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1. Overview & Background
Predicting the impact of floods on transportation infrastructure is crucial for emergency
response and preparedness. Specifically, improvements in predictive accuracy significantly
reduces capital investments needed to protect critical roads [1]. In the past few years,
multiple researchers investigated flood risk and the resulting vulnerabilities in the trans-
portation network [2, 3, 4, 5, 6]. The primary objective of such studies was to identify
critical transportation links by quantifying the likelihood and impact of floods.

Data drive methods for quantifying flood risk exploit recent advances in wireless sen-
sor networks and flood information systems [7, 8, 9]. Specifically, these methods generate
statistical predictive models that exploit existing data on flood condition and watershed
characteristics to quantify road flood probability [2, 5, 10]. Other data driven studies
include identifying statistical relationships between the functional performance of the
roadway and the flood intensity [4].

Another class of methods for estimating road network flood risk rely on terrain mod-
els generated using LiDAR data along with hydrologic models describing flood dynamics
[3, 6, 11]. One possible approach is to first extract roadway centerlines using LiDAR
data, and then determine the flood extent for a given water level using a digital terrain
model [11]. Such methods highlight the importance of topographic attributes that could
be integrated with additional landscape features and hydrologic models in geographic
information systems [10, 11]. In comparison with statistical data driven methods, ap-
proaches that use terrain data and hydrologic models may provide increased accuracy of
flood risk. However, this increased accuracy is at the expense of computational cost and
predictive complexity [10].

Recently, the National Water Model (NWM) was developed to provide large scale
flow forecasts on about 2.7 million stream and river reaches [12]. The NWM core is a
weather research and forecasting hydrologic model (WRF-Hydro) that is set to perform
Muskingum-Cunge channel routing through stream reaches obtained from the national
hydrography dataset (NHDplus). This framework uses a nudging scheme to assimilate
streamflow observations from United States geological survey (USGS) streamgages [13].

Thus, instead of relying on computationally expensive hydrologic models, the NWM
provides streamflow forecasts that are freely available for download. However, streamflow
forecasts do not give a direct indication of water level and corresponding road network
flood risk. This led researchers to explore methods for estimating rating curves at a large-
scale by relying on channel geometry using the height above nearest drainage method
(HAND) [14]. In turn, the HAND method can also be used to determine inundation
for any particular stage height computed using the aforementioned rating curves. This
coupling between HAND and NWM forecasts enables near real-time inundation forecasts
for the continental United States [15, 16].
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2. Objective
The primary objective of this project is to analyze the applicability of HAND-NWM
inundation forecasts for determining road network flood damage. Specifically, we aim to
compare inundation maps from the HAND-NWM framework with observed flood inci-
dents. Then, we will provide a framework for probabilistic predictions that can be used
to (1) quantify the uncertainty associated with HAND-NWM inundation maps and (2)
integrate road network incident observations to improve road network disruption predic-
tions at unobserved locations.

3. GIS Data Processing
In this section, we will discuss methods for extracting data generated by the national
flood interoperability experiment (NFIE) and the NWM. In addition, we will discuss
data processing methods that are needed to determine if a road is inundated or not using
HAND-NWM inundation maps. A central theme in the following discussion is the impact
of data resolution on the applicability of road network HAND-NWM inundation mapping.
Specifically, we show that the relatively coarse resolution of watershed information and
digital elevation models leads to difficulties in processing the road network. To address
these limitations, we develop python scripts that process the road network data, incident
information, and HAND-NWM inundation maps. The outcome of the developed data
analysis modules is a dictionary with road ID, inundation level at lowest point predicted
by HAND-NWM inundation maps, location of lowest point in projected coordinates, and
whether an incident was observed in the field or not. This dictionary is saved as a pckl file
and uploaded to Hydroshare along with the python code. The Hydroshare resource link
is as follows: http://www.hydroshare.org/resource/45122a8fc2ea4bc984d370e5b543d3d9
[17].

3.1 Study Area & Road Network Data
The study area and flood event considered correspond to the Harvey hurricane that
passed through Houston in 2017. Figure 1 shows the area of interest. To analyze road
network inundation in the Houston area, we resort to Harvey Hydroshare resource for
road network data [18]. In particular, under the “Harvey Basemap Data Collections”
collection resource, there is a “Texas Basemap - Transportation Map Data” composite
resource that contains shapefiles for the road network maintained by the Texas Depart-
ment of Transportation (TxDOT). For the road network flood incidents, a shape file
with the incident data was uploaded to [17]. Note that we restrict the analysis to inci-
dents observed on 08-28-2017. By restricting to this date, we can easily extract NWM
forecasts that corresponds to incidents observed throughout that day. As for the hy-
drology data, these were downloaded from the NFIE database for regional 12. This
database is available as a Hydroshare resource at http://www.hydroshare.org/resource/
1d78964652034876b1c190647b21a77d [19]. The data was extracted to the region of inter-
est using the extract by mask feature with the subwatershed boundary surrounding the
Houston area as the mask. Note that all feature classes were projected to the NAD 1983
UTM Zone 14N coordinate system using a transverse Mercator projection.
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Figure 1: Study area where flood incidents observed by TxDOT are shown as red points

3.2 Processing Road Network Data: Resolution Effects
Consider a road segment defined as the stretch between two intersections. To determine
if a particular road is inundated using HAND-NWM inundation maps, we need to first
identify the catchment in which the road segment lies. However, in certain cases road
segments cross several catchments. In these situations, the road should be divided into
smaller sub-segments where each sub-segment belongs to a specific catchment. To divide
the road network layer into the aforementioned sub-segments, we intersect the road poly-
line feature class with the catchments feature class. Then, we split the road segment at
the resulting intersection points using the ‘split line at a point’ geo-processing tool.

