

CE 319 F Daene McKinney

Elementary Mechanics of Fluids

Introduction & Fluid Properties (continued)

Table A.2

PHYSICAL PROPERTIES OF GASES AT STANDARD ATMOSPHERIC PRESSURE AND 15°C (59°F)

Gas	Density, kg/m ³ (slugs/ft ³)	Kinematic viscosity, m²/s (ft²/s)	R Gas constant, J/kg K (ft-lbf/slug-°R)	$ \begin{pmatrix} c_p \\ \frac{\mathbf{J}}{\mathbf{kg} \mathbf{K}} \\ \left(\frac{\mathbf{Btu}}{\mathbf{lbm}\text{-}^{\circ}\mathbf{R}} \right) $	$k = \frac{c_p}{c_v}$	S Sutherland's Constant K (°R)
Air	1.22 (0.00237)	$1.46 imes 10^{-5}$ $(1.58 imes 10^{-4})$	287 (1716)	1004 (0.240)	1.40	111 (199)
Carbon dioxide	1.85 (0.0036)	$7.84 \times 10^{-6} \\ (8.48 \times 10^{-5})$	189 (1130)	841 (0.201)	1.30	222 (400)
Helium	0.169 (0.00033)	1.14×10^{-4} (1.22 × 10 ⁻³)	2077 (12,419)	5187 (1.24)	1.66	79.4 (143)
Hydrogen	0.0851 (0.00017)	1.01×10^{-4} (1.09×10^{-3})	4127 (24,677)	14,223 (3.40)	1.41	96.7 (174)
Methane (natural gas)	0.678 (0.0013)	1.59×10^{-5} (1.72×10^{-4})	518 (3098)	2208 (0.528)	1.31	198 (356)
Nitrogen	1.18 (0.0023)	1.45×10^{-5} (1.56 × 10 ⁻⁴)	297 (1776)	1041 (0.249)	1.40	107 (192)
Oxygen	1.35 (0.0026)	1.50×10^{-5} (1.61×10^{-4})	260 (1555)	916 (0.219)	1.40	

SOURCE: V. L. Streeter (ed.), *Handbook of Fluid Dynamics*, McGraw-Hill Book Company, New York, 1961; also R. E. Bolz and G. L. Tuve, *Handbook of Tables for Applied Engineering Science*, CRC Press, Inc. Cleveland, 1973; and *Handbook of Chemistry and Physics*, Chemical Rubber Company, 1951.

Example (2.4)

- Given: Natural gas
 - Time 1: $T_1=10^{\circ}$ C, $p_1=100$ kPa
 - Time 2: T₂=10°C, p₂=200 kPa
- Find: Ratio of mass at time 2 to that at time 1
 - Ideal gas law (*p* is absolute pressure)

$$M = \rho V = \frac{p}{RT} V \qquad \frac{M_1}{M_2} = \frac{\frac{p_1}{RT}V}{\frac{p_2}{RT}V} = \frac{p_1}{p_2}$$
$$\frac{M_2}{M_1} = \frac{300 \, kPa}{200 \, kPa} = 1.5$$

10

Example (2.8)

- Estimate the mass of 1 mi³ of air in slugs and kgs
- Assume $\rho_{air} = 0.00237$ slugs/ft³, the value at sea level for standard conditions

$$M = \rho_{air}V = 0.00237 * (5,280)^{3}$$

$$M = 3.49x10^{8} slugs$$

$$M = 3.49x10^{8} slugs * 14.59 kg / slugs$$

$$M = 5.09x10^{9} kg$$

Elasticity (Compressibility)

• Deformation per unit of pressure change

$$E_{v} = -\frac{dp}{dV/V} = \frac{dp}{d\rho/\rho}$$

• For water $E_v = 2.2$ GPa,

1 MPa pressure change = 0.05% volume change Water is relatively incompressible

Example (2.45)

- **Given:** Pressure of 2 MPa is applied to a mass of water that initially filled 1000-cm³ volume.
- **Find:** Volume after the pressure is applied.
- **Solution:** $E = 2.2x10^9$ Pa (Table A.5)

$$E_{v} = -\frac{\Delta p}{\Delta V/V}$$

$$\Delta V = -\frac{\Delta p}{E_{v}}V$$

$$= -\frac{2x10^{6} Pa}{2.2x10^{9} Pa}1000cm^{3}$$

$$= -0.909 cm^{3}$$

$$V_{final} = V + \Delta V$$

$$= 1000 - 0.909$$

$$V_{final} = 999.01 cm^{3}$$

Vapor Pressure

- Pressure at which a liquid will boil for given temp.
- Vapor pressure increases with temperature
 - Increasing temperature of water at sea level to 212 °F, increases the vapor pressure to 14.7 psia and boiling occurs
 - Boiling can occur below 212
 °F if we lower the pressure in the water to the vapor pressure of that temperature

Vapor Press. vs. Temp.

- At 50 °F, the vapor pressure is 0.178 psia
- If you reduce the pressure in water at this temperature, boiling will occur (cavitation)

Surface Tension

- Below surface, forces act equally in all directions
- At surface, some forces are missing, pulls molecules down and together, like membrane exerting *tension* on the *surface*
- If interface is curved, higher pressure will exist on concave side
- Pressure increase is balanced by surface tension, σ
- $\sigma = 0.073 \text{ N/m} (@ 20^{\circ}\text{C})$

Capillary Rise

- **Given:** Water @ 20°C, d = 1.6 mm
- Find: Height of water
- Solution: Sum forces in vertical Assume θ small, $\cos \theta \rightarrow 1$

$$F_{\sigma,z} - W = 0$$

$$\sigma \pi d \cos \theta - \gamma (\Delta h) (\frac{\pi}{4} d^2) = 0$$

$$\Delta h = \frac{4\sigma}{\gamma d}$$

$$= \frac{4^* 0.073}{9790^* 1.6 \times 10^{-3}}$$

$$\Delta h = 18.6 \, mm$$

Example (2.51)

- Find: Capillary rise between two vertical glass plates 1 mm apart.
- $\Box \quad \sigma = 7.3 \times 10^{-2} \text{ N/m}$ *l* is into the page

• Solution:
$$\sum F_{vertical} = 0$$
$$2\sigma l - hlt \gamma = 0$$
$$h = \frac{2\sigma}{t\gamma}$$
$$= \frac{2*7.3x10^{-2}}{0.001*9810}$$
$$h = 0.0149 m$$
$$h = 14.9 mm$$

Examples of Surface Tension

Example (2.47)

- Find: The formula for the gage pressure within a sperical droplet of water?
- Solution: Surface tension force is reisited by the force due to pressure on the cut section of the drop

$$p(\pi r^2) = 2\pi r\sigma$$
$$p = \frac{2\sigma}{r}$$

Example (2.48)

- **Given:** Sperical bubble, inside radius *r*, film thickness *t*, and surface tension *σ*.
- **Find:** Formula for pressure in the bubble relative to that outside.

 $\sum F = 0$

• Solution:

$$\Delta p \pi r^2 - 2(2\pi r \sigma) = 0$$
$$\Delta p = \frac{4\sigma}{r}$$
$$\Delta p = \frac{4*7.3x10^{-2}}{0.004}$$
$$\Delta p = 73.0 Pa$$

(a) Half of spherical droplet

Bug Problem

