

CE 319 F Daene McKinney

Elementary Mechanics of Fluids

Introduction & Fluid Properties

Fluid Mechanics

- Definition
 - The study of liquids and gasses at rest (statics) and in motion (dynamics)
- Engineering applications
 - Blood in capillaries
 - Oil in pipelines
 - Groundwater movement
 - Runoff in parking lots
 - Pumps, filters, rivers, etc.

States of Matter

- Fluids (gasses and liquids) and solids
- What's the difference?
 - Fluid particles are free to move among themselves and give way (flow) under the slightest tangential (shear) force

Classes of Fluids

- Liquids and gasses What's the difference?
 - Liquids: Close packed, strong cohesive forces, retains volume, has free surface
 - <u>Gasses:</u> Widely spaced, weak cohesive forces, free to expand

Common Fluids

• Liquids:

- water, oil, mercury, gasoline, alcohol

• Gasses:

– air, helium, hydrogen, steam

• Borderline:

- jelly, asphalt, lead, toothpaste, paint, pitch

Primary Dimensions & Units

- <u>**Dimension:</u>** Generalization of "unit" telling us what kind of units are involved in a quantitative statement</u>
 - Mass [M], length [L], time [T], temperature $[\theta]$
- **Unit:** Particular dimension
 - kg, m, s, °K (Systeme International)
 - slug, ft, s, °R (British Gravitational)
 - lbm, ft, s, °R (something else)

What's a SLUG?!

• UC Santa Cruz Mascot

- Unit of mass in the BG system (~14.59 kg, ~32.17 lbm)
- 1 lbf will accelerate a slug 1ft/s²
- 32.17 lb/14.59 kg = 2.2 lbm/kg

Secondary Units

• Force

$$\left[\frac{ML}{T^2}\right] = \left[M\right]\left[\frac{L}{T^2}\right]$$

N = kg-m/s² (Newton) lbf = slug-ft/s² (pound force) = 32.2 lbm-ft/s²

- Work (Force through a distance)
 - $J = N-m \qquad (Joule)$ ft-lbf (foot pound)
- Energy (Work per time)
 W = J/s
 ft-lbf/s
 - hp 550 ft-lb/s

(Watt) (foot pound per sec) (horsepower)

Fluid as a Continuum

- Fluids are aggregates of molecules
 - Widely spaced: gasses
 - Closely spaced: liquids

- Intermolecular distance is large compared to molecular diameter
- Molecules move freely
- Air at STP:

 $\delta V^*=10^{-9} \text{ mm}^3$ and contains 3×10^7 molecules

• Continuum hypothesis

Fluid Properties

- Density: Mass per unit volume
 - How large is the volume?
 - Too small: # molecules changes continuously
 - Large: # molecules remains almost constant
 - At these scales, fluid properties (e.g., density) can be thought of as varying continuously in space.

$$\rho = \lim_{\delta V \to \delta V^*} \frac{\delta m}{\delta V}$$

Density

• Mass per unit volume (e.g., @ 20 °C, 1 atm)

– Water	$ ho_{water}$	$= 1000 \text{ kg/m}^3$
– Mercury	$ ho_{Hg}$	$= 13,500 \text{ kg/m}^3$
– Air	$ ho_{air}$	$= 1.22 \text{ kg/m}^3$

- Densities of gasses increase with pressure
- Densities of liquids are nearly constant (incompressible) for constant temperature
- Specific volume = 1/density

Specific Weight $\gamma = \rho g \qquad [N/m^3] \text{ or } [lbf / ft^3]$

• Weight per unit volume (e.g., @ 20 °C, 1 atm)

 γ_{water} = (998 kg/m³)(9.807 m²/s) = 9790 N/m³

 $[= 62.4 \text{ lbf/ft}^3]$

$$\gamma_{air}$$
 = (1.205 kg/m³)(9.807 m²/s)
= 11.8 N/m³

 $[= 0.0752 \text{ lbf/ft}^3]$

Specific Gravity

 Ratio of fluid density to density at STP (e.g., @ 20 °C, 1 atm)

$$SG_{liquid} = \frac{\rho_{liquid}}{\rho_{water}} = \frac{\rho_{liquid}}{9790 \, kg \, / \, m^3}$$
$$SG_{gas} = \frac{\rho_{gas}}{\rho_{gas}} = \frac{\rho_{gas}}{\rho_{gas}}$$