However, due to the catchment resolution, this leads to a large number of road sub-
segments. In particular, by observing Figure 2, we can see that the catchment boundary
is often along the road segment itself. Due to the non-smooth boundary of the catchments
(as a result of the resolution of data used to build the catchments dataset), the catchment
boundary intersects the road segment at multiple points. In turn, this results in a large
number of road sub-segments.
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Figure 2: Catchment boundary along a road results in dividing the road into a large number of
small sub-segments (one specific sub-segment is circled)

Managing a large number of tiny road sub-segments is computationally expensive.
Moreover, analyzing such short sub-segments is not necessary when considering network
level road damage in the subwatershed. Therefore, we delete these road sub-segments
that are at irregular catchment boundaries. To do so, we create a road network layer
by spatial joining the splitted road layer with catchments using a search radius of 20m.
In that layer (after spatial join), every road segment at the boundary will be associated
with catchments on both sides and will have duplicate entries (one to many spatial join).
Then, we write python code to process the resulting layer and delete duplicates. This
code is available within process-roads.py at [17]. The road segments lost to the cleaning
process are shown in black in Figure 3. While this leads to a loss of information on certain
parts of the network, the number of road segments and sub-segments was reduced from
2120 to 407.

Figure 3: Roads lost due to cleaning segments at catchment boundaries are shown in black
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3.3 Height Above Nearest Drainage
In the HAND-NWM inundation mapping, we need to compute the HAND value along
road segments. The HAND raster was downloaded from the NFIE database at the Texas
Advance Computing Center (TACC). The HUC-6 area that includes Houston is 120401.
Then, the HAND raster was projected to the UTM Zone 14 coordinate system (cubic
convolution). The resulting raster is shown in Figure 4. We note that the HAND raster
downloaded from NFIE has some negative values and does not fully cover the Houston
area. Specifically, Figure 5 shows a portion of Houston that did not have any HAND
values (even after downloading the adjacent HAND raster for HUC-6 #120701).

Figure 4: HAND raster for the HUC-6 region # 120401
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Figure 5: Missing HAND values in the Houston area using HAND rasters downloaded from the
NFIE database

To extract the HAND values to the road segments, we first convert the polyline fea-
ture into a raster, and then convert the resulting raster to a point layer. The resulting
raster and overlaid point layer are shown in Figure 6. The point layer is also shown in
Figure 7. Then, using the ‘extract values to points’ geo-processing tool to combine the
HAND raster and the point layer associated with the road segments, we generate another
point layer that has the corresponding road segment (sub-segment) ID and HAND value
for every point.

However, to determine if a road segment is damaged by a flood, we only need to
find the point along the road segment with minimum HAND value. Specifically, if the
road is inundated, then the minimum HAND point along the road will have the largest
inundation. To find the minimum HAND point for every road segment, we write python
functions in a module referred to as computeRoadHand.py at [17]. In addition, we create a
layer out of the minimum HAND points and use the ‘add XY coordinates’ geo-processing
tool to find the coordinates of every minimum HAND point.
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Figure 6: Raster and point layers associated with the road segment polyline feature class

Figure 7: Point layer and HAND raster after extraction to subwatershed area

3.3 National Water Model Data & NFIE Rating Curves
After extracting the HAND data at the lowest points along road segments, we need to
obtain streamflow forecasts and translate the forecasts into stage height to determine the
corresponding inundation. The NWM forecast data are in the order of terabytes. Thus,
it is difficult to manipulate this data by downloading the entire data set and searching
for time series within a specific time horizon and over a particular region. However,
on Hydroshare, there are resources for effectively retrieving the NWM forecasts using
Thredds and OpenDAP technologies. Specifically, we modify Castronova’s code that is
available at [20] to extract data for the Houston area. The uploaded getNWMdata.py
module contains code for extracting NMW short range forecasts within the Houston
area on 08-28-17 [17]. Then, the NWM discharge value associated with any catchment
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is chosen to be the maximum reported value within the 18 hour short range forecast.
It is worthy of note that the NWM streamflow forecasts were not available for certain
catchments shown in Figure 8. While this is not convenient for automated processing of
road segment inundation levels, it is clear that the roads in this region will be inundated
due to their proximity to the Galveston Bay.

