StatePlane_Utah_North_FIPS_4301
WKID: 32142 Authority: EPSG
Projection: Lambert_Conformal_Conic
False_Easting: 500000.0
False_Northing: 1000000.0
Central_Meridian: -111.5
Standard_Parallel_1: 40.71666666666667
Standard_Parallel_2: 41.78333333333333
Latitude_Of_Origin: 40.33333333333334
Linear Unit: Meter (1.0)
```

c) What are the geographic coordinates $\left(\varphi_{o}, \lambda_{0}\right)$ of the origin of this coordinate system?
d) What are the projected coordinates $\left(\mathrm{X}_{\mathrm{o}}, \mathrm{Y}_{\mathrm{o}}\right)$ of the origin of this coordinate system in m ?
e) What are the projected coordinates (X, Y) of point A above in this coordinate system in m ?
f) We have used four main national GIS data sets in our class exercises. Name and briefly describe each dataset.
(i)
(ii)
(iii)
(iv)

Question 2

The following shows a map of the San Marcos Basin with three subwatersheds indicated similar to those you worked with in the exercises (To reduce calculations I have combined some of the subwatersheds). The blue/gray background layer is USA Soils Available Water Storage as used in Exercise 2. Available soil water storage is in units of cm . The streams indicated are NHDPlus streams. Map units are meters.

Following is the subwatershed attribute table.

The following zonal statistics calculation was performed.

Following is the zone attribute table that resulted.

Table														$\square \times$
ZoneAWS														\times
	OBJECTID *	HydrolD	COUNT	AREA	MIN	MAX	RANGE	MEAN	STD	SUM	VARIET	MAJO	MINOR	MEDIAN
-	1	330	894422	804979800	1	27	26	20.367	4.441	1821675	23	22	1	22
	2	331	118456	1066111200	0	25	25	6.3083	6.613	7472722	22	4	21	4
	3	333	122019	1098173700	1	27	26	15.645	8.611	1909027	26	22	15	21
Subwatershed ZoneAWS														

a) Report the area of each subwatershed in Km^{2}. Report the area draining to each gage in Km^{2}.

Subwatershed	Area ($\mathbf{K m}^{\mathbf{2}}$)
1	
2	
3	

Gage	Area ($\left.\mathbf{K m}^{\mathbf{2}}\right)$
A	
B	
C	

b) Report the average depth of available water storage (cm) in each subwatershed and the corresponding volume $\left(\mathrm{Km}^{3}\right)$.

Subwatershed	Depth (cm)	Volume (Km $\left.{ }^{\mathbf{3}}\right)$
1		
2		
3		

Question 3

The following diagram gives elevation values on a 30 m DEM grid.
a) Identify any pits and indicate the elevation to which they need to be raised to drain the DEM.

7	7	7	7	5	4.5
7	8	7.1	8	7	5
7	6.3	6.5	6	6.6	4.5
7	8	6.4	6.1	6.2	5
7	8	7.5	7	6.5	6

b) Calculate the flow direction and flow accumulation for all cells in the inner block. Show arrows for the flow direction and numbers for the flow accumulation.

Flow Direction

Flow Accumulation

c) On the above flow accumulation diagram draw a border around the watershed draining to and including the grid cell in the inner block with largest flow accumulation. What is the area of this watershed (square meters)?

Question 4

Consider a network specified by the following topology table

Network Tolology			
Junction	Edge,Junction	Edge,Junction	Edge,Junction
J1	E5, J2		
J2	E5, J1	E4, J3	E3, J5
J3	E4, J2		
J4	E1, J5		
J5	E3, J2	E1, J4	E2, J6
J6	E2, J5		

The coordinates of each junction are

Junction	X	Y	Z
J1	10	30	8
J2	40	30	6
J3	40	10	7
J4	50	60	7
J5	70	60	5
J6	70	100	4

The z coordinate gives the elevation. Flow is in the down elevation direction.
a) Draw a plan of this network based on X and Y coordinates. Label each edge and junction.

Indicate with arrows the flow direction associated with each edge.

b) What edges are selected by an upstream trace with an edge flag placed on E3?