$$SG_{gas} = \frac{r gas}{\rho_{air}} = \frac{r gas}{1.205 \, kg \, / \, m^3}$$

- Water $SG_{water} = 1$ - Mercury $SG_{Hg} = 13.6$ - Air $SG_{air} = 1$

Table A.4

APPROXIMATE PHYSICAL PROPERTIES OF COMMON LIQUIDS AT ATMOSPHERIC PRESSURE

Liquid and temperature	Density kg/m ³ (slugs/ft ³)	Specific gravity (S) water at 4°C is ref.	Specific weight, N/m ³ (lbf/ft ³)	Dynamic viscosity, N •s /m ² (lbf-s /ft ²)	Kinematic viscosity, m ² /s (ft ² /s)	Surface tension, N/m* (lbf/ft)
Ethyl alcohol ⁽³⁾⁽¹⁾	799	0.79	7,850	$1.2 imes 10^{-3}$	1.5×10^{-6}	2.2×10^{-2}
20°C (68°F)	(1.55)		(50.0)	(2.5×10^{-5})	(1.6×10^{-5})	(1.5×10^{-3})
Carbon tetrachloride ⁽³⁾	1,590	1.59	15,600	$9.6 imes10^{-4}$	$6.0 imes10^{-7}$	$2.6 imes10^{-2}$
20°C (68°F)	(3.09)		(99.5)	(2.0×10^{-5})	(6.5×10^{-6})	(1.8×10^{-3})
Glycerine ⁽³⁾	1,260	1.26	12,300	$6.2 imes 10^{-1}$	$5.1 imes 10^{-4}$	$6.3 imes 10^{-2}$
20°C (68°F)	(2.45)		(78.5)	(1.3×10^{-2})	(5.3×10^{-3})	(4.3×10^{-3})
Kerosene ⁽²⁾⁽¹⁾	814	0.81	8,010	1.9×10^{-3}	2.37×10^{-6}	$2.9 imes 10^{-2}$
20°C (68°F)	(1.58)		(51)	(4×10^{-5})	(2.55×10^{-5})	(2.0×10^{-3})
Mercury ⁽³⁾⁽¹⁾	13,550	13.55	133,000	$1.5 imes 10^{-3}$	$1.2 imes 10^{-7}$	$4.8 imes10^{-1}$
20°C (68°F)	(26.3)		(847)	(3.2×10^{-5})	(1.3×10^{-6})	(3.3×10^{-2})
Sea water 10°C	1,026	1.03	10,070	$1.4 imes 10^{-3}$	$1.4 imes 10^{-6}$	
at 3.3% salinity	(1.99)		(64.1)	(3×10^{-5})	(1.5×10^{-5})	
Oils—38°C (100°F)						
SAE 10W ⁽⁴⁾	870	0.87	8,530	$3.6 imes 10^{-2}$	4.1×10^{-5}	
	(1.69)		(54.4)	(7.4×10^{-4})	(4.4×10^{-4})	
SAE 10W-30 ⁽⁴⁾	880	0.88	8,630	6.7×10^{-2}	$7.6 imes 10^{-5}$	
	(1.71)		(55.1)	(1.4×10^{-3})	(8.2×10^{-4})	
SAE 30 ⁽⁴⁾	880	0.88	8,630	$1.0 imes 10^{-1}$	1.1×10^{-4}	
	(1.71)		(55.1)	(2.0×10^{-3})	(1.2×10^{-3})	

*Liquid-air surface tension values.

SOURCES: (1) V.L. Streeter, *Handbook of Fluid Dynamics*, McGraw-Hill Book Company, New York, 1961; (2) V.L. Streeter, *Fluid Mechanics*, 4th ed., McGraw-Hill Book Company, New York, 1966; (3) J. Vennard, *Elementary Fluid Mechanics*, 4th ed., John Wiley & Sons, Inc., New York, 1961; (4) R. E. Bolz and G. L. Tuve, *Handbook of Tables for Applied Engineering Sciences*, CRC Press, Inc., Cleveland, 1973.

Ideal Gas Law

• Equation of state

 $pV = nR_nT$ $p = \rho RT$, $R = R_n / M$

 R_n = universal gas constant M = molecular weight of the gas