Figure 8: Region with missing NWM streamflow forecasts

To obtain rating curves we rely on data generated from the NFIE experiment to map
discharge for different levels of stage heights for every catchment within the continental
United States. Specifically, within the HUC-6 #120401 NFIE database, there is a csv file
referred to as ‘hydroprop-fulltable-120401.csv’ that has rating curve data points that are
generated using the procedure in [14] based on river channel geometry. For every catch-
ment, the csv file has 82 discharge-stage data points. To extend this rating curve for
any discharge-stage pair, we write code in discharge2stage.py that does piecewise linear
interpolation between the NFIE data points. This code is also uploaded to [17].

4. Comparison of Inundation Maps with Observed Incidents
After generating NWM streamflow forecasts for 08-28-17 and translating the forecasts
to stage height using NFIE rating curves, we can compare the stage heights within ev-
ery catchment to the minimum HAND value on road segments within the catchment to
determine if the road segments are damaged by the flood. In particular, the inundation
level at any road segment would be the minimum HAND value subtracted from the stage
height.

For the 26 flood incidents that caused road obstructions identified by the Texas de-
partment of transportation, 5 incident locations had an inundation level of zero computed
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through the HAND-NWM inundation maps. Thus, for the available incident data set, the
HAND-NWM inundation map had an accuracy of about %80. This inability to detect
inundation at all field observed incident locations is due to the assumptions and data
resolution limitations of the HAND-NWM inundation mapping.

Figure 9: TxDOT observed incidents on 08-28-17 that are not detected by the corresponding
HAND-NWM inundation mapping

5. Spatial Probabilistic Model that Incorporates Observed Incident Infor-
mation
In this section, we outline a model for generating probabilistic predictions using the
HAND-NWM inundation maps and the observed road network incidents. The proba-
bilistic nature of the model allows us to quantify the uncertainty due to the inaccuracy of
HAND-NWM inundation maps. Furthermore, the model conditions on observed incidents
to improve the probabilistic predictions. Specifically, we propose the use of a Gaussian
process (GP) to generalize a linear regression spatially and generate probabilistic predic-
tions. In particular, the GP is a non-parametric model that specifies a distribution over a
random function f as shown in Equation 1. In this equation, m specifies a mean function
and k is a symmetric positive-definite kernel. The Gaussian process can be interpreted
as follows: for every argument xi of the random function f there is an associated ran-
dom variable f(xi) such that the joint distribution for a finite set of random variables
{f(x1), f(x2), .., f(xN)} is multivariate Gaussian with a mean vector specified by m and
a covariance matrix specified by k [21].

f ∼ GP(m, k) (1)

In the case of road network inundation, the mean function m can reflect the inundation
level computed using HAND-NWM inundation maps. The covariance matrix represents
the relationship between observations at different locations. For example, an exponential
covariance kernel defined in Equation 2 implies that as the road segments are further
apart the corresponding correlation between water depth measurements decreases [22].
In this equation, x refers to the location of the minimum HAND point along a road
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segment.
k(xi, xj) = e−φ(xi−xj)

2

(2)

To incorporate road network observations, we can decompose the multivariate Gaussian
distribution associated with the random variables as shown in Equation 3 where the vector
fV represents the random variables at the monitored locations and the vector fY represents
the random variable at unmonitored locations. µ and Σ reflect the corresponding mean
and covariance matrix, respectively.[

fV
fY

]
∼ N

([
µV
µY

]
,

[
ΣV ΣV,Y

Σ
′
V,Y ΣV

])
(3)

Then, using properties of the multivariate Guassian distribution, the posterior distri-
bution at locations that are not monitored for a given set of observations fV = fV at
monitored locations can be given as shown in Equation 4. Therefore, using the GP
and HAND-NWM inundation maps (to specify the mean function) we are able to pre-
dict the posterior distribution at unobserved road segments. This posterior distribution
determines the expected water depth and variance at an unobserved location given the
observed measurements. In turn, the variance can be also used to quantify the uncertainty
on predictions.

fY |fV ∼ N (µY + Σ
′

V,YΣV
−1(fV − µV),ΣV −Σ

′

V,YΣV
−1ΣV,Y) (4)

6. Conclusion
In this report, we examined the accuracy of HAND-NWM inundation maps in deter-
mining road network flood damage. Specifically, we compare HAND-NWM inundation
maps from NWM stream flow forecasts on 08-28-17 against observed road network flood
incidents on that same day. We show that the inundation maps report a positive inunda-
tion value at only 80% of observed road incident locations. This reflects the limitations
and uncertainties that are associated with HAND-NWM inundation maps. To address
these limitations, we propose a probabilistic kernel regression scheme based on Gaussian
processes.

In addition, we identify certain data limitations that impact road network inunda-
tion mapping. Specifically, the resolution at which catchments are delineated results in
irregularities when the catchment boundary is along a road segment. In addition, the
HAND rasters downloaded from NFIE do not fully cover the area of interest and include
negative values. Similarly, the NWM streamflow forecast data was not found for a small
number of catchments.

Python modules for data processing and extraction are uploaded to the Hydroshare
resource [17].
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