Name:_____

GIS in Water Resources Midterm Exam

Fall 2017

There are five questions on this exam. Please do all five. They are of equal credit.

Question 1

(a) The National Water Model is built using a foundational geospatial dataset called NHDPlus, formed from the National Elevation Dataset and National Hydrography Dataset.

Briefly describe the National Elevation Dataset.

Briefly describe the National Hydrography Dataset.

How are the land and water systems of the nation connected in the NHDPlus dataset?

(b) Houston is located at the following location in geographic coordinates (95°22'11"W, 29°45'38"N) Determine the location of Houston in Decimal Degrees

Question 2

For flood inundation mapping during Hurricane Harvey, FEMA used the following coordinate system:

Projected Coordinate System	NAD 1983 UTM Zone 15N		
Projection	Transverse Mercator		
WKID	26915		
Authority	EPSG		
Linear Unit	Meter (1.0)		
False Easting	500000.0		
False Northing	0.0		
Central Meridian	-93.0		
Scale Factor	0.9996		
Latitude Of Origin	0.0		
Geographic coordinate system	n GCS North American 1983		
Geographic coordinate system WKID	GCS North American 1983 4269		
Geographic coordinate system WKID Authority	GCS North American 1983 4269 EPSG		
Geographic coordinate system WKID Authority Angular Unit	GCS North American 1983 4269 EPSG Degree (0.0174532925199433)		
Geographic coordinate system WKID Authority Angular Unit Prime Meridian	GCS North American 1983 4269 EPSG Degree (0.0174532925199433) Greenwich (0.0)		
Geographic coordinate system WKID Authority Angular Unit Prime Meridian Datum	 GCS North American 1983 4269 EPSG Degree (0.0174532925199433) Greenwich (0.0) D North American 1983 		
Geographic coordinate system WKID Authority Angular Unit Prime Meridian Datum Spheroid	 GCS North American 1983 4269 EPSG Degree (0.0174532925199433) Greenwich (0.0) D North American 1983 GRS 1980 		
Geographic coordinate system WKID Authority Angular Unit Prime Meridian Datum Spheroid Semimajor Axis	GCS North American 1983 4269 EPSG Degree (0.0174532925199433) Greenwich (0.0) D North American 1983 GRS 1980 6378137.0		
Geographic coordinate system WKID Authority Angular Unit Prime Meridian Datum Spheroid Semimajor Axis Semiminor Axis	GCS North American 1983 4269 EPSG Degree (0.0174532925199433) Greenwich (0.0) D North American 1983 GRS 1980 6378137.0 6356752.314140356		

(a) What Earth Datum is used?

(b) What spheroid is used?

(c) What is the difference in length between the earth's equatorial radius and polar radius on this spheroid (km)?

(d) What map projection is used?

(e) Is this a conical, cylindrical or azimuthal projection?

Draw on this map the location of the Central Meridian of the projection.

Where is the Latitude of Origin of this projection?

The coordinates of Houston in this projection are (X,Y) = (270870, 3294609).

How far is Houston from the Latitude of Origin (m)?

How far is Houston from the Central Meridian (m)?

Question 3

9	8	10	10
11	9	11	12
14	10	13	15
10	12	13	12

a) For the four inner grid cells determine their D8 flow direction. Indicate D8 flow directions in the diagram above to the right. Also indicate the numerical values of the flow direction encoding as used by ArcGIS.

b) For the four inner grid cells determine their D8 flow accumulation. Indicate flow accumulation values in the diagram below. In evaluating these flow accumulation values you may disregard any flow from outside the bold box of four inner grid cells.

c) Calculate the Hydrologic (D8) slope of the grid cell with the steepest slope among the four inner grid cells.

Following is a grid of elevation values in meters in a digital elevation model with 25 m cell size

16	17	15	15	15	16
14	15	14	13	12	13
11	15	12	10	11	12
15	18	12	12	13	9
14	17	15	11	10	8
15	16	15	15	8	7

d) Following is a grid of elevations in meters in a digital elevation model identify any pits and indicate the elevation they would need to be raised to, for them to be filled.

Question 4.

Consider the map of streams derived from a digital elevation model with attribute tables for the drainage lines and catchments shown.

Units on Shape_Length attributes are meters and units on Shape_Area attributes are square meters.

a) Determine the drainage area of this watershed (km²)

b) Determine the length of channels in this watershed (km)

c) Determine the drainage density of this watershed (km/km²)

d) For location A in the watershed determine the distance to the nearest stream (km). Approximate this using the scale information given.

e) For location A in the watershed determine the height above the nearest drainage (m). Note contour interval is 20 m.

Question 5

The map below shows the Upper San Marcos River HUC 10 subwatershed (1210020303) and nearby precipitation stations from data used in exercises 2 and 3. Also shown are selected columns from the table obtained from intersecting the Thiessen polygons with the HUC 10 Subwatersheds.

Thiessen Polygon HUC 10 intersection table. The units of attribute AnnPrecip_in are inches, and of attribute Shape_area are square meters.

Arc	ArcGIS Pro - Ex3_Project					×	
	III ThiessenHuc10Intersect ×						Ŧ
Fie	Field: 📰 🕎 🖪 Selection: 🚭 🖶 📃 🧮						≡
⊿	OBJECTID	HUC 10 ID	stname	Nyr	AnnPrecip_in	Shape_Area	
	13	1210020303	NEW BRAUNFELS	17	34.270588	265993677.175304	
	14	1210020303	WIMBERLEY 1 NW	21	40.47619	274065178.063422	
	15 1210020303 SEGUIN 1 SSW 14 35.712857 2660776.341296						
	16	1210020303	CANYON DAM	17	39.082353	68575157.687755	
	17	1210020303	LOCKHART 2 SW	10	36.125	233722906.59475	
	18	1210020303	KINGSBURY	7	38.788571	260572886.090427	
	■ 6 of 31 selected Filters: (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)						

(a) Which station influencing this HUC 10 subwatershed has the highest mean annual precipitation?

(b) Calculate the Area and Annual Precipitation in Inches for the Upper San Marcos River HUC 10 subwatershed and enter them in the table below. A blank table is also provided to help you organize your computations.

HUC 10	Area (Km ²)	Annual Precipitation (in)
1210020303 (Upper San Marcos)		